用户名: 密码: 验证码:
玉米自交系遗传多样性与表型性状关联分析及分子ID构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究玉米自交系遗传多样性、划分玉米杂种优势类群及杂种优势模式,应用于玉米自交系的选育、改良、创新及优异种质资源挖掘、利用,可提高组配玉米杂交种的效率、缩短育种年限,是玉米育种工作中的重要基础性研究;玉米重要性状QTL定位是利用分子标记辅助选择的前提条件,对于提高育种准确性和预见性有重要意义。
     本论文研究目的是以我国部分重要玉米自交系、大面积推广杂交种的亲本、自选自交系等为研究对象,基于遗传距离划分优良玉米种质杂种优势群,探讨杂种优势模式。利用257份玉米自交系构成的自然群体为供试材料,选取64对核心SSR标记进行遗传多样性分析,应用STRUCTRE软件对257份玉米自交系构成的自然群体进行基于数学模型的类群划分,并计算材料相应的Q值(第i材料其基因组变异源于第k群体的概率),利用TASSEL软件中的GLM(General Linear Mode)程序,各个体的Q值作为协变量,将农艺性状表型数据对标记逐一进行回归分析,确认各性状关联位点并计算位点对表型的解释率,采用资源特征分析软件(ID Analysis1.0,软件登记号:2007SR11870)建立品种分子ID,以最少的引物来区分品种。本论文主要结论如下:
     (1)目前,选育高产玉米自交系应以尽量延长生育期为主,增加穗长及百粒重,以其他性状适中为选择目标。选育品质优良的玉米自交系应定向选择穗粗与株高较佳的种质,其次为生育期、行粒数与穗粗,平衡其他农艺性状的选择,根据品质性状及与其相关性状之间的关系选用适宜的种质,协调所有影响因素,加快选育优良玉米自交系的进程。
     (2)基于SSR标记的遗传距离,将供试材料划分为PA、BSSS、旅大红骨、塘四平头、Lancaster、PB六个类群。聚类结果与自交系系谱关系基本一致。本研究中Lancaster可定为A群,塘四平头与旅大红骨可归为B群,PA、PB可归为C群即PN类群,而BSSS类群由于与其他类群差异较大归为D类群,这样可将供试材料归为4大类群,共6个亚群。我国玉米种质资源遗传基础相对狭窄,因此简化类群划分数目,有利于探索杂种优势模式。核心SSR标记对于划分杂种优势群有显著的鉴别能力。
     (3)64个SSR位点中,有43个标记位点与24个性状相关联,其中19个位点的变异分别与14个表型性状在P<0.01水平上呈极显著相关,其它标记与各性状均显著相关(P<0.05);与农艺、品质性状相关联的位点(次)累计有80个,与品质性状相关联的位点(次)累计有7个,关联位点数目上品质性状远少于其他农艺性状;关联分析发现的主要性状SSR位点数目远多于相同大小家系群体定位所得位点数,同一性状的关联位点在连锁群上分布较集中,如与生育期关联的位点多分布在Ch7群体上,这可能与此连锁群上使用标记较多有关;同一个位点与多个性状关联很普遍,这些性状一般为同一类性状,如umc1741与株高、全株叶数、穗位及穗长关联,Ch7连锁群上的umc2160、umc1545与生育期关联同时也与穗行数相关联,这说明玉米表型性状相关有其内在遗传因素。综合分析表明:与株高、穗位、穗长、穗行数等性状相关联的标记较多,与脂肪含量、蛋白质含量等性状相关联的标记较少,应该在试验群体内增加品质性状变异程度较大的试验材料,同一条染色体上存在一个或多个与农艺性状关联的标记位点,不同染色体上存在与同一性状关联的标记,这与玉米数量性状的QTL定位大体一致。
     (4)通过SSR分子标记技术,采用资源特征分析软件(ID Analysis 1.0)对257份玉米自交系进行分析表明,仅需10对引物可将供试品种完全区分开,用这10对引物共同扩增同一品种,经电泳检测、照相可以得出品种ID照片,进而快速、准确地检测、区分玉米自交系。
Analyzing the genetic diversity of maize inbred lines and classifying the heterotic group and the model of heterosis which using to select the parents and improve, innovate, excavate and employ the good germplasm cloud improve the efficiency of selecting the parents of hybrid and shorting the duration of breeding, which was the important basis of maize breeding.QTL location of important maize traits is the basis of marker-assisted selection, which has a very important significance to improve the accuracy and foresight of breeding. The materials of this study were part of important inbred lines in our country, varieties which popularizing in large areas and inbred lines selected by ourselves. Genetic distance obtain by SSR markers were used to classify the heterotic group of good maize germplasm and analyze and discuss the model of heterosis, Association analysis was an approach to identify the relationship of molecular markers or candidate genes with traits in a given population based on linkage disequilibrium (LD). In this study, 64 pair SSR markers were used for genotyping of 257 maize inbred lines. LD of pairwise loci and population structure were analyzed, then association analysis between SSR and nine phenotypic traits such as plant height, ear height, growth duration, ear length, row number of ear, 100-seeds weight, oil content, protein content, and starch content were performed using TASSEL GLM and their explained phenotypic variation were detected, too. Molecule ID could be build up by the germplasm character analysis software (ID Analysis1.0) which developed by ourselves, and classify the materials by least primers.
     The results of this study follow as:
     (1) At present, the purpose of maize inbred lines breeding with high yield should focus on prolonging the growth duration and increasing the ear length and 100-seed weight, according with other triait. Breeding of maize inbred lines with high quality should directional select the germplasms with ear diameter and plant height, next with growth duration, row number per ear and ear diameter, according with other traits to correspond the relational factors and pick up the process of breeding.
