用户名: 密码: 验证码:
基于近地可见光成像传感器的棉花生长信息监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]利用近地可见光成像传感器监测棉花生长发育过程中的主要生长信息。明确估测棉花冠层和叶片氮素状况的最佳光谱和颜色参数,建立图像透光率和图像截获的光合有效辐射分量估测叶面积指数和冠层截获和吸收的光合有效辐射分量的定量模型,为精准监测技术提供新的理论基础和技术支撑。
     [方法]本研究用各种仪器和破坏性取样方法从不同年份不同处理的田间试验采集数据。(1)通过分析颜色参数、原始光谱及由两波段构建的比值、归一化差值和差值指数与氮素营养指标的相关关系,筛选出对氮素营养诊断敏感的颜色参数、波段和光谱指数,进而建立估测的定量模型,并根据决定系数和估计标准误对模型进行优选。(2)通过分析透光率和冠层截获的光合有效辐射分量的日变化判断图像测定适宜的时间段;比较分析不同仪器测量的透光率或冠层截获的光合有效辐射分量;用图像透光率和图像截获的光合有效辐射分量两个参数分别建立叶面积指数和冠层截获和吸收的光合有效辐射的估算模型。建立的所有模型均用独立的数据样本进行验证,选用决定系数、均方根误差和相对均方根误差等指标综合评定。
     [结果]通过上述方法的研究和分析,获得以下几个方面的研究结果:
     (1)棉花单叶氮素营长监测。不同传感器对叶绿素和氮素最敏感的波段分别为R710和R;光谱指数与叶绿素、氮素浓度和SPAD读数的相关性比原始光谱好,而且以蓝光和红光波段组成的差值指数(DI和R-B)的预测能力最佳;DI所建棉花叶片Chl a+b、Chla、Chlb、N和SPAD读数的预测模型的预测误差分别为0.0058、0.0050、0.0018和2.3002 mg g-1和4.9736(分别为均值的18.39%、19.47%、30.33%、11.69%和8.45%),预测精度R2分别为0.7965、0.7582、0.6608、0.7019和0.7338;R-B所建模型的预测性比DI差,对Chl a+b的预测精度最高(R2=0.7400),而预测Chl b的精度最低(R2=0.5653)。基于CIE 1976 L*a*b*颜色模型的颜色参数b*和HSI颜色模型的S是2种传感器与叶绿素、氮素浓度和叶色关系较好的颜色参数;b*对叶绿素、氮素浓度和SPAD读数的预测能力稍逊于DI,预测误差和精度都与DI的比较接近;而饱和度S值的预测RRMSE最大,整体预测精度小于0.62。
     (2)棉花冠层叶片氮素营养估测。在可见光波段,冠层反射率随着冠层叶片氮素含量的增加而降低,且叶片含氮量的光谱敏感波段主要位于绿光和红光区域;与棉花冠层叶片含氮量的拟合效果最好的两种传感器的光谱指数为差值指数DI(R580,R680)和G-R,而颜色参数则分别为b*和H,同一传感器以光谱指数的拟合效果优于颜色参数,不同传感器以MSI200数据的拟合效果优于数码相机;利用独立试验资料检验所建模型的估测性能表明,差值指数对棉花冠层叶片氮素的预测能力优于比值指数和归一化差值指数,DI(R580,R680)和G-R所建模型的估测精度最高,分别为0.8131和0.7636。
     (3)棉花叶面积指数估测。在太阳高度角最大且变化最小的正午时段,数码相机测量的图像透光率与线性光量子传感器测量的冠层透光率较一致且相对稳定;图像透光率能反映除吐絮期以外各时期的冠层透光状况,但是当LAI大于5时图像透光率出现饱和;综合分析2009和2010年数据,建立了图像透光率估测LAI的模型(R2=0.8438,SE=0.5605);利用2007年独立试验资料检验估测模型的性能,模型检验的拟合度较高(R2=0.8767)且预测误差较小(RMSE=0.4305),当LAI>5时模型的预测能力降低;数字图像、LAI-2000和破坏性取样3种方法测量的LAI值之间均呈现显著的线性相关(R2>0.85),但是图像透光率的饱和性致使当LAI>5时明显低估叶面积指数。
     (4)棉花冠层截获和吸收的光合有效辐射分量的估测。明确了正午时段的图像截获的光合有效辐射分量能够反映棉花冠层截获和吸收的光合有效辐射;利用2010年试验数据建立了fCover和fIPARimag参数估测截获和吸收的光合有效辐射分量的定量关系模型,决定系数大于0.93;并用2009年数据进行检验和评价,发现fIPARimag的预测性能优于fCover。
     [结论]可以利用可见光成像传感器的光谱和颜色参数定量估测棉花冠层和单叶的氮素营养状况;用图像分量构建的图像透光率和图像截获的光合有效辐射分量参数能够有效估测叶面积指数和冠层截获和吸收的光合有效辐射分量。
[Object] The objectives of this paper were to monitor main growth information using ground-based visible imaging sensors in different growth stages, and to determine the spectral and color parameters for estimating canopy and leaf nitrogen nutrition status, and to develop quantitative model for estimating LAI and fIPAR and fAPAR with image transmittance and image fIPAR. Consequently, spectral and color parameters in visible region and image fractions index (transmittance and fIPAR) may provide theoretical basis and technical support of precise monitoring technique.
