用户名: 密码: 验证码:
appA植酸酶基因与纳豆激酶基因的克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植酸是植物性饲料中磷的主要贮存形式,植酸酶是一种能将植酸水解并释放出无机磷的酶,它广泛存在于微生物与植物中。由于单胃动物如猪、鸡等的消化道中植酸酶活性很低,导致它们无法有效利用植酸磷。同时,植酸也是一种抗营养因子,因为它能螯合许多动物生长所必须的微量元素。
     大肠杆菌来源的appA植酸酶是一种新型的植酸酶,与常规的黑曲霉植酸酶相比具有许多优点,如与猪、鸡等畜禽胃的pH环境更加适应,与底物植酸更强的亲合性以及对消化道蛋白酶更强的抵抗性。此外它还是目前所知的植酸酶中水解植酸能力最强的酶。
     本实验从猪粪中筛选出一个高产植酸酶的E.coli菌株,根据Dassa等报道的序列设计一对引物通过PCR方法扩增了appA基因。测序结果显示appA基因阅读框架为1299bp,编码432个氨基酸,编码产物理论分子量为47.06kD,同时它也具有其它植酸酶与酸性磷酸酶的活性保守基序RHGxRxP。为了大量表达appA植酸酶,我们将appA基因分别克隆至原核表达载体pET-28a(+)和杆状病毒转移载体pVL-1393中,将其分别置于lac和polyhedrin启动子控制之下。用乳糖诱导使appA基因在大肠杆菌菌株BL21中得到了高效表达。另外,通过共转染和筛选纯化获得了携带appA基因的重组家蚕杆状病毒。感染五龄家蚕后appA植酸酶的表达量达到平均每毫升血淋巴7710U。通过SDS-PAGE发现大肠杆菌与家蚕的表达产物中分别有一条50kD与53kD的特征条带。两个表达系统中表达的重组appA植酸酶的最适温度与最适pH一致,分别为60℃与pH4.5。Ca~(2+)与Mn~(2+)都能提高酶的活性。由appA植酸酶在家蚕生物反应器中的超量表达以及appA植酸酶本身所具有的酶学特性推断,家蚕表达的appA植酸酶适合于作为新一代植酸酶添加剂应用于饲料工业与畜禽养殖业中。
     纳豆激酶是一种能够在体内及体外直接分解交联纤维蛋白的新型溶血栓酶。本实验以B.subtilis(natto)基因组DNA为模板扩增了nk基因,测序结果显示与Nakamura报道的纳豆激酶基因高度同源,其氨基酸序列也含有丝氨酸蛋白酶的活性保守中心(serine 221,histidine 64,aspartic acid 32)。将nk基因克隆至转移载体pVL-1393中后用常规方法获得重组病毒,感染家蚕后纳豆激酶获得正确表
    
    达。由于纳豆激酶是一种蛋白酶,我们首先检测并发现表达产物具有蛋白酶活性,
    通过纤维蛋白平板检测表达产物具有溶圈活性,表明表达的纳豆激酶具有溶解血
    栓的生物学功能。
Phytases are hydrolytic enzymes that initiate the release of phosphate from phytate, the major phosphorus (P) form in animal feeds of plant origin. Phytases are found naturally in microorganisms and plants. Monogastric animals, such as pigs and poultry, are not able to utilize phytate phosphorus efficiently, since they have only low levels of phytase activity in their digestive tracts, phytate also acts as an antinutritional agent in monogastric animals by chelating various microelements needed by the animal.
    Escherichia coli phytase appA is an alternative enzyme with performance advantages over the conventional A. niger enzyme. The appA phytase displays several favorable characteristics: an acidic pH optimum close to the physiological pH range of the stomach of pigs and chickens, higher affinity to sodium phytate, greater resistance to pepsin than the commercially available A. niger PhyA, and higher catalytic efficiency for phytate than that of all other known phytases.
    In this study, an Escherichia coli strain with high phytase activity was screened from pig excreta. Using primers designed according to the sequence originally described by Dassa, appA gene was amplified by PCR technique. DNA sequencing of the appA gene showed an open reading frame of 1299 bp. The deduced appA phytase composed of 432 amino acids (predicted molecular mass, 47.06 kD) also contained the reserved active-site motif RHGXRXP, which is shared by other phytases and acid phosphatases. To obtain large amounts of appA phytase, the appA gene was subcloned into the prokaryotic expression vector pET-28a(+) and baculovirus transfer vector pVL-1393 under the control of the lac and polyhedrin promoter, respectively. The appA phytase was overexpressed in E. coli strain BL21 induced by lactose. The recombinant baculovirus harboring the appA gene was obtained after co-transfection and several screening rounds. The newly molted 5th instar larva of silkworm Bombyx mori was infected with the recombinant virus. Usin
    g a silkworm baculovirus expression vector system (BEVS), a large amount of appA phytase was obtained (up to 7710 per mL hemolymph). SDS-PAGE analysis revealed the molecular mass of
    