     (2) The materials in this study could be classified into six groups of PA, BSSS, Lvdahonggu, Tangsipingtou, Lancaster and PB. The result of clustering analysis was according with pedigree. In this study, Lancaster can be classified into group A, Tangsipingtou and Lvdahonggu in group B, PA and PB in group C (PN), and BSSS in the group D because of different from other groups. The materials in this research could be classified into 4 groups (6 subgroups). Since the genetic base of maize germplasms was narrow in our country, simplifying the number of groups could beneficial to explore the model of heterosis. Core SSR markers could classify the heterotic group.
     (3) In the 64 SSR loci, there are 43 markers associated with 24 traits, in which 19 loci associated with 14 phenotypic traits at the level of 0.01 and other markers at the level of 0.05. There are 80 markers associated with agronomic traits and quality traits, in which only seven associated with quality traits, which highly less than that associated with agronomic traits. The number of SSR loci found by associating analysis were more than the number which fixed by population with the same size, the markers associated with one traits were focus in the linkage group, such as most of the markers associated with growth duration were in the linkage group 7, which may to do with there more markers in this linkage group. It is ubiquity that one marker associated with more than one trait which in one category, such as umc1741 associated with plant height, ear height and ear length; umc2160 and umc1545 in linkage group 7 associated with not only growth duration but also, which indicating that there are inner genetic factor associated with phenotypic traits of maize. The results indicated that: the markers which associated with plant height, ear height, ear length and row number per ear were more than that with oil and protein content. More materials with variation in quality should add to the research group. There are several markers associated with one or several agronomy traits in one chromosome and different markers associated with one trait in different chromosomes, most markers were according with the mapping of QTL.
     (4) Resource characteristic analysis of 257 maize inbred lines by SSR indicated that: only ten pair of primers can differentiate the varieties in this study. The inbred lines could be identified quickly and exactly by amplificating one variety with ten primers and examining by electrophoresis, which acquiring the photographs of molecule ID.
引文
曹靖生.2000.黑龙江省玉米主要种质基础现状分析.玉米科学.8(1):21-22
    曹永国,向道权,黄烈健,王守才,吴敏生,戴景瑞.2002.SSR分子标记与玉米杂种优势关系的研究.农业生物技术学报,10(2):120-123
    陈景堂,池书敏,马占元,等.2001.应用清蛋白PAGE技术进行玉米自交系类群划分的初步研究.玉米科学,9(2):18-21
    陈彦惠等.2000.热带、亚热带自交系与中国温带玉米种质杂交种的研究.中国农业大学学报,5(1):50-57