     [Methods] In this study, we used various kinds methods to odserve data in different growth stages from 2006 to 2010 in cotton field. (1) A systematic analysis was undertaken on quantitative relationships of nitrogen nutrition indices to color parameters, sensitive wavebands and major spectral indices, such as the ratio index (RI), normalized difference index (ND) and difference index (DI), which composed of any two wavelengths with original reflectance. Futhermore, the quantitative models were developed and the optimum models werw selected which with the maximum determination coefficients (R2) and the minimum RMSE. (2) Analysis of the diurnal pattern of transmittance and fIPAR of the cotton canopy showed that the best time for observe data was around solar noon, because at this time the solar elevation angle is high and remains relatively constant during measurements. Additional, by analyzing the relationships among various transmittance or fIPAR, we determined that Timag and fIPARimag could be used to estimate light attenuation and light interception in the cotton canopy. Hence, the estimated models of LAI and fIPAR and fAPAR were established using Timag and fIPARimag parameters. Overall, the ability of all estimated models in this paper were validated using an independent dataset, accepted statistics indices included determination coefficients (R2), RMSE and RRMSE.
     [Results] The main results of this paper as follows:
     (1) The results indicated that the maximum sensitivity of reflectance to variation in chlorophyll, nitrogen contents and SPAD readings was found in the far-red wavelength region at 710 nm and in the red wavelength region (R) for two sensors, respectively. Furthermore, spectral indices could improve the prediction ability obviously, and difference indices (DI and R-B) of different sensors composed of blue and red wavelengths gave a better prediction performance. The models to retrieve chlorophyll, nitrogen contents and SPAD readings using DI were the most feasible models with the maximum determination coefficients (R2) and the minimum RMSE, especially, DI(R440, R710), DI(R440, R710), DI(R420, R710), DI(R420, R720) and DI(R49o, R710) were the optimum indices for the models of chlorophyll a+b, chlorophyll a, chlorophyll b and N, and SPAD readings, respectively. R-B was the optimum index of digital camera but its prediction performances were lower than these of DI. Additional, b* (CIE 1976 L*a*b* color model) and S (HSI color model) were the optimum color parameters, and the prediction ability of b* was lower than that of DI. However, the prediction performance of S was relative weak with the highest RRMSE and the lowest R2.
     (2) The results showed that canopy spectral reflectance decreased with increasing leaf nitrogen content, and the bands sensitive to leaf nitrogen content occurred the green and red regions mainly. Furthermore, the models to retrieve canopy leaf nitrogen contents using DI(R580, R680) and G-R were most feasible with the maximum determination coefficients (R2) and the minimum standard error (SE) for two visible sensors, respectively. Additional, b* (CIE 1976 L*a*b* color model) and H (HSI color model) were the optimum color parameters. On the whole, for the fitting effects, the spectral index was superior to color parameters for the same sensor, and MSI200 superior to digital camera. Then, the prediction performances of the spectral indices of digital camera were validated by using independent dataset. We found that difference indices DI(Rs8o, R680) and G-R were the optimum indicators of canopy leaf nitrogen content with the highest predictive precision (0.8131 and 0.7636, respectively)and accuracy (1.0149 and 0.9661) and the lowest RMSE (2.3313 and 2.7406 mg g-1, approximately 6.52% and 8.24% of the mean).