    
    
    prokaryotic and eukaryotic derived appA phytase was approximately 50 kD and 53 kD, respectively. Both the two phytase had a optimal temperature and pH at 60 癈 and pH 4.5 except the baculovirus derived phytase seemed to be more thermostable. The enzymatic activity of the both prokaryotic and eukaryotic derived appA phytase were increased in the presence of Ca2+ and Mn2+ at a concentration of 1 mM. Due to the high expression efficiency and the enzymatic characteristics, BEVS derived appA phytase seemed to be a valuable candidate for the application of feed supplement.
    Nattokinase (NK) is a new fibrinolytic enzyme which cleaves directly cross-linked fibrin in vitro/in vivo. In the present study, the nucleotide sequence of the nattokinase gene was amplified from the genomic DNA of B.subtilis (natto) by PCR. DNA sequence analysis showed that the cloned nk gene was highly homologous to the sequence reported by Nakamura. The deduced amino acid sequence also had the conserved sequences (serine 221, histidine 64, and aspartic acid 32) which was essential for the catalytic center of serine proteases.The nk gene was then cloned into the transfer vector pVL1393. Then Bm cell line was co-transfected with parental Bm-NPV DNA and the transfer plasmid pVL-nk, the recombinant virus was then obtained subsequently with routine procedure. Nattokinase was expressed in silkworm larva by injection with the recombinant virus. As a serine proteases, the expression product was detected with a relatively high protease activity. A similar result was also obtained from fibrin plate assay, it reveal
    ed that the expressed NK was provided with fibrinolytic activity.
引文
[1] F.奥斯伯,R.布伦特,R.E.金斯顿等,《精编分子生物学实验指南》,科学出版社,1998
    [2] 贝锦龙,陈庄,杨林等,人工合成的黑曲霉NRRL3135菌株植酸酶基因在毕酵母系统中的高效表达,生物工程学报,2001,17(3):254~258
    [3] 何家禄,吴祥甫,重组家蚕核型多角体病毒-家蚕表达系统的产业化,国外农学-蚕业,1994,57:6~11
    [4] 洪民,李臻,李士云等,肌醇四磷酸的制备及其对猪血红蛋白的修饰,生物化学与生物物理学报,2000,32(1):31~34
    [5] 黄志立,罗立新,杨汝德等,纳豆激酶基因重组质粒在大肠杆菌与毕赤酵母中的稳定性,广东药学院学报,2001,17(4):254~256,259
    [6] 刘北域,官孝群,宋后燕,纳豆激酶原的基因克隆及在大肠杆菌中的表达,上海医科大学学报,1999,26(6):401~404
    [7] 刘北域 宋后燕,纳豆激酶基因的克隆及其在枯草杆菌中的表达,生物化学与生物物理学报,2002,34(3):338~340
    [8] 吕鸿声,《中国养蚕学》,上海科学技术出版社,1991
    [9] 罗立新,黄志立,杨汝德等,纳豆激酶基因在E.coli HB101中的初步表达研究,微生物学通报,2002,29(3):62~66
    [10] 彭日荷,熊爱生,李贤等,应用毕氏酵母高效表达耐高温植酸酶,生物化学与生物物理学报,2002,34(6):725~730
    [11] 彭勇,黄庆,张义正,枯草杆菌DC-2纳豆激酶基因的克隆及其融合蛋白在E.coli中的表达,中国生物化学与分子生物学报,2002,18(5):559~563
    [12] J.萨姆布鲁克,E F.弗里奇,T.曼尼阿蒂斯,《分子克隆实验指南》,科学出版社,1992
    [13] 王红宁,吴琦,刘世贵等,黑曲霉N25植酸酶phyA基因的克隆及序列分析,微生物学报,2001,41(3):310~314
    [14] 王文兵,姚斌,肖庆利等,植酸酶基因在家蚕-杆状病毒表达系统中的表达及其酶学性质,生物工程学报,2003,19(1):112~115
    [15] 姚斌,张春义,王建华等,产植酸酶的黑曲霉菌株筛选及其植酸酶基因克
    