    代国丽,蔡一林,徐德林,吕学高,王国强,王久光,孙海艳.2009.玉米穗部性状的QTL定位.西南师范大学学报(自然科学版),(34)5:134-138
    戴景瑞.1998.我国玉米生产发展的前景及对策.作物杂志,(5):611
    戴景瑞.2000.我国玉米遗传育种的回顾与展望.21世纪玉米遗传育种展望-玉米遗传育种国际学术讨论会文集,北京,中国农业科技出版社,1-7
    邓聚龙.1988.农业系统灰色理论与方法.济南:山东科学技术出版社
    董玉琛,郑殿升.2006.中国作物及其野生近缘植物(粮食作物卷).北京:中国农业出版社,278-300
    杜金友,黎裕,王大宇,石云素,宋燕春,王海波.2003.SSR和AFLP分析玉米遗传多样性的研究.华北农学报,18(1):59-63
    杜月红,于永涛,石云素,宋燕春,黎裕,王天宇.2007.应用APAGE技术研究玉米自交系资源种子蛋白的遗传多样性.植物遗传资源学报,8(4):430-435
    高会林,高玮,杨桂英.2003.玉米育种试验调查记载项目及标准.农业与技术,23(4):40-47
    高世斌,李晚忱,荣廷昭,等.2001.玉米骨干自交系AFLP指纹图谱鉴定.四川农业大学学报,(2):126-128
    高志军,侯建华,刘玉爱,周伟,张颖.2007.玉米杂交种的灰色关联度分析.内蒙古农业大学学报, 28(2):128-131
    公强,王天宇,谭学林,石云素,宋燕春,黎裕.2006.玉米优异早熟种质单330开花相关性状的QTL分析.植物遗传资源学报,7(4):437-441
    宫万明,邓少华,何问安,等.2005.玉米杂交种主要农艺性状的灰色关联度分析及综合评价.吉林农业大学,27(1):19-22,25
    郭小平,赵元明,刘毓侠. 1998.SSR技术及其在植物遗传育种中的应用.华北农学报,(3):74-77
    韩娅楠,刘福建,王瑞霞,丁俊强,李志敏,李贤唐,吴建宇.2010.玉米生育期QTL定位及上位性互作效应的遗传研究.华北农学报,25(2):84 -87
    何风华.2004.DNA分子标记及其在植物遗传育种上的应用.生物学教学,29(l):8-9
    胡利宗,刘均革,郭晋杰,赵永锋,祝丽英,宋占权,陈景堂.2010.基于玉米BC2F2群体的穗部性状QTL分析.华北农学报,25(4):73-77
    胡铁欢.2009.不同农艺性状对玉米产量影响的灰色关联度分析.河北农业科学,13 (6):20-21,45
    黄益勤,李建生.2001.利用RFLP标记划分45份玉米白交系杂种优势群的研究.中国农业科学,34(3):244-250
    贾继增.1996.分子标记种质资源鉴定和分子标记育种.中国农业科学,29(4):1-10
    贾建航,李传友,王斌.1999.AFLP技术在玉米自交系类群分析研究中的应用.高技术通讯,4:43-47
    兰进好,褚栋.2005.玉米株高和穗位高遗传基础的QT L剖析.遗传,27(6):925- 934
    兰进好,李新海,高树仁,张宝石,张世煌.2005.不同生态环境下玉米产量性状QTL分析.作物学报,31(10):1253-1259
    兰进好.2010.玉米开花期相关性状的QTL分析.西北植物学报,30(3):471-480
    李爱军,李占录,史红梅,周福平.2008.玉米品种主要农艺性状与产量的灰色关联分析.山西农业科学,36(8):23-25
    李北齐,王贵强,金益,路运才,吴玉梅,李三勋.2010.玉米自交系淀粉含量灰色关联度分析.中国农学通报,26(11):99-102
    李丁,刘志增,张淑贞,黄亚群,祝丽英,陈景堂.2009.玉米植株结构分析及其QTL定位.玉米科学,17(5):49-52
    李海明,胡瑞法,张世煌.2005.外来种质对中国玉米生产的遗传贡献.中国农业科学, 38(11):2189-2197
    李林,李慧,李骥英,徐淑兔,杨小红,李建生,严建兵.2009.玉米油脂代谢相关基因的全基因组挖掘、表达谱及与籽粒油份QTL共定位分析.中国科学C辑:生命科学,39(12):1162-1174
    李淑华,孙志超,荆少凌,代玉仙,刘向辉,徐国良.2006.玉米地方种质资源品质及与相关性状的灰色关联分析.吉林农业科学,31( 6) :3-5
    李晚忱.1987.玉米自交系遗传差异与杂交优势.陕西农业科学,4:9-11
    李晓辉,周佳民,邵彦宾,单彩云.2008.东北早熟春玉米农艺性状与产量和营养品质的灰色关联度分析.现代农业科技,19:198-200
    李新海,傅俊弊,张世煌等.2000.利用SSR标记研究玉米自交系的遗传变异.中国农业科学, 33(2):1-9
    李新海,李明顺,袁力行,张世煌.2000.热带、亚热带玉米种质的引进与利用.中国农业科学,33(增刊):20-26
    李新海,袁力行,李晓辉,张世煌,李明顺,李文华.2003.利用SSR标记划分70份我国玉米自交系的杂种优势群.中国农业科学,36(6):622-627
    李雪林,梁华,张泽民,等.2004.分子标记技术在植物遗传育种中的应用进展.河南科技大学学报(农学版),24(2):69-72
    李永祥,王阳,石云素,宋燕春,王天宇,黎裕.2009.玉米籽粒构型与产量性状的关系及QTL作图.中国农业科学,42(2):408-418
    李玉玲,李学慧,董永彬,牛素贞,刘艳阳,王延召,魏蒙关,崔党群.2007.利用相同来源F2:3和BC2S1群体定位玉米生育期QTL.华北农学报,22(6):38-43
    李玥莹,张海泉,沈平,等.2001.分子标记技术及其在作物遗传育种研究上的应用.沈阳农业大学学报,32(2):150-154
    刘建超,褚群,蔡红光,米国华,陈范骏.2010.玉米SSR连锁图谱构建及叶面积的QTL定位.遗传,32(6):625-631
    刘杰,刘公社,朱至清.2002.SSR标记用于玉米自交系遗传变异与优势类群划分研究.西北植物学报,22:741-750
    刘满英,方丽娜,方玉霖,吴文珊.2010.籼稻新品种的灰色关联度分析.安徽农业科学,38 (8) :3953-3954
    刘世建,荣廷昭,杨俊品,潘光堂.2004.四川地方玉米种质的SSR聚类分析.作物学报,30(3):221-226