     (3) Analysis of the diurnal pattern of transmittance of the cotton canopy showed that the best time for measuring Timag was around solar noon, because at this time the solar elevation angle is high and remains relatively constant during measurements. Around solar noon, Timag was in good agreement with Tquan (transmittance measured with a linear quantum sensor). By analyzing the relationships among Timag, Tquan, and diffuse non-interceptance (DIFN), we determined that Timag could be used to estimate light attenuation in the cotton canopy at different stages, except for the boll opening stage. In addition, Timag was saturated at LAI>5. We analyzed the relationship between LAIdest (LAI measured destructively) and Timag using data from 2009 and 2010. The R2 and SE of the calibration model were 0.8438 and 0.5605, respectively. The ability of Timag to predict LAI was validated using an independent dataset (2007 data). The determination coefficient and RMSE of the validation model were 0.8767 and 0.4305, respectively. However, the model underestimated LAI as the LAI exceeded 5. The Timag saturation, which was largely because of errors in image recognition and segmentation, resulted in underestimation of LAI. Intercomparisons of LAI estimates showed that there were small discrepancies and significant correlations among data obtained from digital images, the LAI-2000, and destructive sampling methods. Data from the LAI-2000 was highly consistent with that obtained by destructive sampling.
     (4) The results indicated that the fIPARimag which calculated with canopy images taken around solar noon can model the fIPAR and fAPAR of cotton canopy. Then, regression analysis were made on the relationships between fCover and fIPARimag and flPAR and fAPAR, with the determination of coefficient (R2) exceeded 0.93. Tests with independent dataset (2009 data) showed that the prediction performance of fIPARimag is superior to fCover.
     [Conclusions] Hence, spectral and color parameters in visible region may provide an effective and feasible means of estimating canopy and individual leaf nitrogen nutrition status quantitatively in cotton field. Moreover, Timag and fIPARimag which derived from four image fractions can provide a new and accurate means of estimating LAI and fAPAR and fIPAR. Consequently, the digital camera could be mounted on a tractor or farm vehicle for real-time, non-destructive monitoring of LAI to support field management.
引文
[1]柏军华,王克如,初振东,陈兵,李少昆.叶面积测定方法的比较研究.石河子大学学报:自然科学版,2005,23(2):216-218.
    [2]蔡鸿昌,崔海信,高丽红,宋卫堂.基于颜色特征的叶片含水率与比叶重估算模型初探.中国农学通报,2006,22(8):532-535.
    [3]蔡健荣.利用机器视觉定量描述茶叶色泽.农业机械学报,2000,30(7):67-70.
    [4]曹卫星.农业信息学.北京:中国农业出版社,2005.
    [5]柴阿丽,李宝聚,王倩,石延霞,黄海洋.地面数字图像技术在棉花氮素营养诊断中的初步研究.棉花学报,2007,19(2):106-113.
    [6]陈佳娟,纪寿文,李娟,赵学笃.采用计算机视觉进行棉花虫害程度的自动测定.农业工程学报,2001,17(2):157-160.
    [7]陈立平,赵春江.应用人工智能技术进行作物形态诊断初探.计算机与农业,2000,(9):22-24.
    [8]冯辉,张婷,王维佳,王五宏,石运涛.基于图像处理技术的番茄部分株型信息的获取.园艺学报,2009,36(6):923-928.
    [9]耿楠,何健东,王婧,党革荣,王宏斌,郭孟生.小麦生长信息计算机视觉检测技术研究.农业工程学报,2001,17(1):136-139.
    [10]顾东祥,汤亮,曹卫星,朱艳.基于图像分析方法的水稻根系形态特征指标的定量分析.作物学报,2010,36(5):810-817.
    [11]韩仲志,赵友刚,杨锦忠.基于籽粒RGB图像独立分量的玉米胚部特征检测.农业工程学报,2010,26(3):222-226.
    [12]郝建平,杨锦忠,杜天庆,崔福柱,桑素平.基于图像处理的玉米品种的种子形态分析及其分类研究.中国农业科学,2008,41(4):994-1002.
    [13]何东健,杨青.果实表面颜色计算机视觉分级技术研究.农业工程学报,1998,14(3):202-205.
    [14]胡波,毛罕平,张艳诚.基于二维直方图的杂草图像分割算法.农业机械学报,2007,38(4):199-201.
    [15]胡春华,李萍萍.基于图像处理的黄瓜缺氮与缺镁判别的研究.江苏大学学报(自然科学版),2004,25(1):9-12.
    [16]户苅义次.作物的光合作用和物质生产.薛德榕,译.北京:科学出版社,1979.
    [17]黄星奕,李剑,姜松.基于计算机视觉的稻谷品种识别技术的研究.江苏大学学报(自然科学版),2004,25(2):102-104.
