用户名: 密码: 验证码:
寒区复合水泥加固土的力学性质及损伤特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用当地的土壤资源、矿产资源及工业废料,开发新型建筑材料—复合水泥土,发展“绿色”建材是本文研究课题的宗旨。本文通过室内试验,研究配制了一种针对寒冷地区粉质粘土的复合水泥材料,提出了它的最佳配合比。并进行了该种复合水泥土的强度、耐久性、损伤、微结构等试验研究,分析了复合水泥材料与土、水、水泥浆之间的相互作用,在此基础上探讨了复合水泥土的固化机理,最后分析了复合水泥土的损伤特性。为复合型水泥土的进一步的研究和应用提供理论和试验数据。
     本文首先对普通水泥土进行了抗压、间接抗拉等力学性质及抗冻、抗渗等耐久性方面的试验,找出影响普通水泥土的主要因素,在此基础上,根据多方案比较,选择了八种材料作为水泥土外掺剂,进行了每种外掺剂水泥土的单掺试验,从考查寒区水泥土最重要的两个指标—强度和抗冻性方面进行了全面的试验对比,总结了每种外掺剂对水泥土的影响及改性效果,然后通过正交试验,找出了影响水泥土强度和抗冻性的主要因素及因素水平,通过直观分析和方差分析及补充试验,得出一组性价比较高的复合型材料最优配合比方案,即水泥:石灰:硅粉:Na2SO4:表面活性剂=10:1:3:0.5:0.1,将该复合型材料与土、水按一定比例拌制而成的材料称为复合水泥土。
     为了验证研制的复合水泥土的强度特性和耐久性,通过室内试验,对复合水泥土进行了不同掺量、不同养护龄期的无侧限抗压强度、间接抗拉强度、抗冻性、冻胀量试验,并与普通水泥土进行了对比分析。试验结果表明:复合水泥土的力学性能及耐久性能均明显优于普通水泥土。
     建立了综合考虑各因素影响的普通水泥土和复合水泥土的强度预测模型,分析了二者的变形特性,推导了普通水泥土及复合水泥土的应力应变上升段和下降段本构方程。
     结合SEM试验探讨了复合水泥土的微结构特点,分析了复合水泥材料与土、水、水泥浆之间的相互作用,在此基础上分析了复合水泥土的固化机理,从本质上的找出了复合水泥土强度特性优于普通水泥土的合理解释。最后,通过室内变形及损伤试验,分析了复合水泥土的细观损伤机制及其损伤演化规律,建立了单轴压缩条件下的弹塑性损伤模型。
The goal of the research is to develop“green”construction materials, i.e. to develop a new construction material– composite cement soil using the local materials such as soil, mine residues and industrial wastes. A composite cement material with silt clay was developed to adapt to the cold areas, and the optimal ratio of the composites was obtained. The experiments and tests of strength, endurance, damage, microstructure, etc. were performed. The interactions of composite cement material with soil, water, cement grout were analyzed. The solidification of the composite cement was studied and the damage characteristics were analysised as well, which provide the experiment data and theory for further study and application.
     The mechanical properties of ordinary cement such as compressive resistance, indirect tensile resistance, and the endurance property such as freezing resistance, impermeability were tested, the main factors to impact the properties of ordinary cement were determined. 8 materials were selected as the cement additives through the alternative comparison. Each additive was tested for the cement soil. The experiment comparison was done for all the additives with the 2 important indexes, i.e. strength and freezing resistance. The impacts and the property improvement of each additive were summarized. The main factors and their importance that affect the strength and freezing resistance of cement were determined by orthogonal test. An optimal mix ratio of the composite material with better quality and eocnomic cost was developed through observation,variance analysis and complementary experiments, the mix ratio is: cement: lime: silica fume: Na2SO4: surfactant = 10:1:3:0.5:0.1. The composite material mixed with soil, water in certain ratio is so called composite cement soil.
     In order to varify and test the strength and endurance of the composite cement soil, the unconfined compression resistance, indirect tensile resistance, freezing resistance, and frost heave were tested in the lab with different additive quantity, different curing periods, and the comparison analysis with ordinary cement was performed. The results show that the mechanical properties and endurance of the composite cement soil are significantly better than that of ordinary cement.