    刘希慧,刘文欣,张义荣,刘占先,张书奎,戴景瑞.2005.利用SSR分子标记鉴定若干玉米自交系的亲缘关系.分子植物育种,3(2):179-187
    刘新芝,彭泽斌,傅骏骥,李连城,黄长玲.1997.RAPD在玉米类群划分研究中的应用.中国农业科学,30(3):44-51
    刘宗华,汤继华,卫晓轶,王春丽,田国伟,胡彦民,陈伟程.2007.氮胁迫和正常条件下玉米穗部性状的QTL分析.中国农业科学,40(11):2409-2417
    吕学高,蔡一林,陈天青,徐德林,王伟林,刘志斋,王久光.2008.玉米穗部性状QTL定位.西南大学学报(自然科学版),30(2):64-70
    马金亮,张春荣,董华芳,席章营,夏宗良,丁俊强,吴建宇.2010.玉米果穗出子率QTL定位及上位性分析.河南农业大学学报,44(3):233-237
    苗丽丽,刘秀林,温义昌. 2010.关联分析在QTL定位中的应用.山西农业科学,38(2):12-14
    聂永心,张丽,潘光堂,荣廷昭.2005.四川省常用玉米自交系SSR遗传多样性分析.分子植物育种,3(l):43-51
    番兴明,陈洪梅,谭静,杨峻芸.2003a.利用配合力和SSR标记对热带和温带玉米自交系进行杂种优势群划分.西南农业学报,16(1):1-8
    番兴明,谭静,张世煌,李明顺,黄云霄,杨峻芸,彭泽斌,李新海.2003b.利用SSR标记对29个热带和温带玉米自交系进行杂种优势群的划分.作物学报,29(1):835-840
    番兴明,潭静,杨峻芸.2000.热带、亚热带外来玉米种质的利用.西南农业学报,13(1):107-111
    番兴明,张世煌,谭静,李明顺,李新海.2003c.根据SSR标记划分优质蛋自玉米白交系的杂种优势群.作物学报,29(1):105-110
    彭勃,王阳,李永祥,刘成,张岩,刘志斋,谭巍巍,王迪,孙宝成,石云素,宋燕春,王天宇,黎裕.2010.玉米籽粒产量与产量构成因子的关系及条件QTL分析.作物学报,36(10):1624?1633
    彭泽斌,刘新芝,傅骏弊,李连城,黄长玲.1998.玉米自交系杂种优势类群与杂优模式构建的初步研究.作物学报,24(6):711-717
    彭忠华,张明生,高翔,徐如宏,王进华,顾金春,戴保威.2005.RAPD标记对喀斯特
    高海拔山区适宜玉米自交系遗传多样性的研究.玉米科学,13(l):10-14
    祁永红.2007.8个玉米自交系产量一般配合力与5个穗部性状的关联分析.农业与技术,27(2):47-49
    单彩云,魏玉光,张延军.2009.黑龙江省大豆主栽品种主要性状灰色关联度分析.大豆科学,28(5):945-948
    石云素,于永涛,宋燕春,刘志斋,黎裕,王天宇.2010.一个新矮生玉米种质资源矮生性状QTL的定位.作物学报,36(2):256-260
    孙世孟,王斌.1999.山东省玉米骨干自交系间亲缘关系的RAPD分析研究.作物学报,25(6):727-736
    孙世贤,周进宝,万永红等.2005.全国农作物审定品种名录.北京:中国农业科技出版社
    孙志超,荆绍凌,刘文国.2006.玉米淀粉含量和性状的关联度分析.玉米科学,14(增刊):81-83
    孙致良,张超良.1999.RAPD技术在玉米白交系亲缘关系研究中的应用.遗传,26(1):26-28
    谭君,丁仲芳,孙仕贤.2003.西南常用玉米自交系SSR指纹图谱构建.西南农业学报,16(2):1-6
    汤飞宇,程锦,黄文新,肖文俊.2006.中长绒陆地棉主要产量与品质性状的灰色关联分析.作物杂志,(6):37-38
    田志国,张世煌,彭泽斌.2000.我国玉米育种的问题浅析及对策.玉米科学,8 (2) : 15-17
    佟屏亚编著.2000.中国玉米科技史.北京:中国农业科技出版社
    王帮太,吴建宇,丁俊强,席章营.2009.玉米产量及产量相关性状QTL的图谱整合.作物学报,35(10):1836-1843
    王迪,李永祥,王阳,刘成,刘志斋,彭勃,谭巍巍,张岩,孙宝成,石云素,宋燕春,
    王天宇,黎裕.2010.基于两个相关群体的玉米花期相关性状QTL定位.中国农业科学,43(13):2633-2644
    王凤格,赵久然,郭景伦.2003.中国玉米新品种DNA指纹库建立系列研究I.玉米品种纯度及真伪鉴定中SSR技术标准实验体系的建立.玉米科学,11(1):3-6
    王凤格,赵久然,郭景伦.2005.中国玉米新品种标准DNA指纹库构建研究的几点思考.植物学通报,(1):121-128
    王建康. 2009.数量性状基因的完备区间作图方法.作物学报,35(2):1-7
    王磊,李尚中,赵刚,党翼,张建军,唐小明.2010.干旱地区玉米产量性状与产量的灰色关联度分析.贵州农业科学,38(8):45-47
    王懿波,王振华,陆利行,王永普,张新,田曾元.1998.中国玉米种质基础、杂种优势群划分与杂优模式研究.玉米科学,6(1):9-13
    王正航,武仙山,昌小平.2010.小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析.作物学报,36(2):217?227
    王中仁.1996.植物等位酶分析.北京:科学出版社
    魏良明,戴景瑞,刘占先.2008.普通玉米蛋白质、淀粉和油分含量的遗传效应分析.中国农业科学,41(11):3845-3850
    吴建伟,刘成,石云素,宋燕春,池书敏,马峙英,王天宇,黎裕.2008.玉米在不同水分条件下开花相关性状的QTL分析.玉米科学,16(5):61-65
    吴景峰.1995.我国玉米杂交种发展的主要历程、差距和对策.玉米科学(2):1-5
    吴景锋.1983.我国主要玉米杂交种种质基础评述.中国农业科学,2:1-7
    吴丽丽.2010.玉米产量性状与产量的灰色关联度分析.黑龙江农业科学,(7):27-29
    吴敏生,戴景瑞.1999.灰色系统理论在玉米育种上的综合应用.华北农学报,14(2):1-5
    吴敏生,王守才,戴景瑞.2000.AFLP分子标记在玉米优良自交系优势群划分种的应用.作物学报,26(l):9-13
    夏亮,赵琦,焦雨歆,谢传晓.2008.微卫星标记在玉米群体遗传多样性研究中的应用.生物技术通报,(4):85-88
    肖木辑,李明顺,孙友位,李新海,张世煌. 2006.辽宁省主要玉米自交系的SSR遗传多样性分析.玉米科学,14(l):33-36