    [18]纪寿文,王荣本,陈佳娟,赵学笃.应用计算机图像处理技术识别玉米苗期田间杂草的研究.农业工程学报,2001,17(2):154-156.
    [19]贾良良,范明生,张福锁,陈新平,吕世华,孙彦铭.应用数码相机进行水稻氮营养诊断.光谱学与光谱分析,2009,29(8):2176-2179.
    [20]贾良良.应用数字图像技术与土壤植株测试进行冬小麦氮营养诊断.中国农业大学[博士学位论文],2003.
    [21]金震宇,田庆久,惠凤鸣,陆建飞.水稻叶绿素浓度与光谱反射率关系研究.遥感技术与应用,2003,18(3):134-137.
    [22]景娟娟,王纪华,王锦地,刘良云,黄文江,赵春江.不同氮素营养条件下的冬小麦生理及光谱特性.遥感信息,2003,2:28-31.
    [23]雷咏雯,王娟,郭金强,危常州.一种基于图像分析提取作物冠层生物学参数的方法和验证.西北农业学报,2006,15(3):45-49.
    [24]雷咏雯,危常州,冶军,侯振安,李俊华,贾良良.计算机辅助叶色分析进行棉花氮素营养诊断的初步研究.石河子大学学报(自然科学版),2004,22(2):113-116.
    [25]李存军,王纪华,刘良云,王人潮.基于数字照片特征的小麦覆盖度自动提取研究.浙江大学学报:农业与生命科学版,2004,30(6):650-656.
    [26]李红军,张立周,陈曦鸣,张玉铭,程一松,胡春胜.应用数字图像进行小麦氮素营养诊断中图像分析方法的研究.玉米科学,2011,19(1):155-159.
    [27]李明,张长利,房俊龙.基于图像处理技术的小麦叶面积指数的提取.农业工程学报,2010,26(1):205-209.
    [28]李少昆,索兴梅,白中英,祁之力,刘晓鸿,高世菊,赵双宁.基于BP神经网络的小麦群体图像特征识别.中国农业科学,2002,35(6):616-620.
    [29]李少昆,王崇桃.作物株型和冠层结构信息获取与表述的方法.石河子大学学报(自然科学版),1997,1(3):250-256.
    [30]李少昆,张弦,赵明,王树安,严衍禄,劳彩莲,张录达.作物株型信息多媒体图象处理技术的研究.作物学报,1998,24(3):265-271.
    [31]李荣春,陶洪斌,张竹琴,王璞,廖树华.基于图像处理技术的夏玉米群体长势监测研究.玉米科学,2010,18(2):128-132.
    [32]李小正,谢瑞芝,王克如,白中英,李少串,王方永,高世菊.利用神经网络提取棉花叶片数字图像氮素含量的初步研究.作物学报,2007,33(10):1662-1666.
    [33]李艳,王进,褚贵新,马富裕,危常州.基于数字图像分析监测不同氮肥处理下加工番茄生长状况的初步研究.植物营养与肥料学报,2008,14(1):139-143.
    [34]李正理.棉花形态学.北京:科学出版社,1979.
    [35]梁淑敏,杨锦忠,李娜娜,郝建平,杜天床,崔福柱,程丽娟.基于图像处理的玉米分形维数及其种植密度效应评价.作物学报,2009,35(4):745-748.
    [36]刘颖,李志洪.利用数字图像技术进行玉米氮素营养诊断的研究.玉米科学,2010,18(4):147-149,152.
    [37]刘振恒,张长利,房俊龙.应用机器视觉技术识别田间杂草的研究.农机化研究,2004(2):185-187.
    [38]明博,赖军臣,王娜,谢瑞芝,王克如,李少昆.基于图像规则的玉米病害诊断系统的设计与实现.玉米科学,2009,17(6):132-135.
    [39]宁纪锋,龙满生,何东建,高梦祥.农业领域中的计算机视觉研究.计算机与农业,2001,(1):1-3.
    [40]浦瑞良,宫鹏.高光谱遥感及其应用.北京:局等教育出版社,2000.
    [41]邱道尹,张法全,张红涛.农田害虫色彩特征提取的研究.华北水利水电学院学报,2004,25(1):30-32.
    [42]单成钢,廖树华,龚宇,梁振兴,王璞.应阳数字图像技术估测冬小麦冠层生物量垂直分布特征的研究.作物学报,2007,33(3):419-424
    [43]史智兴,程洪,李江涛,冯娟.图像处理识别玉米品种的特征参数研究.农业工程学报,2008,24(6):193-195.
    [44]宋凯,任晓哲.基于YCbCr色彩空间的玉米叶部病斑的图像分割.农业工程学报,2008,24(Supp.2):202-205.
    [45]宋亚杰,谢守勇.机器视觉技术在金莲花灌溉中的应用研究.西南农业大学学报,2006,28(4):659-662.
    [46]孙济中,陈布圣主编.棉作学.北京:中国农业出版社,1999.
    [47]孙钦平,贾良良,芮玉奎,陈新平,张福锁.应用可见光光谱进行夏玉米氮营养诊断.光谱学与 光谱分析,2009,29(2):432-435.
    [48]孙钦平,李吉进,邹国元,向成材,罗一鸣,刘本生.应用数字图像技术对有机肥施用后玉米氮营养诊断研究.玉米科学,2010,30(9):2447-2450.
    [49]谭海珍,李少昆,王克如,谢瑞芝,高世菊,明博,于青,赖军臣,刘国庆,汤秋香.基于成像光谱仪的冬小麦苗期冠层叶绿素密度监测.作物学报,2008,34(10):1812-1817.
    [50]唐延林,黄敬峰,王人潮.水稻不同发育时期高光谱与叶绿素和类胡萝卜素的变化规律.中国水稻科学,2004,18(1):59-66.
    [51]王崇桃,李少昆.基于图像技术的玉米株型育种辅助系统.计算机与农业,2002,(2):14-16.
    [52]王登伟,黄春燕,张伟,马勤建,赵鹏举.高光谱数据与棉花叶绿素含量和叶绿素密度的相关分析.棉花学报,2008,20(5):368-371.
    [53]王方永,李少昆,王克如,隋学艳,柏军华,陈兵,刘国庆,谭海珍.基于机器视觉的棉花群体叶绿素监测.作物学报,2007,33(12):2041-2046.
    [54]王方永,王克如,李少昆,陈兵,陈江鲁.利用数码相机和成像光谱仪监测棉花叶片叶绿素和氮素含量.作物学报,2010,36(11):1981-1989.
    [55]王方永,王克如,王崇桃,李少昆,朱玉,陈兵,明博,潘文超.基于图像识别的棉花水分状况诊断研究.石河子大学学报,2007,25(4):404-407.
    [56]王桂琴,郑丽敏,朱虹,梁振兴,廖树华.图像处理技术在冬小麦叶面积指数测定中的应用.麦类作物学报,2004,24(4):108-112.
    [57]王娟,雷咏雯,张永帅,郭金强,危常州.应用数字图像分析技术进行棉花氮素营养诊断的研究.中国生态农业学报,2008,16(1):145-149.
    [58]王克如,李少昆,王崇桃,杨蕾,谢瑞芝,高世菊,柏军华.用机器视觉技术获取棉花叶片叶绿素浓度.作物学报,2006,32(1):3440.
    [59]王玲,姬长英,陈兵林.黑背景下收获前棉花图像色特征生成及其品级聚类分析.棉花学报,2007a,19(2):119-123.
    [60]王玲,姬长英,陈兵林,刘善军,王萍.基于机器视觉技术的田间籽棉品级抽样分级模型研究.中国农业科学,2007b,40(4):704-711.
    [61]王谦,陈景玲,孙治强.LAI-2000冠层分析仪在不同植物群体光分布特征研究中的应用.中国农业科学,2006,39(5):922-927.
    [62]王锡平,李保国,郭焱,翟志席.玉米冠层内光合有效辐射三维空间分布的测定和分析.作物学报,2004,30(6):568-576.
    [63]王晓静,张炎,李磐,侯秀玲,冯固.地面数字图像技术在棉花氮素营养诊断中的初步研究.棉花学报,2007,19(2):106-113.
    [64]文新亚,宋振伟,孔凡磊,张志鹏,陈阜.基于数字图像分析监测不同氮肥处理下加工番茄生长状况的初步研究.中国农业大学学报,2010,15(2):82-87.
    [65]吴长高,罗锡文.计算机视觉技术在根系形态和构型分析中的应用.农业机械学报,2000,31(3):63-66.
    [66]吴富宁.图像处理技术在冬小麦氮营养诊断中的应用.中国农业大学[硕士学位论文],2004.
    [67]吴良欢,陶勤南.稻叶绿素计诊断追氮法研究.浙江农业大学学报,1999,25(2):135-138.
    [68]徐海松.颜色信息工程.杭州:浙江大学出版社,2005.