    隆,农业生物技术学报,1998,6(1):1~6
    [16] 姚斌,范云六,植酸酶的分子生物学与基因工程,生物工程学报,2000,16(1):1~5
    [17] 张苓花,安利佳,袁晓东等,植酸酶基因在毕赤酶母中表达及表达酶性质研究,大连理工大学学报,2002,42(3):294~300
    [18] 张龙翔,张庭芳,李令嫒,《生化实验方法和技术》(第二版),高等教育出版社,1997
    [19] 张淑梅,张云湖,赵晓祥等,纳豆激酶基因的克隆与表达中国生物化学与分子生物学报,1999,15(6):912~915
    [20] 张树政,《酶制剂工业(下册)》,科学出版社,1998
    [21] 张毅,屈贤铭,杨胜利,乳糖作为诱导剂对重组目的蛋白表达的影响,生物工程学报,2000,16(4):464~468
    [22] 张志芳,吴祥甫,《基因表达技术》,第七章,昆虫表达系统,科学出版社,2001
    [23] 朱衡,翟峰,朱立煌,利用氯化苄提取适于分子生物学分析的真菌DNA,真菌学报,1994,13(1):34~40
    [24] 朱中泽,家蚕杆状病毒同源重复区hr3结构与功能分析及不同转移载体表达效率比较,硕士学位论文,中国农业科学院研究生院,2002
    [25] 永井利郎,纳豆菌育种遗传子操作,日本食品科学工学会志,1999,46(2):39
    [26] Ailor E, Betenbaugh M J, Modifying secretion and post-translational processing in insect cells, Curr Opin Biotechnol, 1999,10(2): 142~145
    [27] al-Asheh S, Duvnjak Z, The effect of phosphate concentration on phytase production and the reduction of phytic acid content in canola meal by Aspergillus carbonarius during a solid-state fermentation process, Appl Microbiol Biotechnol, 1995, 43(1): 25~30
    [28] Amador R, Moreno A, Valero V, et al, The first field trials of the chemically synthesized malaria vaccine SPf66: safety, immunogenicity and protectivity,Vaccine, 1992, 10(3): 179~184
    [29] Barrientos L, Scott JJ, Murthy PP, Specificity of hydrolysis of phytic acid by
    
    alkaline phytase from lily pollen, Plant Physiol, 1994, 106(4): 1489~1495
    [30] Battershill PE, Benfield P, Goa KL, Streptokinase. A review of its pharmacology and therapeutic efficacy in acute myocardial infarction in older patients, Drugs Aging, 1994, 4(1): 63~86
    [31] Berka RM, Rey MW, Brown KM, et al, Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus, Appl Environ Microbiol, 1998, 64(11): 4423~4427
    [32] Brinch-Pedersen H, Sorensen LD, Holm PB, Engineering crop plants: getting a handle on phosphate, Trends Plant Sci, 2002, (3): 118-125
    [33] Casey A, Walsh G, Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142, Bioresour Technol, 2003, 86(2): 183~188
    [34] Choi YM, Suh HJ, Kim JM, Purification and properties of extracellular phytase from Bacillus sp. KHU-10, J Protein Chem, 2001, 20(4): 287~292
    [35] Ciofalo V, Barton N, Kretz K, et al, Safety evaluation of a phytase, expressed in Schizosaccharomyces pombe, intended for use in animal feed. Regul Toxicol Pharmacol, 2003, 37(2): 286~292
    [36] Collen D, Lijnen HR, Staphylokinase, a fibrin-specific plasminogen activator with therapeutic potential? Blood, 1994,84(3): 680~686
    [37] Courtois J E, Manet L. Recherches su la phyase Les phytases du colibacille, Bull Sco Chim Biol, 1952, 34:265~278
    [38] Dassa E, Boquet PL, Identification of the gene appA for the acid phosphatase (pH optimum 2.5) of Escherichia coli, Mol Gen Genet, 1985, 200:68~73
    [39] Dassa E, Cahu M, Desjoyaux-Cherel B, et al, The acid phosphatase with optimum pH of 2.5 of Escherichia coli, J Biol Chem, 1982, 257:6669~6676
    [40] Dassa J, Marck C, Boquet P L, The complete nucleotide sequence of the Escherichia coli gene appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase, J Bacteriol, 1990, 172(9): 497~500
    [41] Datar RV, Cartwright T, Rosen CG, Process economics of animal cell and bacterial fermentations: a case study analysis of tissue plasminogen activator, Biotechnology, 1993, 11(3): 349~357
    
    
    [42] Dvorakova J, Volfova O, Kopecky J, Characterization of phytase produced by Aspergillus niger, Folia Microbiol (Praha), 1997, 42(4): 349~352
    [43] Ehrlich KC, Montalbano BG, Mullaney E J, et al, Identification and cloning of a second phytase gene (phyB) from Aspergillus niger (ficuum), Biochem Biophys Res Commun, 1993, 195(1): 53~57
    [44] Fujita M, Hong K, Ito Y, et al, Transport of nattokinase across the rat intestinal tract, Biol Pharm Bull, 1995a, 18(9): 1194~1196
    [45] Fujita M, Hong K, Ito Y, et al, Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat, Biol Pharm Bull, 1995b,18(10): 1387~1391
    [46] Fujita M, Nomura K, Hong K, et al, Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan, Biochem Biophys Res Commun, 1993, 197(3): 1340~1347
    [47] Ghareib M, Biosynthesis, purification and some properties of extracellular phytase from Aspergillus carneus, Acta Microbiol Hung, 1990, 37(2): 159~164
    [48] Gibson DM, Ullah AH, Purification and characterization of phytase from cotyledons of germinating soybean seeds, Arch Biochem Biophys 1988, 260(2): 503~513
    [49] Golovan S, Hayes M, Phillips J, et al, Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control, Nature Biotechnology, 2001, 19(5): 429~433
    [50] Golovan S, Wang G, Zhang J, et al, Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and phosphatase activities, Can J Microbiol, 2000, 46:59~71
    [51] Grebenkamper K, Nicolau C, Signal transduction in SF9 insect cells: endocytosis of recombinant CD4 after phorbol ester treatment, Biochem Biophys Res Commun, 1995, 207(1): 411~416
    [52] Greiner R, Egli I. Determination of the activity of acidic phytate-degrading
    
    enzymes in cereal seeds, J Agric Food Chem, 2003, 51(4): 847~850
    [53] Greiner R, Konietzny U, Jany K. Purification and characterization of two phytases from Escherichia coli, Arch Biochem Biophys, 1993, 303:107~113
    [54] Guan AL, Retzios AD, Henderson GN, et al, Purification and characterization of a fibrinolytic enzyme from venom of the southern copperhead snake(Agkistrodon contortrix), Arch Biochem Biophys, 1991, 289(2): 197~207
    [55] Han YM, Lei XG, Development of phytase expression systems for nutritional use, Poster presentation at Cornell University's Biotechnology Symposium, Ithaca, NY, 1997
    [56] Han YM, Lei XG, Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris, Arch Biochem Biophys,1999a, 364:83~90
    [57] Han YM, Wilson DB, Lei XG, Expression of an Aspergillus niger phytase gene(phyA) in Saccharomyces cerevisiae, Appl Environ Microbiol, 1999b, 65(5):1915~1918
    [58] Hartingsveldt W, Zeijl CM, Harteveld GM, et al, Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger, Gene, 1993, 127(1): 87~94
    [59] Hegeman CE, Grabau EA, A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings, Plant Physiol, 2001, 126(4): 1598~1608
    [60] Hurrell RF, Reddy MB, Juillerat MA, et al, Degradation of phytic acid in cereal porridges improves iron absorption by human subjects, Am J Clin Nutr, 2003,77(5): 1213~1219
    [61] Irving GC, Cosgrove DJ, Inositol phosphate phosphatases of microbiological origin: the inositol pentaphosphate products of Aspergillus ficuum phytases, J Bacteriol, 1972, 112(1): 434~438
    [62] Jia Z, Golovan S, Ye Q, et al, Purification, crystallization and preliminary X-ray analysis of the Escherichia coli phytase, Acta Crystallogr D Biol Crystallogr, 1998, 54(4): 647~649
    
    
    [63] Kerovuo J, Lappalainen I, Reinikainen T, The metal dependence of Bacillus subtilis phytase, Biochem Biophys Res Commun, 2000b, 268(2): 365~369
    [64] Kerovuo J, Lauraeus M, Nurminen P, et al. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis, Appl Environ Microbiol, 1998, 64(6): 2079~2085
    [65] Kerovuo J, Rouvinen J, Hatzack F, Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism, Biochem J, 2000a, 352(3): 623~628
    [66] Keyt BA, Paoni NF, Refino CJ, et al, A faster-acting and more potent form of tissue plasminogen activator, Proc Natl Acad Sci, 1994, 91(9): 3670~3674
    [67] Kunst F, Ogasawara N, Moszer I, et al, The complete genome sequence of the gram-positive bacterium Bacillus subtilis, Nature, 1997,390(6657): 249~256
    [68] Lan GQ, Abdullah N, Jalaludin S, et al, Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle, J Appl Microbiol, 2002, 93(4): 668~674
    [69] Lei XG, PK Ku, ER Miller, et al, Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate P utilization by weanling pigs, J.Anim. Sci., 1993a, 71:3359~3367
    [70] Lei XG, PK Ku, ER Miller, et al, Supplementing com-soybean meal diets with microbial phytase maximizes phytate P utilization by weanling pigs, J. Anim. Sci., 1993b, 71:3368~3375
    [71] Lei XG, Stahl CH, Biotechnological development of effective phytases for mineral nutrition and environmental protection, Appl Microbiol Biotechnol, 2001, 57(4): 474~481
    [72] Madisen L, Travis B, Hu SL, et al, Expression of the human immunodeficiency virus gag gene in insect cells, Virology, 1987, 158(1): 248~250
    [73] Maeda S, Kawai T, Obinata M, et al, Production of human alpha-interferon in silkworm using a baculovirus vector, Nature, 1985, 315:592~594
    [74] Maramorosch K, Insect cell biotechnology, CRC Press, 1994
    [75] Maugenest S, Martinez I, Lescure AM, Cloning and characterization of a
    
    cDNA encoding a maize seedling phytase, Biochem J, 1997, 322(2): 511~517
    [76] Miksch G, Kleist S, Friehs K, et al, Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors, Appl Microbiol Biotechnol 2002, 59(6): 685~694
    [77] Mitchell D B, Vogel K, Weimann B J, et al, The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila, Microbiology, 1997, 143: 245~252
    [78] Nakamura T, Yamagata Y, Ichishima E. Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto), Biosci Biotechnol Biochem, 1992,56(11): 1869~1871
    [79] Nelson TS, The utilization of phytate phosphorus by poultry-a review, Poult Sci, 1967, 46(4): 862~871
    [80] Ostanin, K, Harms EH, Stevis PE, et al, Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase, J. Biol.Chem, 1992, 267:22830~22836
    [81] Pallauf J, Pippig S, Most E, et al, Supplemental sodium phytate and microbial phytase influence iron availability in growing rats, J Trace Elem Med Biol,1999, 13(3): 134~140
    [82] Pallauf J, Rimbach G, Nutritional significance of phytic acid and phytase, Arch Tieremahr, 1997, 50(4): 301~319
    [83] Pasamontes L, Haiker M, Wyss M, et al, Gene cloning,purification,and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus, Appl Environ Microbiol, 1997, 63(5): 1696~1700
    [84] Patterson R M, Baculovims and insect cell gene expression: review of environmental biotechnology, Environ. Health Perspect, 1995,103: 756~759
    [85] Powar VK, Jagannathan V, Purification and properties of phytate-specific phosphatase from Bacillus subtilis, J Bacteriol, 1982,151(3): 1102~1108
    [86] Reddy DS, Newer Thrombolytic Drugs for Acute Myocardial Infarction, Indian J Exp Biol, 1998, 36:1~15
    
    
    [87] Reddy NR, Sathe SK, Salunkhe DK, Phytates in legumes and cereals, Adv Food Res, 1982, 28: 1~92
    [88] Rodriguez E, Porres JM, Han Y, et al, Different sensitivity of recombinant Aspergillus niger phytase (r-PhyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro, Arch Biochem Biophys, 1999a, 15;365(2): 262~267
    [89] Rodriguez E, Han YM, Lei XG, Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon, Biochem Biophys Res Comm, 1999b, 257: 117~123
    [90] Rodriguez E, Wood ZA, Karplus PA, et al, Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys, 2000, 382: 105~112
    [91] Sakurai T, Ueda Y, Sato M, et al, Feline interferon production in silkworm by recombinant baculovirus, J Vet Med Sci, 1992, 54(3): 563~565
    [92] Sharma CB, Goel M, Irshad M, Myo-inositol hexaphosphate as a potential inhibitor of α-amylases of different origins, Phytochemistry, 1978, 17: 201~204
    [93] Shi L, Galarza J M, Summers D F, Recombinant-baculovirus-expressed PB2 subunit of the influenza A virus RNA polymerase binds cap groups as an isolated subunit, Virus Res, 1996, 42(1-2): 1~9
    [94] Simoes Nunes C, Guggenbuhl P, Effects of Aspergillus fumigatus phytase on phosphorus digestibility, phosphorus excretion, bone strength and performance in pigs, Reprod Nutr Dev, 1998,38(4): 429~440
    [95] Skowronski T, Some properties of partially purified phytase from Aspergillus niger, Acta Microbiol Pol, 1978, 27(1): 41~48
    [96] Smith GE, Summers MD, Fraser MJ. Production of human beta interferon in insect cells infected with a baculovirus expression vector, Mol Cell Biol, 1983, 3(12): 2156~2165
    [97] Sumi H, Hamada H, Nakanishi K, et al, Enhancement of the fibrinolytic
    
    activity in plasma by oral administration of nattokinase, Acta Haematol, 1990, 84(3):139~143
    [98] Sumi H, Hamada H, Tsushima H, et al, A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet, Experientia, 1987, 43(10): 1110~1111
    [99] Summers M D, Smith G E, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agricultural Experiment Station, College Station, 1987
    [100] Suzuki S, Saito M, Suzuki N, et al, Thrombolytic properties of a novel modified human tissue-type plasminogen activator (E6010): a bolus injection of E6010 has equivalent potency of lysing young and aged canine coronary thrombi, J Cardiovasc Pharmacol, 1991, 17(5): 738~746
    [101] Ullah AH, Gibson DM, Extracellular phytase (E.C.3.1.3.8) from Aspergillus ficuum NRRL3135: purification and characterization, Prep Biochem, 1987, 17(1): 63~91
    [102] Ullah AH, Aspergillus ficuum phytase: partial primary structure, substrate selectivity, and kinetic characterization, Prep Biochem, 1988, 18(4): 459~471
    [103] Urbano G, Lopez-Jurado M, Aranda P, et al, The role of phytic acid in legumes: antinutrient or beneficial function? J Physiol Biochem, 2000, 56(3): 283~294
    [104] Urano T, Ihara H, Umemura K, et al, The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis Cleaves and inactivates plasminogen activator inhibitor type 1, J Biol Chem 2001, 276(27): 24690~24696
    [105] Volfova O, Dvorakova J, Hanzlikova A, et al, Phytase from Aspergillus niger, Folia Microbiol (Praha), 1994, 39(6): 481~484
    [106] Wodzinski RJ, Ullah AH, Phytase, Adv Appl Microbiol, 1996, 42: 263~302
    [107] Zhang ZB, Kornegay ET, Radcliffe JS, et al, Comparison of genetically engineered microbial and plant phytase for young broilers, Poult Sci, 2000, 79(5): 709~717

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700