    谢惠玲,冯晓曦,吴欣,王松江,袁延乐,张占峰,袁立,胡彦民.2008.玉米穗部性状的QTL分析.河南农业大学学报,42(2)145-149
    徐德林,蔡一林,吕学高,代国丽,王国强,王久光,孙海艳,覃鸿妮.2009.玉米株型性状的QTL定位.玉米科学,17(6):27-31
    徐云碧,朱立煌.1994.分子数量遗传学.北京:中国农业出版社,36-52
    徐泽茹,曹金锋,王茹芳.2010.大豆产量与主要农艺性状的灰色关联度分析.河北农业科学,14(2):1-2,4
    许明学,荆绍凌,苗万波.2000.玉米杂交育种的历史回顾与展望.玉米科学,8(1):28-30
    薛受旺,周洪生.1998.利用花粉化学诱变创造玉米自交系的研究.作物杂志,(6):6-8
    杨国航,孙世贤,张春原.2007.东北早熟春玉米区玉米生产现状和发展趋势.玉米科学,15(4):143-145
    杨俊品,荣廷昭,向道权,唐海涛,黄烈健,戴景瑞.2005.玉米数量性状基因定位.作物学报,31(2):188-196
    杨小红,严建兵,郑艳萍,余建明,李建生.2007.植物数量性状关联分析研究进展.作物学报,33(4):523-530
    杨晓军,路明,张世煌,周芳,曲延英,谢传晓.2008.玉米株高和穗位高的QTL定位.遗传,30(11):1477-1486
    杨英娟,孟祥波,韩香.2008.引发玉米单产低的原因分析和应对措施.农业科技通讯,2:88-89
    姚素梅,王维金.2007.应用灰色关联度分析影响两系杂交稻结实率的生理因素.生物数学学报,22(1):157-163
    于海霞,肖静,田纪春,王玮.2009.关联分析及其在植物中的应用.基因组学和应用生物学,28(1):187-194
    于永涛,张吉民,石云素,宋燕春,王天宇,黎裕.2006.利用不同群体对玉米株高和叶片夹角的QTL分析.玉米科学,14(2):88-92
    袁力行,傅骏弊,张世煌,刘新芝,彭泽斌,李新海.2001.利用RFLP和SSR标记划分玉米自交系杂种优势群的研究.作物学报,27(2):149-156
    袁力行,傅骏华,Warburton M.2000.利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究.遗传学报,27(8):725-733
    袁力行,傅骏哗,Warburton M,李新海,张世,刘新芝,彭泽斌,李连城.2000.利用RFLP,SSR,AFLP和RAPD标记玉米自交系遗传多样性的比较研究.遗传学报,27(8):725-733
    曾三省.1990.中国玉米杂交种的种质基础.中国农业科学,23(4):1-9
    张伯东,翟庆成,王伟时,石翠瑜,盛德宝.2005.玉米自交系选育方法浅议.杂粮作物,25(3):132-133
    张超良,孙世孟.1998.RAPD技术在12个玉米骨干自交系快速鉴定中的应用.作物学报,24(6):718-722.
    张建华,刘志增,祝丽英,黄亚群,陈景堂,高慧,赵永锋.2009.不同密度下玉米DH群体果穗性状的QTL定位分析.河北农业大学学报,32(5)1-6,17
    张君,库丽霞,张伟强,杨爽,刘海英,赵瑞芳,陈彦惠.2010.玉米穗上节间距的QTL定位.玉米科学,18(4):45-48
    张君,王玉武,杨伟光,左艳亭,杨军.2003.玉米主要性状间的灰色关联度分析.吉林农业大学学报,25(6):602-605
    张世煌,彭泽斌,李新海.2000.玉米杂种优势与种质扩增、改良和创新.中国农业科学,33(增刊):34-39
    张世煌.2006.玉米种质创新和商业育种策略.玉米科学,14(4):1-3,6
    张淑贞,刘志增,李丁,陈景堂,祝丽英,黄亚群.2008.玉米DH群体籽粒品质性状的QTL分析.河北农业大学学报,31(3):1-5
    张文龙,徐如宏,戴保威等.2003.利用醇溶蛋白APAGE技术划分玉米自交系群.山地农业生物学报,22(4):283-286
    张文忠,宋殿珍,栗红生,刘景秀,杨国英.2008.灰色关联分析在玉米杂交种产量性状上的应用.内蒙古农业科技(5):25-27
    张志明,赵茂俊,荣廷昭,潘光堂.2007.玉米SSR连锁图谱构建与株高及穗位高QTL定位.作物学报,33(2):341-344
    赵克明.2003.关于我国玉米生产发展问题的看法.玉米科学,11:24-25
    赵文明,吴连成,库丽霞,陈彦惠.2008.玉米株型性状QTLs作图群体分析.玉米科学,16(1):25-28
    周延请.2005.DNA分子标记技术在植物研究中的应用.北京:化学工业出版社,1-7
    朱英,陶刚,黄永会,刘作易.2010.分子标记技术在玉米遗传育种上的应用.贵州农业科学,38(1):13-16
    Ajmone M.P., Gorni C., and Chitto A.2001. Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers, and dofactor analysis. Thero Appl Genet, 102: 230-243.
    Andersen J., Scllrag T., Melchinger A.E., Zein I., and Lubberstedt T. 2005.Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.).Theor.Appl.Genet, 111: 206-217.
    Andersen J.R. and Lübberstedt T. 2003. Functional markers in plants. Trends Plant Sci, 8: 554-560.
    Barriere Y. 2001. Genetic analysis in recombinant inbred lines of early dent forage maize. I-QTL mapping for yield, earliness, starch and crude protein contents from per se value and top cross experiments. Maydica, 46: 253-266.
    Beavis W.D., Grant D., Albertsen D., and Fincher R.1991.Quantitative trait loci for plant height in four maize populations and their associations with quantitative genetic loci. Theor Appl Genet, 83:141–145.
    Benkova E., Michniewicz M., Sauer M., Teichmann T., Seifertova D., Jurgens G., and Friml J.2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation.Cell, 115(5): 591–602.
    Berke T.G. and Rocheford T.R.1995.Quantitative trait loci for flowering,plant and ear height, and kernel traits in maize.Crop Sci , 35: 1542-1549.
    Bermatzky R.1986.Toward a saturated linkage map in tomato based onisozymesand random cDNA Sequence.Genetics, 112: 887-898.
    Bernardo R. 2008. Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci, 48: 1649?1664.
    Betran E.J., Ribaut J.M., and Beek D.2003.Genetic diversity,specific combining ability,and heterosis in tropical maize under stress and non-stress environments.Crop Sci,43: 797-806.
    Bryan G.J., Stephenson P., and Collins A. 1999.Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat.Theor Appl Genet, 99:192-198.
    Chen Q-S(陈庆山).2005.Comparative analysis of specialty index and genetic similarity on soybean germplasm with resistance to Cer-cospora sojina Hara.China Biotechnol, 25(suppl):155-158.
    De Loose M. and Gheysen G. 1995. UPOV. (International Union for the Protection of New Varieties of Plants). Working Group on Biochemical and Molecular Techniques and DNA-Profiling in Partacular. Wageningen th Netherlands.
    Dingerdissen A.L., Geiger H.H., and Lee M. 1996. Interval mapping of quantitative resistance of maize to Setosphaeria turcica, cause of northern leaf blight, in a tropical environment. Mol .Breed, 2: 143-156.
    Doebley J. 200. A tomato gene weighs in. Science, 289: 71-72.
    Donini P., Law J.R., and Koebner R.M.D. 2000. Temporal trends in the diversity of UK wheat.Theor Appl Genet, 100: 912-917.
    Dubreuil P., Dufour P., Krejci E., Causse M., Vienne D., Gallais A., and Charcosset A. 1996. Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups.Crop Sci, 36: 790-799.
    Duvick D.N. 1984. Genetic diversity in major farm crops on the farm and in reserve. Economic Botany, 38:161-178.
    Eizenga G C, Agrama H A, Lee F N, Yan W, Jia Y.2006.Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 46:1870?1878
    Evanno G., Regnaut S., and Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611-2620.
    Flint-Garcia S.A., Thornsberry J.M., and Buckler E.S. 2003. Structure of linkage disequilibrium in plants. Ann Rev Plant Biol, 54:357?374.
    Frary A., Nesbitt T.C., Frary A., Grandillo S., Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K.B., and Tanksley S.D. 200. fw212: A quantitative trait locus key to the evolution of tomato fruit size. Science, 289: 85-88.
    Freymark P.J., Lee M., and Woodman W.L. 1993. Quantitatie and qualitative trait loci affecting host-plnag response to Exserothihum rucicum in maize (Zea mays L.). Theor Appl.Genet, 7: 537-544.
    Fujioka S , Yamane H , Spray C R , Katsumit M, Phinney B O , GaskinP , Macmillan J , Takahashi N.1988.The dominant non2gibberellin2responding dwarf mutant (D8) of maize accumulates nativegibberellins1 Proc Natl Acad Sci USA , 85 : 9031-9035
    Gaut B.S., and Long A.D. 2003. The lowdown on linkage disequilibrium. Plant Cell, 15: 1502-1506.
    Ghislain M., Spooner D.M, and Rodrigez F. 2004. Selection of highlyinformative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato.Theor Appl Genet, (108): 881-890.
    Goldman I.L. 1993. Quantitative trait loci influencing protein and starch concentration in Illinois Long Term Selection maize strains .Theo. App. Genet., 87:217-224.
    Graham R.and Mcnicol J.W. 1996. Acomparison of methods for the extimation ogenetic diversity in strawberry cultivars. Theor. Appl. Genet., 93(3): 402-406.
    Grodzicker T., Williams J., Sharp P., and Sambrook J. 1974. Physical mapping of temperature-sensitive mutations of adenoviruses.Cold Spring Harbor Symp. Quant.Biol. , 39:439-446.
    Gupta P.K., Rustgi S., and Kulwal P.L. 2005. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology, 57(4): 461-485.
    Hahn V., Blankenhorn K., Schwall M., and Melchinger A.E. 1995. Relationships among early European maize inbreds: III.Genetic diversity revealed with RAPD markers and comparison with RFLP and pedigree data.Maydica, 40:299-231.
    Hallauer A.R. 2003. Introgression of elite subtropical and tropical gerplasm with U.S.A. ornbelt germplasm.North Central Regional Corn Breeding Meeting. American: Iowa State University: 25-28.
    Hallauer A.R.1999. Temperate maize and hetrosis. In: The genetics and exploitation of heterosis in crops. American society of agronomy, Crop Sci., 353-361.
    Hamada H. and Kakunag T. 1982. Potential Z-DNA forming sequences are highly dispersed in the human genome.Nature, 298: 396-398.
    Hansen M., Kraft T., Ganestam S., Sall T., and Nilsson N.O. 2001. Linkage sisequilibrium mapping of the bolting gene in sea beet using AFLP markers.Genet Res, 77:61-66.
    Henery M.L. and Westoby M. 2001. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos, 92: 479-490.
    Konishi S., Izawa T., Lin S.Y., Ebana K., Fukuta Y., Sasaki T., and Yano M. 2006. A SNP caused loss of seed shattering during rice domestication. Science, 312: 1392-1396.
    Kraakman A.T.W., Niks R.E., Van den Berg P.M.M.M., Stam P., and Eeuwijk F.A.V. 2004. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics,168: 435-446.
    Lebreton G., Lazic-Jancic V., and Steed A. 1995. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J.Exp.Bot., 288: 853-865.
    Lee M., Godshalk E.B., Lamkey K.R., and Woodman W.W. 1989. Association of restriction fragment length polymorphisms among maize inbreds with the agronomic performance of their crosses.Crop Sci., 29: 1067-1071.
    Li X.H., Liu X.D., and Li M.S. 2003. Identification of quantitative trait loci for anthesis- silking interval and yield components under drought stress inmaize. Acta Botanica Sinica,45(7): 852- 857.
    Li Y., Du J.Y., Shi Y.S., Wang T.Y., and Jia J.Z. 2002c. Genetic variation and relationships of maize inbred lines in China revealed by SSR markers. Maydica, 47:93-101.
    Liu G.F., Yang J., Xu H.M., Hayat Y., and Zhu J. 2008. Genetic analysis of grain yield conditioned on its component traits in rice (Oryza sativa L.). Aust J Agric Res, 59: 189–195.
    Liu K.J., Goodman M., Muse S., Smith J.S., Buckler E., and Doebley J. 2003. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics. 165: 2117-2128.
    Livini C., Marsan A.P, Melchinger A.E., Messmer M.M., and Motto M.1992. Geneticdiversity of maize inbred lines within and among heterotic groups revealed by RFLPs. Theor. Appl. Genet., 84:17-25.
    Lu H., and Bernardo R. 2001. Molecular marker diversity among current and historical maize inbreds. Thero Appl Genet, 103: 613-617.
    Lu H., Li J.S., Liu J.L., and Bernardo R. 2002. Allozyme polymorphisms of maize populations from southwestern China. Theor.Appl.Genet, 104: 119-126.
    Lübberstedt T., Zein I., Andersen J.R., Wenze G., Krützfeldt B., Eder J., Ouzunova M., and Chun S. 2005. Development and application of functional markers in maize. Euphytica, 2005, 146: 101-108.
    Mangolin C.A., De Souza Jr C.L., and Garcia A.A.F. 2004. Mapping QTLs for kernel oil mntent in atropical maze population. Euphytica,137(2): 251-259.
    Martin D.P, Willment J.A., and Rybicki E.P. 1999. Evaluation of Maize Streak Virus Pathogenicity in Differentially Resistant Zea mays Genotypes. Virology, 89 (8): 695-700.
    Mccouch S.R., Chen X., and Panaddo.1997. Microsatellite marker development,mapping and applications in rice genetics and breeding. plant Mol Biol, (35): 89-99.
    Melchinger A.E., Messmer M.M., Lee M., and Woodman W.L.1990.Genetic diversity for restriction fragment length polymorphisms: Relation to estimated genetic effect in maize inbreds. Crop Sci., 30: 1033-1040.
    Milena L., Souza C., Bento D., Souza A., and Carlini-Gracia L. 2006. Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed, 17: 227?239.
    Mladenovic-Drinic S., Demic G., and Konstantinov K. 1999. Genetic relationship among maize genotypes based on embryo protein markers.MNL, 73: 11-12.
    Mumm R.H. and Dudely J.W.1994. A classification of 148 U.S. maize inbreds: I.Cluster analysis based on RFLPs. Crop Sci., 34: 842-851
    Neuffer M.G. 1978. Paraffin oil technique for treating mature corn pollen with chemical mutagens. Maydiea, 22:21-28.
    Ottaviano E., Gorla M.S., and Frova Pet al., 1991. Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance in maize1. Theor Appl Genet, 81:713-719.
    Palaisa K.A., Morgante M.M., Williams M., and Rafalski A. 2003. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell, 15: 1795-1806.
    Parisseaux B., and Bernardo R. 2004. In silico mapping of quantitative trait loci in maize. Theor Appl Genet, 109: 508-514.
    Paterson A.H., Lander E.S., Hewitt J.D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms1 Nature, 335:721-726.
    Pejic L., Ajmone M.P., and Morgante M.1998.Comparative analysis of genetic similarity among maizeinbred lines detected by RFLPs, RAPDs, SSRs and AFLPs.Theor.Appl.Genet., (97):248-1255.
    Pritchard J.K., Stephens M., and Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics Society of America, 155:945-959.
    Rajab A.and Marilyn L. 2006. Use of SSR data to determine relationships and potential heterotic groupings within medium to late maturing Iranina maize inbred lines. Field Crop Reserch, 95:212-222.
    Reif J.C., Hamrit S., Heckenberger M., Schipprack W., Maurer H.P., Bohn M., Albrecht E., and Melchinger A.E. 2005. Trends in genetic diversity among european maize cultivars and their parental components during the past 50 years. Thero Appl Genet, 111: 838-845.
    Reiter R. S., Coors J.G., Sussman M.R., Gableman W.H. 1991. Genetic analysis of tolerance to low phosphorus stress in maize using restriction fragment length polymorphisms. Theor Appl Genet, 82: 561– 568.
    Ribaut J.M., Hoisington D.A., and Deutsch J.A.1996. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet., 92: 905-914
    Rongwen J., Akkaya M.S., and Bhagwat A.A. 1995. The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet, 90: 43-48.
    Salvi S., and Tuberosa R. 2005. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci, 10: 297 304.
    Schaeffer M., Byrne P., Coe J.E.H. 2006. Consensus quantitative trait maps in maize: a database strategy. Maydica, 51: 357-367.
    Schechert, A.W., Welz H.G., and Geiger H.H., 1999. QTL for resistance to Setosphaeria turcica in tropical African maize. Crop Sci. 39:514–523.
    Senior M.L., Murphy J.P., Goodman M.M., and Stuber C.W. 1998. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Science, 38: 1088-1098.
    Shi Y.F., Chen J., Liu W.Q., Huang Q.N., Shen B., Leung H., and Wu J.L. 2009. Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Sci China Ser C, 52(9): 885–890.
    Smith J.S.C., Chin E.C.L., Shu H., Smith O.S., Wall S.L., Senior M.L., Mitchell S.E., Kresovitch S., and Ziegle J. 1997. An evaluation of the utility of SSR loci as moleculer makers in maize (Zea mays L.): Comparisons with data from RFLPs and pedigree. Theor Appl Gene, 95: 163-173.
    Smith J.S.C., Duvick D.N., Smith O.S., Cooper M., Feng L. 2004. Changes in pedigree backgrounds of pioneer brand maize hybrids widely grown from 1930 to 1999. Crop Sci., 44: 1935-1946.
    Smith O.S., Smith J.S.C., and Bowen S.L. 1990. Similaritied among a group of an elite maizeinbreds as measured by pedigree, F1 grain yield, grian yield, heterosis, and RFLPs. Thero. Appl. Genet., 80: 833-840.
    Stuber C.W. 1995. Mapping and manipulating quantitative traits in maize. Trends Genet. 11(12): 477-481.
    Sun Y., Zhang W., Li F.L., Guo Y.L., Liu T.L., Huang H. 2000. Identification and genetic mapping of four novel genes that regulate leaf development in Arabidopsis. Cell Res, 10(4): 325–335.
    Szalma S.J., Buckler E.S., Snook M.E., and McMullen M.D. 2005. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet, 110: 1324-1333.
    Taba S., Diaz J., Franco J., and Crossa J. 1998. Evaluation of Cribbean maize accessions to develop a core subset. Crop Sci., 38: 1378-1386.
    Tang J.H., Teng W.T., Yan J.B., Ma X.Q., Meng Y.J., Dai J.R., and Li J.S. 2006. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 155(1-2): 117-124.
    Thomas L., Albrecht E., and Melchinger A.E.2000. Relationships among European maize inbreds. Crop Sci., 40: 783-791.
    Thornsberry J.M., Goodman M.M., Doebley J., Kresovich S., Nielsen D., and Buckler E.S. 2001. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 28: 286-289.
    Tuberosa R., Salvi S., Sanguineti M.C., Landi P., Maccaferri M., and Conti S. 2002. Mapping QTL regulating morpho-physiological traits and yield: Case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 89: 941–963.
    Vollbrecht E., Springer P.S., Goh L., Buckler E.S., and Martienssen R. 2005. Architecture of floral branch systems in maize and related grasses. Nature, 436: 1119-1126.
    Wang H., Nussbaum-Wagler T., Li B.L., Zhao Q., Vigouroux Y., Faller M., Omblies K., Lukens L., and Doebley J.F. 2005. The origin of the naked grains of maize. Nature, 436: 714-719.
    Wang R.L., Stec A., Hey J., Lukens L., and Doebley J. 1999. The limits of selection during maize domestication. Nature, 398: 236-239.
    Wang Y.S., Barratt B.J., Clayton D.G., and Todd J.A. 2005. Genome wide association studies: theoretical and practical concerns. Nat Rev Genet, 6: 109 118.
    Warburton M.L., Ribaut J.M., Franco J., Crossa J., Dubreuil P., and Betran F.J. 2005. Genetic characterization of 218 elite CIMMYT maize inbred lines using RFLP markers. Euphytica, 142: 97-106.
    Welz H.G., Xia X.C., Bassetti P., Melchinger A.E., and Lubberstedb T. 1999. QTLs for resistance to Setosphaeria turcica in an early maturing Dent×Flint maize population. Thero Appl Genet., 99: 649-655.
    Whitt S.R., Wilson L.M., Tenaillon M.I., Gaut B.S., and Buckler E.S. 2002. Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA, 99: 12959- 12962.
    Wilson L.M., Whitt S.R., Ibanez A.M., Rocheford T.R., Goodman M.M., and Buckler E.S. 2004. Dissection of maize kernel composition and starch production by candidate associations. Plant Cell, 16: 2719-2733.
    Yang G.P., Maroof M.A.S., and Xu C.G. 1994. Comparative analysis of microsatellite DNA polymorphism in landrace and cultivars of rice. Mol Gen Genet, 245: 187-194.
    Zhang L.S., Clerc V.L., and Li S. 2005. Establishment of aneffective set of simple sequence repeat markers for sunflowervariety identification and diversity assessment. Canadian Journal of Botany, 2005(1): 66-72.
    Zhang N., Xu Y., Akash M., Mc Couch S., and Oard J.H. 2005. Identification of candidate markers associated with agronomic traits in rice using discriminant analysis. Theor Appl Genet, 110: 721-729.
    Zhang Z.M., Zhao M.J., Ding H.P., Rong T.Z., and Pan G.T. 2006. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russian J Genet, 42 (3): 306-310.
    Zondervan K.T. and Cardon R.C. 2004. The complex interplay among factors that influence allelic association. Nat Rev Genet, 5: 89-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700