    [69]杨锦忠,郝建平,杜天庆,崔福柱,桑素平.基于种子图像处理的大数目玉米品种形态识别.作物学报,2008,34(6):1069-1073.
    [70]姚霞,吴华兵,朱艳,田永超,周治国,曹卫星.棉花功能叶片色素含量与高光谱参数的相关性研究.棉花学报,2007,19(4):267-272.
    [71]应义斌,景寒松.黄花梨果形的机器视觉方法研究.农业工程学报,1999,15(1):192-196.
    [72]应义斌,景寒松,马俊福,蒋亦元,赵匀.黄花梨品质检测机器视觉系统.农业机械学报,2000,30(3):113-115.
    [73]于新文,沈佐锐.几种图象分割算法在棉铃虫图象处理中的应用.中国农业大学学报,2001,6(5):69-75.
    [74]张弓,Jayas,蒋德云.谷物纹理特征的识别.农业工程学报,2001,17(1):149-153.
    [75]张立周,王殿武,张玉铭,程一松,李红军,胡春胜.数字图像技术在夏玉米氮素营养诊断中的应用.中国生态农业学报,2010,18(6):1340-1344
    [76]张荣标,何加祥,吴涛,冯友兵.基于图像处理的土壤表层含水率在线检测方法研究.农业工程学报,2007,23(10):57-61.
    [77]张弦,严衍录.用图形图象技术处理作物图象提取作物形态信息.中国农业科学,1996,(5):89-93.
    [78]张彦娥,李民赞,张喜杰,张建平,徐增辉.基于计算机视觉技术的温室黄瓜叶片营养信息检测.农业工程学报,2005,21(8):102-105.
    [79]张云霞,李晓兵,张云飞.基于数字相机、ASTER和MODIS影像综合测量植被盖度.植物生态学报,2007,31(5):842-849.
    [80]赵祥,刘素红,王培娟,王锦地,田振坤.基于高光谱数据的小麦叶绿素含量反演.地理与地理信息科学.2004,20(3):36-39.
    [81]赵玉霞,王克如,白中英,李少昆,谢瑞芝,高世菊.基于图像识别的玉米叶部病害诊断研究.中国农业科学,2007,40(4):698-703.
    [82]中国农业科学院棉花研究所主编.中国棉花栽培学.上海:上海科学技术出版社,1983.
    [83]周启发,王人潮.水稻氮素营养水平与光谱特征的关系.浙江农业大学学报(增刊),1993,19:40-46.
    [84]祝锦霞,邓劲松,石媛媛,陈祝炉,韩凝,王珂.基于水稻扫描叶片图像特征的氮素营养诊断研究.光谱学与光谱分析,2009,29(8):2171-2175.
    [85]Adams J E, and Arkin G F. A light interception method for measuring row crop ground cover. Soil Science Society of America Journal,1977,41(4):789-792.
    [86]Adamsen F J, Pinter P J, Jr, Barnes E M, LaMorte R L, Wall G W, Leavitt S W, Kimball B A. Measuring wheat senescence with a digital camera. Crop Science,1999,39:719-724.
    [87]Ahmad I S, Reid J F. Evaluation of color representations for maize images. Journal of Agricultural Engineering Research,1996,63:185-195.
    [88]Al-Abbas A H, Barr R, Hall J D, Crane F L, Baumagardner M F. Spectra of normal and nutrient-deficient maize leaves. Agronomy Journal,1974,66:16-20.
    [89]Asrar G, Fuchs M, Kanemasu E T, Hatfield J L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal,1984,76:300-306.
    [90]Blackburn G A. Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 2007,58:855-867.
    [91]Blackburn G A. Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery. Remote Sensing of Environment,2002,82:311-321
    [92]Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations:a test using senescent tree leaves. International Journal of Remote Sensing,1998,19:657-675.
    [93]Blackmer T M, Schepers J S, Varvel G E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agronomy Journal,1994,86:934-938.
    [94]Blackmer T M, Schepers J S, Varvel G E, Meyer G E. Analysis of aerial photography for nitrogen stress within corn fields. Agronomy Journal,1996b,88:729-733.
    [95]Blackmer T M, Schepers J S, Varvel G E, Walter-Shea E A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy Journal,1996a,88:1-5.
    [96]Boegh E, Soegaard H, Broge N, Hasager C B, Jensen N O, Schelde K, Thomsen A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment,2002,81:179-193.
    [97]Bonham-Carter G F, Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data. Computer & Geosciences,1988,14(3):339-356.
    [98]Breda N J J. Ground-based measurements of leaf area index:a review of methods, instruments and current controversies. Journal of Experimental Botany,2003,54,2403-2417.
    [99]Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment,2002,81:45-57.
    [100]Buscaglia H J, Varco J J. Early detection of cotton leaf nitrogen status using leaf reflectance. Journal of Plant Nutrition,2002,25:2067-2080.
    [101]Casa R, Jones H G. LAI retrieval from multiangular image classification and inversion of a ray tracing model. Remote Sensing of Environment,2005,98:414-428.
    [102]Casady W W, Singh N, Costello T A. Machine vision for measurement of rice canopy dimensions. Transactions of the ASAE,1996,39(5):1891-1898.
    [103]Chen B, Chen J M, Mo G, Yuan K, Higuchi K, Chan D. Modeling and scaling coupled energy, water, and carbon fluxes based on remote sensing:An application to Canada's landmass. Journal of Hydrometeorology,2007,8,123-143.
    [104]Chen J M, Rich P M, Gower S T, Norman J M, Plummer S. Leaf area index of boreal forests:theory, techniques, and measurements. Journal of Geophysical Research,1997,102(D24):29429-29443.
    [105]Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote Sensing of Environment,1998,66:111-121.
    [106]Daughtry C S T, Gallo, K P, Goward S N, Prince S D, Kustas W P. Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies. Remote Sensing of Environment, 1992,39,141-152.
    [107]Fang Z, Bouwkamp J, Solomos T. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. Journal of Experimental Botany,1998,49:503-510.
    [108]Fernandez C J, McInnes K J, Cothren J T. Water status and leaf area production in water-and nitrogen-stressed cotton. Crop Science,1996,36:1224-1233.
    [109]Fernandez S, Vidal D, Simon E, et al. Radiometric Characteristics of Triticum aestivum cv. Astral under Water and Nitrogen Stress. International Journal of Remote Sensing,1994,15(9):1867-1884.
    [110]Fensholt R, Sandholt I, Rasmussen M S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment,2004,91:490-507.
    [111]Filella I, Serrano L, Serra J, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science,1995,35:1400-1405.
    [112]Gamon J A, Surfus J S. Assessing leaf pigment content and acti-vity with a reflectometer. New Phytologist,1999,143:105-117.
    [113]Garrigues S, Shabanov N V, Swanson K, Morisette J T, Baret F, Myneni R B. Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agricultural and Forest Meteorology,2008,148(8-9):1193-1209.
    [114]Gerik T J, Oosterhuis D M, Torbert H A. Managing cotton nitrogen supply. Advances in Agronomy, 1998,64:115-147.
    [115]Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology,2003,160:271-282.
    [116]Gonias E D, Oosterhuis D M, Bibi A C, Purcell L C.2008. Estimating light interception by the cotton crop using a digital imaging technique. pp.175-177. CD-ROM Proc. Beltwide Cotton Conferences. Nashville, TN., Jan 8-11,2008. National Cotton Council of America, Memphis, TN.
    [117]Gonzalez R C, Woods R E. Digital Image Processing, Second Edition. Pearson Education, Inc., Publishing as Prentice Hall,2002.
    [118]Graeff S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. European Journal of Agronomy,2003,19:611-618.
    [119]Graeff S, Pfenning J, Claupein W, Liebig H P. Evaluation of image analysis to determine the N-fertilizer demand of Broccoli plants (Brassica oleracea convar. botrytis var. italica). Advances in Optical Technologies,2008, DOI:10.1155/2008/359760
    [120]Green R O, Eastwood M L, Sarture C M, Chrien T G, Chippendale B J, Faust J A, Pavri B E, Chovit C J, Solis M, Olah M R, and Williams O. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment,1998,65:227-248.
    [121]Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment,2003,86:542-553.
    [122]Hall F G, Shimabukuro Y E, Huemmrich K F. Remote sensing of forest biophysical structure using mixture decomposition and geometric reflectance models. Ecological Applications,1995,5(4): 993-1013.
    [123]Heine mann D Z, Varghess Z A, Morrow C T, et al. Machine vision inspection of golden delicious apples. Applied Engineering in Agriculture,1995,11(6):910-906.
    [124]Hicks S K, Lascano R J. Estimation of Leaf Area Index for cotton canopies using the LI-COR LAI-2000 Plant Canopy Analyzer. Agronomy Journal,1995,87:458-464.
    [125]Horder D N H, Dockray M, Barber J. The red edge of plant leaf reflectance. International Journal of Remote Sensing,1983,(4):273-288.
    [126]Huang Z, Turner B J, Dury S J, Wallis I R, Foley W J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sensing of Environment,2004,93: 18-29.
    [127]Jaynes D B, Colvin T S, Karlen D L, Cambardella C A, Meek D W. Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. Journal of Environmental Quality,2001,30: 1305-1314.
    [128]Jia L, Buerkert A, Chen X, Roemheld V, Zhang F. Low-altitude aerial photography for optimum N fertilization of winter wheat on the North China Plain. Field Crops Research,2004b,89:389-395.
    [129]Jia L, Chen X, Zhang F, Buerkert A, Romheld V. Use of digital camera to assess nitrogen status of winter wheat in the northern China plain. Journal of Plant Nutrition,2004a,27:441-450.
    [130]Juarez R I N, Rocha H R, Figueira A M S, Goulden M L, Miller S D. An improved estimate of leaf area index based on the histogram analysis of hemispherical photographs. Agricultural and Forest Meteorology,2009,149:920-928.
    [131]Karcher D E, Richardson M D. Quantifying turfgrass color using digital image analysis. Crop Science,2003,43:943-951.
    [132]Kawashima S, Nakatani M. An algorithm forestimating chlorophyll content in leaves using a video camera. Annals of Botany,1998,81:49-54.
    [133]Kirk K, Andersen H J, Thomsen A G, Jorgensen J R, Jorgensen R N. Estimation of leaf area index in cereal crops using red-green images. Biosystems engineering,2009,104:308-317.
    [134]Law B E. Estimation of leaf area index and light intercepted by shrubs from digital videography. Remote Sensing of Environment,1995,51(2):276-280.
    [135]Lee Y J, Yang C M, Chang K W, Shen Y. A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agronomy Journal,2008,100:205-212.
    [136]Leemans V, Destain M. A real-time grading method of apple base on features extracted from defects. Journal of Food Engineering,2004,61:83-89.
    [137]Li X W, Strahler A H. Geometric-optical modeling of a conifer forest canopy. IEEE Transactions on Geoscience and Remote Sensing,1985, GE-23(5):705-721.
    [138]Li Z, Moreau L. A new approach for remote sensing of canopy-absorbed photosynthetically active radiation. I:Total surface absorption. Remote Sensing of Environment,1996,55:175-191.
    [139]Liao K, Reid JJ, Ni B, et al. Corn kernel shape identification by machine vision using a neural network classifier. Transactions of the ASAE,1992,1692-1707.
    [140]Lichtenthale H K. Chlorophyll and Carotenoids, the Pigments of Photosynthetic Biomembranes. Methods in Enzymology. San Diego, CA:Academic Press,1987,148:350-382.
    [141]Lukina E, Stone M and Raun W. Estimating vegetation coverage in wheat usingdigital images. Plant Nutrition,1999,22(2):341-350.
    [142]Macfarlane C, Grigg A, Evangelista C. Estimating forest leaf area using cover and fullframe fisheye photography:Thinking inside the circle. Agricultural and Forest Meteorology,2007,146:1-12.
    [143]Madeira A C, Ferreira A, Varennes A, Vieira M I. SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Communications in Soil Science and Plant Analysis,2003,34:2461-2470.
    [144]Massart D L, Vandeginste B G M, Deming S M, Michotte Y, Kaufman L. Chenometrics:A Textbook. Elsevier, Amsterdam,1988.
    [145]Monsi M, Saeki T. On the factor light in plant communities and its importance for matter production. Annals of Botany,2005,95(3):549-567.
    [146]Moran J A, Mitchell A K, Goodmanson G, Stockburger K A. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance:a comparison of methods. Tree Physiology,2000,20:1113-1120.
    [147]Noh H, Zhang Q, Shin B, Han S, Feng L. A neural network model of maize crop nitrogen stress assessment for a multi-spectral imaging sensor. Biosystems Engineering,2006,94:477-485.
    [148]Pagola M, Ortiz R, Irigoyen I, Bustince H, Barrenechea E, Aparicio-Tejo P, Lamsfus C, Lasa B. New method to assess barley nitrogen nutrition status based on image colour analysis:Comparison with SPAD-502. Computers and Electronics in Agriculture,2009,65:213-218.
    [149]Pavlidis T. Algorithms for graphics and image processing. Computer Science Press. Rockville, Md, 1982.
    [150]Sarkar N, Wolfe R R. Computer vision based system for quality separation of fresh market tomatoes. Transactions of the ASAE,1985,28(5):1714-1718.
    [151]Peddle D R, