用户名: 密码: 验证码:
基于物理模型的落叶松林虫害遥感监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十多年来,遥感在森林虫害监测中的应用研究得到了逐步开展,尤其是监测模型的研究,取得了显著的研究进展。但大多数模型几乎都集中在利用特定地区的数据经统计分析而建立,并没有从机理上对模型进行分析、研究和调整。这种仅仅源于特定地域数据建立的模型,其应用也常受到地域的限制,所以虫害遥感监测建模研究结果的通用性问题急需解决。同时,由于大多数虫害遥感监测多集中在对林木受虫害后叶片颜色发生变化和产生落叶这两种生理特征的研究,而应用遥感监测到林木因虫害而产生这两种特征时,通常已是林木受害的中后期,无法对林木受害的早期进行监测。在应用的遥感数据方面,多集中在可见光和近红外数据,而热红外波段的应用研究较少。
     本文将以生态学、定量遥感及森林保护等相关理论为指导,从机理上研究应用遥感监测虫害的关键科学问题,从林木受虫害后的生理特征分析入手,在研究了虫害发生早期阶段遥感可监测因子的基础上,初步确立了具有较强通用性和明确物理含义的三种虫害早期遥感监测指示因子,即:林冠层含水量(CWC)、土壤相对含水量和叶面积指数(LAI)。为验证应用Landsat TM数据提取林冠层含水量的可行性,应用针叶物理反射模型LIBERTY,结合实地调查数据对不同含水量条件下的针叶反射率特征进行了研究,经研究得知三种同水分相关的光谱指数MSI、NDWI和GVMI与针叶含水量高度相关,且GVMI光谱指数对针叶是否为簇状并不敏感,能够显著反映针叶的水分变化。同时,由于GVMI是由两个宽波段(SWIR和NIR)数据计算得来,应用Landsat TM数据即可获得,所以间接验证了应用Landsat TM/ETM+数据反演冠层含水量的可行性,并为后续进一步研究落叶松冠层水分含量的反演提供了理论基础和研究途径。随后,结合物理辐射传输模型,综合利用可见光、近红外和热红外数据,研究了三种因子的遥感反演方法和模型。
     首先,在研究了以往叶面积指数和冠层含水量的反演方法的基础上,提出了应用辐射传输模型——森林五尺度传输模型(5-scale)和人工神经网络——BP网络反演LAI和CWC的方法,并就如何应用5-scale模型和BP网络对陆地卫星数据反演LAI和CWC进行了研究,通过与实地测量数据和MODIS产品数据的比较,得知反演结果吻合较好。应用该方法对多期图像进行了反演,获得了伊尔施林场10年来12期影像的CWC和LAI的时空分布图。
     其次,选择TVDI(Temperature/Vegetation dryness Index)作为表征土壤相对含水量的指数,并对其反演进行研究。该指数需要地表温度(TS)和归一化植被指数(NDVI)构成的特征空间共同确定。NDVI可以应用红光和近红外数据计算得到,TS需要从Landsat TM_6波段数据中反演得到。经研究表明,LandsatTM_6热红外波段需要经过大气效应校正和发射率效应校正,得到的地表温度才能更有效地提取TVDI指数。将反演得到的10年的TVDI数据同实地降水量数据对比可以看出,趋势吻合较好,该指数对于地表干旱的指示作用较好,基本能够满足监测土壤相对含水量的要求。
     最后,在反演了三种虫害发生早期阶段遥感监测指示性因子的基础上,对落叶松林虫害遥感监测规则进行了研究,建立了基于三种因子进行虫害遥感监测的规则,并以内蒙古阿尔山地区虫害监测为例,对该方法进行了应用和评价。经验证,结果与实地情况吻合较好。考虑到实用性,论文进一步简化了三个参数的反演计算,提出了一套较为通用、有效的基于物理模型的落叶松林虫害遥感监测的方法。
In the recent ten years,gradual research progresses have been made on the remote sensing application in the forest pest monitoring area,especially on the monitoring model.However, most monitoring models were developed based on statistical analysis,which is highly depending on the specific field data.Therefore,these models are limited for only small regions and not suitable for other study areas.Hence,it is necessary and urgent to develop more general models. Meanwhile,most research used two physiological characteristics,leaf litter and the change of the leaf colour,to monitor forest status after the trees being attacked.Although they are suitable for the loss assessment,these researches are not so good to detect the insect pests in the early stage.That is because it's usually in the middle and latter stage of the insects attacking when the two physiological characteristics changes can be detectable by remote sensing data.Moreover, most VIS and NIR data were applied in the pest monitoring research,while,the application of TIR data are rare.
     In this paper,the key scientific problems of the forest insect pests monitoring by remote sensing were studied based on the theories of the ecology,forest protection and quantitative remote sensing.Through the analysis on the physiological characteristics changes after the trees being attacked,three indicative factors of the early forest insect pests monitoring were brought forward,which are CWC(represents the total water content of forest canopy),TVDI(represents the relative water content of soil) and the LAI(leaf area index).In order to evaluate the feasibility of the CWC inversion from the Landsat data,the sensitivity of the reflectance characteristics of coniferous needles on the needle water content was studied based on the filed data and the LIBERTY(Leaf Incorporating Biochemistry Exhibiting Reflectance and Transmittance Yields) model.The results show that three spectrum indices,which are MSI (Moisture Stress Index),NDWI(Normal Difference Water Index) and GVMI(Global Vegetation Moisture Index) were highly correlated with the water content.Especially,GVMI is not sensitive to whether the needle is clustered or not.Moreover,GVMI uses two broad bands (NIR and SWIR),which can be calculated from Landsat TM/ETM+ data.Therefore,it is confirmed that Landsat TM/ETM+ data is feasible to inverse the forest canopy water content, which lays a solid theoretical foundation for the following research.Then,the inversion research on the three indicative factors was performed using VIR,NIR and TIR data,combined with physical-based RT(Radiative Transfer) model and ANN(Artificial Neural Network).
     Firstly,the inversion method(RT-ANN) for LAI and CWC by combining the 5-scale RT model and BP ANN was put forward based on the historical research.And the method was customized on Landsat data to inverse the two indicative factors.Field data and MODIS data were both validate the reasonable inversion precision.Finally,twelve images of LAI and CWC were obtained based on twelve Landsat images during the ten years.The images show that LAI and CWC decrease gradually.
     Then,the inversion of TVDI(Temperature/Vegetation dryness Index) which can repsent the soil relative water content was studied.TVDI is determined by using the Ts/NDVI featrue space.Pre-analysis results show that the Landsat TM_6 data must be corrected to remove atmopsheric effects and emissivity effects before retriving TVDI.By combining the field rainfall data,the inversed TVDI image series show that this index is good to indicate the soil dryness and usefull for monitoring soil relative water content.
     Eventually,the decision rules for the larch forest insect pests monitor were performed based on the three inversed indices.The rules are then applied in the YIERSHI forest farm.The insect pest forest compartments which extract from the images is highly consistent with the ground field data.Considering practicability,a general and physically-based forest insect pest monitoring model is developed by speeding the inversion algorithm.
引文
1.陈鹏程,张建华,雷勇辉,等.高光谱遥感监测农作物病虫害研究进展[J].中国农学通报,2006.22(2):388-391
    2.程焕章,刘新田,逢增和,等.航天遥感技术在落叶松毛虫危害区划中的应用研究.东北林业大学学报,1992.20(5):25-32.
    3.池宏康,周广胜,许振柱,等.表观反射率及其在植被遥感中的应用[J].植物生态学报,2005,29(1):74-80.
    4.池天河,苏亚芳。重大自然灾害遥感监测评估集成系统[M].北京:中国科学技术出版社,1995.71-75;
    5.戴昌达,雷莉萍,胡德永,等.卫星遥感监测松毛虫灾害[J]。遥感信息,1991,(3):32-34
    6.惠凤鸣,田庆久,金震宇,等.植被指数与叶面积指数关系研究及定量化分析[J].遥感信息,2003,2:10-12.
    7.江东,王乃斌.植被指数—地面温度特征空间的生态学内涵及其应用[J].地理科学进展,2001,20(2):146-152.
    8.金瑞华,张宏名,林培.浅谈生物灾害遥感监测[J].遥感信息,1991,(3):35-37.