     The strength prediction models of composite cement soil and ordinary cement considering all impact factors were developed, and the deformation properties of the two materials were analysised. The constitutive equation of descending and ascending of stress and strain of ordinary cement and the composite cement soil were derived.
     The microstructure of the composite cement soil was studied with the SEM experiment, the interactions of the composite material with soil, water, cement grout were analyzed, based on the analysis, the solidification of the composite cement soil was analyzed, the inherent nature that the strengh of the composite cement soil was better than that of ordinary cement was reasonablly explained. The damage microstructure and damage evolution of the composite cement soil was analyzed based on the deformation and damage tests in the lab, the elastic and plastic damage model under uniaxial compression stress was developed.
引文
1徐学祖,邓友生.冻土中水分迁移的实验研究[M].北京:科学技术出版社,1991
    2田德廷.《道路桥梁冻害及其防治》[M].北京:人民交通出版社, 1987
    3肖林.《建筑材料水泥土》[M].北京:水利电力出版社, 1987
    4地基处理手册(第二版)IM].北京:中国建筑工业出版社,2000
    5张登良.《加固土原理》[M].北京:人民交通出版社, 1990
    6张虎元,冯珂,张立新,王银梅,张咸恭.水泥黄土反复冻融条件下的强度衰减机理[J].冰川冻土,1993,(15(1):174-181
    7宁宝宽,陈四利,刘斌.冻融循环对水泥土力学性质影响的试验研究[J].低温建筑技术,2004(5): 10-13
    8童小东,蒋永生,龚维明,等.氢氧化铝在水泥系深层搅拌法中的应用[J].建筑结构,2000,30(5):14-16
    9叶观宝,陈望春,徐超,等.水泥土添加剂的室内试验[J].中国公路学报,2006,19(5):12-17
    10童小东,徐敏,戴国亮,蒋永生.某添加剂在水泥土搅拌法中的应用[J].东南大学学报(自然科学版) 2007,37(2):56-59
    11龚尚龙.硅粉对混凝土增强机理及试验研究[J].重庆交通学院学报,1993,12(4):1-10
    12张士乔.水泥土的应力应变关系及搅拌桩破坏特性研究[D].杭州:浙江大学, 1992
    13王文军.纳米矿粉水泥土固化机理及损伤特性研究[D]. 2004
    14李新宇,方坤和.硅粉对水泥硬化浆体微结构影响的研究进展[J].硅酸盐学报,2003,(l):54-57
    15陈建奎.《混凝土外加剂原理与应用》[M].北京:中国计划出版社,2004
    16 Vatsala A, Nova R, Srinivasa Murthy BR. Elasto-plastic model for cemented soils[J].Journal of Geotechnical and Geoenvironmental Engineering, 2001(8):679-687
    17 Rolling R S. Sulfate attach on cement-stabilized sand [J].Journal of Geotechnical and Geoenvironmental Engineering, 1999, 121(5):364-372
    18 Masaki Kitazume,Kimihiko Okano and Shogo Miyajima.“Centrifuge model t ests on failure envelope of column type deep mixing method improved ground”.SoilsAnd Foundations,2000 (1):43-55
    19 Attom MF, Al-Sharif MM. Soil stabilization with burned olive waste. Appl Clay Sci 1998;13:219-230
    20 Ali FH. Stabilisation of a residual soil. Soil Foundation 1992;32(4):178-185
    21 J.WJU, and YZHANG, A thermo-mechanical model for airfield concrete pavement under transient high temperature Loading. International journal ofdamage mechanics. 1998,17(1)124-145
    22 RE. Brown ,B.S .Jindal, JD. Bulzan ,Criticalr eviewo f thee ffectvieness of stabilization and solidi?cation of hazardous organic wastes,ASTM Special Technical Publication 1123 ,American Society forTesting and Materials, Philadelphia ,1992
    23 Kalinski ME, Bicudo JR. Predicting the strength of compacted fly ash–cement mixtures for cattle feedlots. Energeia 2004,15(2) 114-116
    24 Zhang MH, Lastra R, Malhotra VM. Rice husk ash paste and concrete: some aspects of hydration and the microstructure of theinterfacial zone between the aggregate and paste. Cement Con-crete Res 1996,26(6):963-977
    25 Rahman MA. E?ect of cement rice husk ash mixtures on geotechnical properties of lateritic soils. J Soil Foundation1987,27(2):61-65
    26 MuntoharAS, HantoroG. Influenceof the ricehuskashandlime on engineering properties of clayey subgrade, Electron J Geotech Eng, vol. 5 Paper#019, USA: Oklahoma State University; 2000
    27 Fisher, K. P. Properties of an artif icially cemented-clay[J]. Canadian Geot, 1978,15:25-37
    28 Kawasaki, T .Deep mixing using cement hardening agent[C]. Proc. 10th ICSMFE, 1981,37(2):105-123
    29 SJ.T.Pollard ,DM. Montgomery ,CJ. .Sollars ,R .Perry, Organic compounds in the cement-based stabilization/solidi?cation of hazardous mixed wastes mechanistic and process considerations ,J.Hazard .Mater .28 (1991) 313–327
    30 JR. Conner, SL. Hoeffner, A critical review of stabilization/solidification technology ,Environ .Sci .Technol .28 (4) (1998)397–462
    31 S. Horpibulsuk, N. Miura and T. S. Nagaraj. Assessment of strength development in cement-admixed high water content clays with Abram's law as a basis. Geotechnique, 2003,53(4):439-444
    32 Helene Tremblay, Josee Duchesne, Jacques Locat, and Serge Leroueil. Influence of the nature of organic compounds on fine soil stabilization with cement. Canada Geotech. J.2002,39:535-546
    33 H .Shin ,K .Jun ,Cement based stabilization/solidification of organic contaminated hazardous wastes using Na–bentonite and silica fume,J .Environ. Sci .Health A30 (3) (1995) 651–668
    34 Aydilek AH, Arora S. Fly ash amended soils as highway base materials, geotechnical engineering for transportation projects,geotechnical special publication No. 126-136 American Society of Civil Engineers; 2004: 1032–1041
    35 Clarke BG, Coombs R. Specifying and using pulverised fuel ash as an engineered fill. Waste Mgmt 1996,16(1):101–108
    36 Atis CD. High-volume fly ash concrete with high strength and low drying shrinkage. J Mater Civil Eng 2003,15(2):153–156
    37 Acosta Hector A.Stabilization of Soft Subgrade Soils Using Fly Ash[D]: Madison,Wisconsin, U. S. A. University of Wisconsin-Madison,2002
    38 D.T. Eriktius; E.C. Leong, and H. Rahardjo. Shear strength of peaty soil-cement mixes[J].Soft soil engineering.2001:551-556
    39 Shenbaga R.Kaniraj, Vasant G Havanagi. Compressive strength of cement stabilized fly ash-soil mixtures[J].Cement and concrete research. 1999(29):673-677
    40 Gerald A. Miller, Shahriar Azad. Influence of soil type on stabilization with cement kiln dust[J]. Construction and Building Materials.2000(14):89-97
    41 S. Kolias, V.Kasselouri-Rigopoulou, A.Karahalios Stabilisation of clayey soils with high calcium fly ash and cement[J].Cement & Concrete Composites.2005(27) :301-313
    42 G.M. Filz, D.K. Hodges, D. E. Weatherby, and W.A. Marr. Standardized definitions and laboratory procedures for soil-cement specimens applicable to the wet method of deep mixing.Innovations in Grouting and Soil Improvement. 2005:1-13
    43 Fook-Hou Lee, Yeong Lee, Soon-Hoe Chew, and Kwet-Yew Yong. Strength and modulus of marine clay-cement mixes.Journal of geotechnical and geoenvironmental engineering.2005,131(2): 178-186
    44 Mostafa A. Ismail, Hackmet A. Joer, Wee H. Sim, and Mark F. Randolph. Effect of cement type on shear behavior of cemented calcareous soil[J].Journal of geotechnical and geoenvironmental engineering.2002,128(6):520-529
    45 Glen A.Lorenzo and DennesT.Bergado.Fundamental parameters ofcement-admixed clay-new approach. Journal of geotechnical and geoenvironmental engineering. 2004,130(10):1042-1050
    46郝巨涛.水泥土材料力学特性的探讨[J].岩土工程学报,1991,13(3):53-59
    47宁宝宽.环境侵蚀下水泥土的损伤破裂试验及其本构模型[D].沈阳:东北大学,2006
    48高国瑞,近代土质学[M],南京:东南大学出版社,1990
    49高国瑞,李俊才.水泥加固软上地基的研究[J].工程地质学报.1996,4(1):45-52
    50王星华.粘土固化浆液固结过程的SEM研究[[J].岩土工程学报,1999 21(1):34-40
    51陈善民,王立忠等.水泥土动力特性室内试验及复合地基抗震特性分析[J].浙江大学学报,2000,34(4):398-403
    52储诚富,洪振舜,刘松玉.用似水灰比对水泥土无侧限抗压强度的预测[J].岩土力学.2005.26(4):645-649
    53张家柱,程钊,余金煌.水泥土性能的试验研究[J].岩土工程技术,1999(3):38-40
    54周国钧等.深层搅拌法加固软粘土技术[J].岩土工程学报,1981,3(4): 53-65
    55郑刚,姜忻良.水泥搅拌桩复合地基承载力研究[J].岩土力学,1999 20(3):46-50
    56宫必宁,李淞泉.软土地基水泥深层搅拌加固土物理力学特性研究[J].河海大学学报,2000,28(2):101-105
    57龚晓南.地基处理新技术[M].西安:陕西科学技术出版社,1997
    58周建民等.深层搅拌桩复合地基的有限元分析[J].岩土力学,1997, 18(2):44-50
    59曾卫东,唐雪云,何泌洲.深层搅拌法在处理泥炭质土中的应用[J].地质灾害与环境保护,2002,13(2):67-69
    60刘焕存.夯实水泥土强度特性试验研究[J].岩土工程技术,1996,(3):16-25
    61刘焕存.夯实水泥土变形特性试验研究.岩土工程技术,1997,(1):19-27
    62范昭平,朱伟,张春雷.有机质含量对淤泥固化效果影响的试验研究[J].岩土力学.2005.26(8):1327-1334
    63邵玉芳,龚晓南,徐日庆.有机质对土壤固化剂加固效果影响的研究[J].农机化研究.2005(1):23-24
    64荀勇.有机质含量对水泥土强度的影响与对策[J].四川建筑科学研究,2000,26(3):58-60
    65潘永灿,蒋莹玉.水泥土强度受有机质含量影响试验研究[J].盐城工学院学报.2002,15(1): 29-31
    66陈慧娥.有机质影响水泥加固软土效果的研究[D].吉林:吉林大学,2006
    67侯永峰.循环荷载作用下水泥复合土变形性状试验研究[J].岩土工程学报.2001,23(3):30-33
    68张明,白晓红.粉煤灰在深层搅拌桩中应用[J].太原理工大学学报,2001,32(1):78-81
    69梁仁旺,张明,白晓红.水泥土的力学性能试验研究.岩土力学,2001,22(2):211-213
    70周承刚,高俊良.粉煤灰在搅拌地基处理时对水泥土强度的影响[J].河北建筑科技学院学报,2001,18(1):34-40
    71李文斌.从水泥土强度增长机理分析看增强措施[J].甘肃水利水电技术,1994,2(2):63-71
    72黄殿英,张可能,曾样熹.sF对水泥土的影响初探[J].大地构造与成矿学,1995,
    19(3):284-287
    73黄春香,简文彬.软土特性与水泥-水玻璃加固土效应的试验[J].福州大学学报自然科学版,2001,29(3):109-112
    74童小东,蒋永生,龚维明,龚晓南.石灰在水泥系深层搅拌法中的应用[J].工业建筑,2000,(30)1:21-26
    75黄新,胡同安.水泥一废石石膏加固软土的试验研究[J].岩土工程学报,1998,20(5):72-74
    76黄新,杨晓刚,胡同安.硫酸盐介质对水泥加固土强度的影响[J].工业建筑,1994,24(9):19-23
    77宁宝宽,陈四利,郑楠.硫酸盐对水泥土的侵蚀作用研究[J].第九届全国岩石力学与工程学术大会论文集,717-721
    78裴向军,杨国春.防治海水对水泥土侵蚀的试验研究[J].长春工程学院学报,2000(1): 12-14
    79王立峰.纳米硅水泥土工程特性及本构模型研究[D].杭州:浙江大学,2003
    80王立峰,朱向荣,丁同福.纳米硅水泥土工程特性的试验研究[J].岩土工程技术,2003,23(4) 187-192
    81王文军,朱向荣.纳米硅粉水泥土的工程特性及固化机理初探[J].地质与勘探,2003,
    39(增刊): 101-104
    82王文军.纳米矿粉水泥土固化机理及损伤特性研究[D].杭州:浙江大学,2004
    83郭印.淤泥质土的固化及力学特性的研究[D].杭州:浙江大学,2007
    84朱志铎.粉土路基稳定理论与工程应用技术研究[D].南京:东南大学,2006
    85张春雷.淤泥固化土力学性质及固化机理研究[D].南京:河海大学,2003
    86牛全林,冯乃谦,杨静.矿渣超细粉作用机理的探讨[J].建筑材料学报,2002,5(l):84-89
    87蒲心诚,王勇威.高效活性矿物掺料与混凝土的高性能化[J].混凝土,2002,148(2):3-6
    88杨坪,彭振斌.硅粉在混凝土中的应用[J].混凝土,2002,148(1):34-36
    89田文玉.硅粉的研究及应用现状[J].重庆交通学院学报,1998,17(2):100-107
    90李新宇,方坤和.硅粉对水泥硬化浆体微结构影响的研究进展[J].硅酸盐学报,2003,(l):54-57
    91牛全林,冯乃谦,杨静.矿渣超细粉作用机理的探讨.建筑材料学报,2002,5(l):84-89
    92蒲心诚,王勇威.高效活性矿物掺料与混凝土的高性能化.混凝土,2002,148(2):3-6
    93王爱勤,张承志,唐明述.火山灰质材料的填充作用,1995(5):19-21
    94季韬,黄与舟,郑作樵.纳米混凝土物理力学性能研究初探[J].混凝土,2003,161(3):13-14
    95童小东.水泥土添加剂及其损伤模型试验研究[D].杭州.浙江大学.1998
    96童小东,龚晓南,蒋永生.水泥土的弹塑性损伤试验研究[J].土木工程学报,2002,35(4):82-85
    97童小东,龚晓南,蒋永生.水泥土的弹塑性损伤模型[J].工程力学,2002,19(6):33-38
    98王立峰,朱向荣.水泥土的损伤模型的试脸研究[J].科技通报,2003,19 ( 2 ):136-139
    99沈为.损伤力学[M].武汉:华中理工大学出版社,1995
    100 J.勒迈特.损伤力学教程[M].陶春虎译.北京:科学出版社,1996
    101余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    102 Kachanov L M. On the time to failure under creep condition[J]. Izv, Akad, Nauk, USSR, Otd. Tekhn Nauk. 1958,8:26-31
    103 Kachanov L M. Introduction to continuum damage mechanics[M]. Martinus Nijhoff Publishers. Dordrecht, The Netherlands. 1986
    104 Rabotnov Y N. On the equations of state for creep[C]. In: Progress in Applied Mechanics. 1963, 307-315
    105 Rabotnov Y N. Creep ruptures[C]. In:Hetenyi M, et al.ed. Applied Mechanics. Processing of the 12th International Congress of Applied Mechanix. Standford-Springer-Verlag, Berlin, 1969, 342-349
    106 Lemaitre J. Local approach of fracture[J]. Eng. Frac. Mech., 1986:25(5/6)
    107 Lemaitre J, Chaboche J L. Mechanics of Solid Materials[M]. Cambridge University Press, 1990
    108 Chaboche J L. Continuum damage mechanics-a tool to describe phenomena before crack initiation[J]. Num, Eng. Design, 1981, 64:233-247
    109 Rousselier G.Finite deformation constitutive relations including ductile fracture damage.In:Nematnasser S,ed.Proceedings of the IUTAM Symposium on three Dimensional ConstitutiveRelationsand ductile fracture.North-Holland Pub.Company,1980.331-355
    110 Kyoya T, Icikawa Y,Kawamoto T. Adamage mechanics theory for discontinuous rock mass[C]. 5th International Conference on Numerical Methods in Geomechanics Nagoya,1985
    111 Kawamoto T,Ichikawa Y, Kyoya T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory[J], Int. J. for Numerical and Analysis Methods in Geomechanics.1988,12:1-30
    112 Ichikawa Y,Kyoya T, Kawamoto T. Incremental theory of plasticity for rock[C]. Proc. 5th Int. Conf. Num. Meth. In Geomech. Nagoya,1985.Vol.1,451-462
    113 Tirosh J, Miller. A, Damage evolution and rupture in creeping of porous materials[J]. Int.J. Solids structures. 1988, 24(6)
    114 Loland, K.E., Continuous damage model for load-response estimation of concrete [J]. Cement and concrete research, 1980, 10:395-402
    115 Mazars J. Application de la mecanique de lendommagement an comportment nonlinear de structure, These de doctorat d’Etat. Univ. Paris, ENSET, Mai 1984
    116余天庆.混凝土的分段线性损伤模型[[J].岩石、混凝土断裂与强度,1985(2):140 -160
    117李兆霞,脆性材料损伤应变率效应及其本构模拟[J].固体力学学报,1998, 19 (4):110-118
    118谢和平,鞠杨等.经典损伤定义中的强性模量法探讨[J].力学与实践,1997 (2):1-5
    119鞠杨.钢纤维(增强)混凝土疲劳损伤行为及其累积损伤理论和疲劳寿命估算方法研究[D].哈尔滨:建筑大学,1995
    120谢里阳等.两级载荷作用下疲劳损伤状态的试验研究[J].机械强度,1994(3 )52-54
    121张盛东.混凝土损伤本构关系的研究[D].哈尔滨:建筑大学,1997
    122谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990
    123周苏波.混凝土损伤定量分析[D].南京:河海大学,1998
    124黄古智,徐秉业主编,固体力学发展趋势[M].北京:北京理工大学出版社,1995
    125何明,符晓陵,徐道远.混凝土的损伤模型[J].福州大学学报,1994,22(4):109-114
    126何思明.双标量描述土的损伤模型及其应用.岩土力学,2002,23(3):333-340
    127吴澎.节理岩体的损伤模型及非纯属有限元分析[J].岩石力学与工程学报,1988,7(3):193-202
    128周维垣等.岩体弹脆性损伤本构模型及工程应用[J].岩土工程学报, 1998,20(5):54-57
    129周维垣,杨延毅.节理岩体损伤断裂模型与验证[J].岩石力学与工程学报,1991,10(1):43-54
    130孙卫军,周维垣.裂隙岩体弹塑性损伤本构模型[J].岩石力学与工程学报,1990,9(2):108-119
    131凌建明等.非贯通裂隙岩体力学特性的损伤分析[J].岩石力学与工程学报,1992,11(4):373-383
    132李长春.考虑温度效应的岩石损伤内时本构关系[J].岩土力学.1991,(3):1-10
    133肖洪天,周维垣,杨若琼.岩石裂纹流变扩展的细观机理研究[J].岩石力学与工程学报,1999,18(6):623-626
    134余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993
    135葛修润,任建喜,蒲毅彬等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004
    136杨更社,张长庆.岩体损伤及检测[M].西安:陕西科学技术出版社,1998
    137沈珠江,章为民.损伤力学在土力学中的应用.第一届全国计算岩土力学研讨会论文集,1987
    138沈珠江、章为民.损伤力学在土力学中应用[J].第二届全国岩土工程数值分析解析方法论文集,1988
    139孙红,赵锡宏.结构性软土的损伤及其对地基沉降的影响.岩土力学,1999,20(l):19-21
    140孙红,赵锡宏.软土的弹塑性各向异性损伤分析[J].岩土力学,1999 20(3): 7-12
    141孙红.软土的各向异性损伤模型及其在土力学中的应用[D].上海:同济大学,1999
    142赵锡宏,孙红,损伤土力学「M].上海:同济大学出版社,2002
    143张冠伦.混凝土外加剂原理与应用[M].北京:中国建筑工业出版社,1989
    144申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社, 2000
    145王春阳.建筑材料[M].北京:高等教育出版社, 2002
    146丁琳编.硅粉混凝土配合比优化及其性能[M]北京:中国计量出版社, 2007
    147江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994
    148周氐.现代钢筋混凝土基本理论[M].上海:上海交通大学出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700