    9.雷莉萍,胡德永,江平,等.森林虫害的遥感监测模式研究[J].遥感信息,1995,(3):12-14
    10.李成德,李孟楼,黄大庄,等.森林昆虫学[M],中国林业出版社,2003,244-245.
    11.刘宽余,孟庆繁,王立纯,等.大兴安岭落叶松毛虫生物学特性的研究[J].东北林业大学学报,1994,02:1-5.
    12.刘志明,晏明,张旭东,等.用气象卫星监测大范围森林虫害方法研究.自然灾害学报,2002.11(3):109-114.
    13.寿敬文,陈雪,马建文,等.采用ALR算法对Landsat-7图像缺行修复的应用研究[J].光电子·激光,2006,17(3):368-371.
    14.覃志豪,angMinghua,Amon Kamieli,等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466.
    15.覃志豪,李文娟,徐斌.利用Landsat TM6反演地表温度所需地表比辐射率参数的估计方法[J].海洋科学进展,2004,22:129-137.
    16.王洁,徐瑞松,马跃良,等.植被含水量的遥感反演方法及研究进展[J].遥感信息.2008,1:100-105.
    17.王蕾,黄华国,张晓丽,等.基于知识规则的马尾松林遥感信息提取技术研究[J].北京林业大学学报,2007,29(3):124-130.
    18.闻新,周露,王丹力,等.MATLAB神经网络应用设计[M].北京:科学出版社.2000.
    19.吴长山,项月琴,郑兰芬,等.利用高光谱数据对作物群体叶绿素密度估算的研究[J].遥感学报,2000,4(3):228-232.
    20.吴坚,马小明,李志清,等.航空录像遥感技术在森林病虫害监测中的应用[J].林业科学研究,1994,7(5):579-584.
    21.吴坚.航空录像系统及其在森林保健中的应用[J].世界林业研究,1995(2):17-23.
    22.武红敢,黄建文,乔彦友,等.松毛虫早期灾害点遥感监测研究初报[J].林业科学, 1995.31(4):379-384.
    23.武红敢,乔彦友,陈红林.浙江山地马尾松林分针叶量的动态变化及其遥感监测[J].自然资源学报,1998.13(4):359-363.
    24.武红敢,乔彦友,陈林洪,等.马尾松林叶面积指数动态变化的遥感监测研究[J].植物生态学报,1997,21(5):485-488.
    25.武红敢,乔彦友,黄建文,等.利用陆地卫星TM数据评估森林病虫害[J].遥感技术与应用,1994(4):46-51.
    26.武红敢,石进.松毛虫灾害的TM影像监测技术[J].遥感学报,2004,8(2):172-177.
    27.武红敢.卫星遥感技术在森林病虫害监测中的应用[J].世界林业研究,1995(2):24-29.
    28.辛景峰.区域旱情遥感监测研究[D].北京:中国科学院遥感应用研究所博士后研究工作报告.2003
    29.颜春燕.遥感提取植被生化组分信息方法与模型研究[D].中国科学院研究生院,遥感应用研究所,2003.
    30.杨存建,陈德清,魏一鸣.遥感和GIS在森林病虫害监测管理中的应用模式[J].灾害学,1999,(1):6-10;
    31.玉洁,杨忠东.MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001.
    32.张蓓,王世新,周艺,等.利用MODIS数据进行植被水监测的应用研究[J].遥感信息,2004,(1):19-22.
    33.张佳华,郭文娟,姚风梅.植被水分遥感监测模型的研究[J].应用基础与工程科学学报,2007.15(1):45-53.
    34.张晓阳,李劲峰.利用垂直植被指数推算作物叶面积系数的理论模式[J].遥感技术与应用,1995:10(3):13-18.
    35.赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    36.Allen TR,Kupfer JA.Application of spherical statistics to change vector analysis of Landsat data:Southern Apalachian spruce fir forests[J].Remote Sens.Environ,2000,74(3):482-493.
    37.Allen TR,Kupfer JA.Spectral response and spatial pattern of Fraser fir mortality and regeneration,Great Smoke Mountains,USA[J].Plant Ecology,2001,156:59-74.
    38.Amman GD.The Mountain Pine Beetle—Identification,Biology,Causes of Outbreaks,and Entomological Research Needs[C].In:Shrimpton,D.M.(Ed.),Proceedings of the Joint Canada/USA Workshop on Mountain Pine Beetle Related Problems in Western North America,Environment Canada,Canadian Forestry Service,Pacific Forest Research Centre,Victoria,Information Report BC-X-230,1982.7-12.
    39.Appel DN,Maggin RC,Nelson EL,et al.Measurement of expanding oak wilt centers in live oak[J].Photophthology,1987,79:1318-1322.
    40.Appel DN,Maggio RC.Aerial survey for oak wilt incidence at three locations in central Texas[J].PlantDis,1984,68:661-664.
    41.Ardo J,Pilesjo,Skidmore A.Nearal networks,multi temporal Landsat Thematic Mapper data and topographic data to classify forest damages in the Czech Republic[J].Canadian J.RemoteSens.,1997,23(3):217-229.
    42.Asrar G.,M.Fuschs,E.T.Kanemasu,et al.Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in Wheat[J].Agronomy Journal,1984,76:300-306.
    43.Asrar G..Theory and applications of optical remote sensing[J].In A.K.Jin(Ed.),Wiley series in remote sensing.New York:Jonh Wiley & Sons.,1989:734.
    44.Bowers WW,Franklin SE,Hudak J,et al.Forest structure damage analysis using image semivariance[J].Can.J.Remote Sens.,1994,20(1):28-36.
    45.Boyd DS,Foody GM,Curran PJ,et al.An assessment of radiance in Landsat TM middle and thermal infrared wavebands for the detection of tropical forest regeneration.Int.J.Remote Sensing.,1996,17(2):249-261.
    46.British Columbia Ministry of Forests.Bark Beetle Management Guidebook[M].Forest Practices Code,Forest Practices Branch,Victoria,BC,1995:45.
    47.Brockhaus JA,Khorram S.A comparision of Landsat TM and SPOT HRV data for use in the development of forest defoliation modes[J].Intemational Journal of Remote Sensing,1992,13(6):3235-3240.
    48.Carlson T.N.,Gillies R.R.,Schmugge T.J..An interpretation of methodologies for indirect measurement of soil water content[J].Agricultural and Forest Meteorology,1995,77:191-205.
    49.Carlson T.N.,Gillies R.R.,Perry E.M..A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover[J].Remote Sensing Reviews,1994,9:161-173.
    50.Carlson T.N.,Perry E.M.,Schmugge T.J..Remote Estimation of Soil Moisture Availability and Fractional Vegetation Cover for Agriculture Field[J].Agriculture and Forest Meteoroloty,1990,52:45-49.
    51.Ceccato P,Gobron N,Flasse S.et al.Designing a spectral index to estimate vegetation water content from remote sensing data:Part 1,theoretical approach[J].Remote Sensing of Environment,2002(82):188-97.
    52.Charpentier M.A.,Groffman P.M..Soil Moisture Variability Within Remote Sensing Pixels[J].Journal of geophysical research,1992,97(D17):18,987-18,995.
    53.Chen J.M.,Cihlar J..Retrieving leaf area index for boreal conifer forests using Landsat TM images[J].Remote Sensing of Environment,1996,55:153-162.
    54.Chen J.M.,Leblanc S.G.A 4-scale bidirectional reflection model based on canopy architecture[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35:1316-1337.
    55.Chen J.M.,Leblanc S.G.Multiple-scattering scheme useful for geometric optical modelling[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(5):1061-1071.
    56.Chen J.M.,Leblanc S.G.,Cihlar J.,et al.Studies of BRDF in conifer and deciduous boreal forests using the 4-Scale model and airborne POLDER and ground-based PARABOLA measurements[C].Proceedings of IGARSS'97.1997.
    57.Cihlar J.,St.-Laurent L.,Dyer J.A..Relation between the Normalized Difference Vegetation Index and ecological variables[J].Remote Sensing of Environment,1991,35:279-298.
    58.Cist EP,Cicone RC.Application of the tasseled cap concept to simulate the matic map data[J].PE&RS.,1984,50:343-352.
    59.Collins JB.,Woodcock CE.An assessment of several linear change detection techniques for mapping forest mortality using multit emporal Land sat TM data[J].Remote Sens.Environ.,1996.56:66-77.
    60.Combal B.,Baret F.,Weiss M.,et al.Retrieval of canopy biophysical variables from bidirectional reflectance:Using prior information to solve the ill-posed inverse problem[J].Remote Sensing of Environment,2003,84:1-15.
    61.Curran P.J.,Dungan J.L.,Peterson D.L..Estimating the foliar biochemical concentration of leaves with reflectance spectrometry:Testing the Kokaly and Clark methodologies[J].Remote Sensing of Environment,2001,76:349-359.
    62.Dale A.Quattrochi,Jeffrey C.Luvall.Thermal infrared remote sensing for analysis of landscape ecological processes:methods and applications[J].Landscape Ecology,1999,14:577-598.
    63.Danson F.M.,Steven M.D.,Malthus T.J.,et al.High spectral resolution data for determining leaf water content[J].International Journal of Remote Sensing,1992.13:461-470.
    64.Dawson T.P.,Curran P.J.,North P.R.J.,et al.LIBERTY:modeling the effects of leaf biochemistry on reflectance spectra[J].Remote Sens.Environ,1998,65:50-60.
    65.Dickson R.E.,Isebrands J.G..Leaves as regulators of stress response[M].San Diego,New York,London:Academic Press,1991:4-34.
    66.Doherty J..PEST—Model-independent parameter estimation user's manual.5th ed.Watermark Numerical Computing,Brisbane,Australia,2004.
    67.Ekstrand S P.Detection of Moderrate Damage on Noway Spruce Using Landsat TM and Digital Stand Data[J].IEEE Transaction on Geoscience and Remote Sensing,1990,28(4):685-692.
    68.Ermolaev I.V.,M.V.Ermolaeva.The Effect of Larch Casebearer on Larch Growth and Reproductive Organ Formation[J].Russian Journal of Plant Physiology,2003,50(2):200-205.
    69.Everitt JH,Escobar DE,Appel DN,etal.Using airborne digital imagery for detecting oak wilt disease[J].PlantDis,1999,83:502-505.
    70.Fang H.,Liang S.,Kuusk A..Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model.Remote Sensing of Environment,2003,85:257-270.
    71.Fernandes R.A.,Miller J.R.,Chen J.M.,et al.Evaluativng image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery[J].Remote Sensing of Environment,2004,89:200-216.
    72.Franklin S E.Classification of hemlock looper defoliation using SPOT HRV imagery[J].Can.J.Remote Sens.,1989,20:37-48.
    73.Franklin SE,Raske AG.Satellite remote sensing of spruce budworm forest defoliation in western New found land[J].Can.J.Remote Sens,1994,20(1):30-48.
    74.Fukshansky L.,Remisowsky A.M.V.,Mcclendon,J.,et al.Absorption-spectra of leaves corrected for scattering and distributional error -a radiative-transfer and absorption statistics treatment.Photochemistry and Photobiology,1993,57:538-555.
    75.Gao BC.Apractical method for simulating AVHRR-consisten NDVI data series using narrow MODIS channels in the 0.5-1.0m spectral[J].IEEE Trans Geosci.Remote Sems.,2000,38(4):1969-1975.
    76.Gao BC.NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[J].Remote Sensing of Environment,1996.58:257-266.
    77.Gastellu-Etchegorry J.P.,E.Martin,F.Gascon.DART:a 3D model for simulating satellite images and surface radiation budget[J].Int J Remote Sens,2004,25(1):75-96.
    78.Gillies R.R.,Carlson T.N.,Gui J.,et al.A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index(NDVI) and surface radiant temperature[J].International Journal of Remote Sensing,1997,15(15):3145-3166.
    79.Gillis MD,Pick RD,Leckie DG.Satellite imagery assists in theassessment of hail damage for salvage harvest[J].The Forestry Chronicle,1990(10):463-468.
    80.Goetz S.Z..Multisensor analysis of NDVI,surface temperature and biophysical variables at a mixed grassland site[J].International Journal of Remote Sensing,1997,18(1):71-94.
    81.Goward S.N.t Hope A.S..Evapotranspiration from combined reflected solar and emitted terrestrial radiation:Preliminary FIFE results from AVHRR data.Advances in Space Reasearch,1989,9(7):239-249.
    82.Green K,Kempka D,Lackey L.Using remote sensing to detect and monitor land cover and land use change[J].PE&RS.,1994,60:331-337.
    83.Gyanesh Chander,Brian Markham.Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dvnamic Ranges[J].IEEE Transactions on Geoscience and Remote Sensing,2003,12(41):2647-2677.
    84.Haara A,Nevalainen S.Detection of dead or defoliated spruces using digital aerial data[J].For.Ecol.Manage,2002,160:97-107.
    85.Haboudane D,Miller J,Tremblay N,et al.Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[M].Remote Sens.Environ,2002,81(2-3):416-426.
    86.Henigman J.,Ebata T.,Allen E.et al..Field Guide to Forest Damage in British Columbia.British Columbia British Columbia Ministry of Forests[M].Victoria,BC.1999.
    87.Hill J.B.,Popp H.W.,Grove Jr.et al.A Textbook for Colleges[M].fourthed.McGraw-Hill Book Co.,Toronto,Ont.1967.
    88.Hohn ME,Liebhold AM,Gribko LS.Geostatistical model for forecasting spatial dynamics of defoliation caused by the gypsymoth[J].Environmental entomology,1993,22(5):1066-1075.
    89.Horler D.N.H.,Dockray M.,Barber J..The red edge of plant leaf reflectance[J].International Journal of Remote Sensing,1983,4:273-288.
    90.Jackson R.D..Canopy temperature and crop water stress[J].Advances in Irrigation,1982,1:43-45.
    91.Jago RA,Cutler MEJ,Curran PJ.Estimating Canopy Chlorophyll Concentration from Field and Airborne Spectra[J].Remote Sens.Environ.,1999,68:206-216.
    92.Jarvis A.,H.I.Reuter,A.Nelson,et al.Hole-filled seamless SRTM data V4.International Centre for Tropical Agriculture(CIAT),2008,available from http://srtm.csi.cgiar.org.
    93.Jim(?)nez-Mu(?)oz J.C.,J.A.Sobrino.A generalized single-channel method for retrieving land surface temperature from remote sensing data[J].Journal of Geophysical Research,2003,108(D22):4688-4695.
    94.Joria PE,Ahearn SC.A Comparision of the SPOT and Landsat Thematic Mapper Satellite System for Detecting Gypsy Moth Defoliation in Michigan[J].Ptotogrammetric Engineering & Remote Sensing,1991,57(12):1605-1612.
    95.Kaneyuki,nakane,yoshinori kimura.Assessment of pine forest damage by blight based on Landsat TM data and correlation with environmental factors[J].Ecological Research,1992(7):9-18.
    96.Kaufman YJ,Sendra C.Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery[J].International Journal of Remote Sensing,1988,9(8):1357-1381
    97.Kim MS,Daughtry CST,Chappelle EW,etal.The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation(APAR)[C].Proceedings of the 6th Symposium on Physical Measurements and Signatures in Remote Sensing.France:VolDlsere,1994:299-306.
    98.Kimes D.S.,Kirchner,J.A..Radiative-transfer model for heterogeneous 3-D scenes[J].Applied Optics,1982,21:4119-4129.
    99.Knyazikhin Y.,Martonchik J.V.,Diner D.J.et al.Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data.Journal of Geophysical Research D:Atmospheres[J],1998,103:32239-32256.
    100.Kobayshi Shiho,Rokugawa Shuichi,Yamagata Yoshiki,et al.A Study on predicting the Spectral Character of Larch Needles—A Study on LIBERTY Model[J].Proceedings of the Japanese Conference on Remote Sensing.2001,30:23-24.
    101.Kokaly R.F.,Clark R.N..Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Linear Regression[J].Remote Sensing of Environment,1999,67:267-287.
    102.Kramer P.J..Water Relations of Plants[M].Academic Press,New York,London,1983,30.
    103.Lambert NJ,Ardo J,Rock BN,etal.Spectral characterization and regression based estimates of forest damage in NoreaySpruce stands in the Czech Republic using Landsat Thematic Mapper data[J].Int.J.Remote Sens.,1995,16:1261-1287.
    104.Larcher W..Physiological plant ecology[M].Berlin,Heidelberg:Springer Verlag.1995.
    105.Leblanc S.G.,Bicheron P.,Chert,J.M.,et al.Investigation of directional reflectance in boreal forests using an improved 4-Scale model and airborne POLDER data[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1396-1414.
    106.Leblanc S.G.,Chen J.M.,Cihlar J..NDVI Directionality in Boreal Forests:A Model Interpretation of Measurements[J].Canadian Journal of Remote Sensing,1997,23:368-379.
    107.Leblanc S.G.,Chen J.M..A Windows Graphic User Interface(GUI) for the Five-Scale model for fast BRDF simulations.Remote Sensing Reviews,2001,19:293-305.
    108.Leblanc S.G.,Chen J.M..LAI measurements in deciduous and coniferous forests with two optical instruments[J].Proceedings of International Workshop on Scaling and Modelling in Forestry:Applications in Remote Sensing and GIS.Montreal,Quebec,1998:119-125.
    109.Leckie DG,Ostaff DP.Classification of airborne Multispectral Scanner data for mapping current defoliation caused by the spruce bud worm[J].For.Sci.,1988,34:259-279.
    110.Leckie DG.Factors affecting defoliation assessment using Airborne Multispectral Scanner data[J].PE&RS.,1987.53(12):1665-1674.
    111.Li X.,Strahler A.H..Geometric-Optical bidirectional reflectance modeling of the discrete crown vegetation canopy:Effect of crown shape and mutual shadowing[J].IEEE Trans.on Geoscience and Remote Sensing,1992,30(2):276-292.
    112.Lyapustin A.,Wang Y.J..Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces.Applied Optics,2005,44:7602-7610.
    113.Malenovsk(?),Z.,Ufer C.M.,Lhot(?)kov(?) Z.,et al.A new hyperspectral index for chlorophyll estimation of a forest canopy:Area under curve Normalized to Maximal Band depth between 650-725 nm.EARSeL eProceedings,2006,5:161-172.
    114.Martin Schlerf,Clement Atzbergerb.Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data[J].Remote Sensing of Environment,2006,100(3):281-294.
    115.Muchoney DM,Haack BM.Change detection for monitoring forest defoliation[J].PE&RS..1994,60:1243-1251.
    116.Myneni R B,Nemani R R,Running S W.Estimation of Global Leaf Area Index and Absorbed PAR using radiative transfer models[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(66):1380-1393.
    117.Nelson RF.Detecting forest canopy change due to insect activity using Landsat MSS[J].PE&RS,1983,49:1303-1314.
    118.Nemani R.R.,Running S.W..Estimation of regional surface resistance to evapotranspiration from NDVI and thermal IR AVHRR data[J].Journal of Applied Meteorology,1989,28:276-284.
    119.Neyman J..On a new class of 'contagious' distribution applicable in entomology and bacteriology[J].Annals of athematical Statistics,1939,10:35-57.
    120.Olthof I,King DJ.Development of a forest health index using multispectral airborned digital camera imagery[J].Canadian J.Remote Sens.,2000,26(3):166-176.
    121.Peck E.L.,T.R.Carroll,D.M.Lipinski.Airborne soil moisture measurements for first international satellite land surface climatology program field experiment[J].Journal of Geophysical Research,1992,97(D17):18,961-18,967.
    122.Peddl D.R.,F.G.Hall,E.F.LeDrew.Spectral Mixture Analysis and Geometric Optical Reflectance Modeling of Boreal Forest Biophysical Structure[J].Remote Sensing of Environment,1999,67(3):288-297.
    123.Peddle D.R.,R.L.Johnson,J.Cihlar,et al.Physically-Based Inversion Modeling for Unsupervised Cluster Labeling.Independent Forest Classification and LAI Estimation using MFM-5-Scale[J].Canadian Journal of Remote Sensing.2007,33(3):214-225.
    124.Penuelas J,Filella I.Visible and near-infrared reflectance techniques for diagnosing plant physiological status[J].Trends in Plant Science,1998(3):151-156.
    125.Pefiuelas J.,Filella,I.,Biel,C,et al.The reflectance at the 950-970 nm region as an indicator of plant water status.International Journal of Remote Sensing,1993,14:1887-1905.
    126.Pierce L.L.,Running S.W.,Riggs,G.A..Remote detection of canopy water stress in coniferous forests using the NS001 thematic mapper simulator and the thermal infrared multispectral scanner.Photogrammetric Eng.Remote Sensing,1990,56(5):579-586.
    127.Price KP.Jakubauskas ME.Spectral retrogression and insect damage in lodgepole pine succesional forests[J].Int.J.RemoteSens.,1998,19(8):1627-1632.
    128.Qi J,Kerr Y H,Moran M S,et al.Leaf Area Index Estimates Using Remotely Sensed Data and BRDF models in a Semiarid Region[J].Remote Sens Environ,2000,73:18-30.
    129.Radeloff VC.Mladenoff DJ,Boyce MS.Detecting jack pine budworm defoliation using spectral mixture analysis:separating effects from determinants[J].Remote Sens.Envion,1999,69:156-169.
    130.Reid R.W..Moisture changes in lodgepole pine before and after attack by the mountain pine beetle[J].For.Chronicle,1961:368-375.
    131.Rock B N,Vogelmarm J E,Williams D L,et al.Hoshizaki T.Remote detection of forest damage[J].Bioscience,1986.36:439-445.
    132.Rock B.N.,Hoshizaki T.,Miller J.R..Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline.Remote Sensing of Environment,1988,24:109-127.
    133.Royle DD,Lathrop RG.Monitoring hemlock forest health in new jersey using landsat TM data and change detection techniques[J].For.Sci.,1997.43(3):327-335.
    134.Rumelhart D E,McClelland J L.Parallel distributed processings[M].Cambridge,MA:MIT Press,1986.
    135.Sader S.A..Analysis of effective radiant temperatures in a Pacific Northwest forest using Thermal Infrared Multispectral Scanner data[J].Remote Sensing Env.1986,19:105-115.
    136.Safranyik L..Mountain pine beetle epidemiology in lodgepole pine[C].In:T.L.Shore,J.E.Brooks,J.E.Stone(editors).Mountain Pine Beetle Symposium:Challenges and Solutions(October 30-31,2003),Kelowna,British Columbia.Natural Resources Canada,Canadian Forest Service,Pacific Forestry Centre,Information Report BC-X-399,Victoria,BC.2004:298-307.
    137.Sandhoh I,Rasmussen K,Andersen J.A simple interpretation of the Surface tempera -ture/vegetation index space for assessment of surface moisture status[J].Remote sensing of environment.2002,79(2):213-224.
    138.Schlerf M.,Atzberger C..Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data.Remote Sensing of Environment,2006,100:281-294.
    139.Sellers P.J.,S.O.Los,C.J.Tucker,et al.A global 1 by 1 degree NDⅥ data set for climate studies[J].Part 2:The generation of global fields of terrestrial biophysical parameters from the NDⅥ.International Journal of Remote Sensing,1994,15(17):3519-3545.
    140.Smith R.C.G.,Choudhury B.J..Analysis of normalized difference and surface temperature observations over southeastern Australia[J].International Journal of Remote Sensing,1991,12(10):2021-2044.
    141.Trombetti M.,Ria(?)o D.,Rubio M.A.,et al.Ustin.Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA[J].Remote Sensing of Environment,2008,112:203-215.
    142.Ulliman JJ,French DW.Detection of oak wilt with color IR photography[J].PE&RS,1977,43:1267-1272.
    143.Van de Griend A A,Owe M.On the relationship between thermal emissivity an d the normalized difference vegetation index for natural surfaces[J].Int J Remote Sens,1993,14:1119-1131.
    144.Vogelmann JE,Rock BN,etal.Use of Thematic Mapper Data for theDetection of Forest Damage Caused by the Pear Thrips[J].Remote Sensing of Environment,1989,30:217-225.
    145.Vogelmann JE,Rock BN.Assessing forest damage in high elevation coniferous forests in Vermont and New Hamsphire using Thematic Mapper data[J].Remote Sensing of Environment,1988,24:227-246.
    146.Yamaoka Y.,Swanson R.H.,Hiratsuka Y..Inoculation of lodgepole pine with four blue-stain fungi associated with mountain pine beetle,monitored by a heat pulse velocity(HPV)instrument[J].Can.J.Forest Res.,1990,20:31-36.
    147.Zhou G,Liebhold AM.Forecasting the spatial dynamics of gypsy moth outbreaks using cellar transition models[J].Landscape Ecology,1995,10:177-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700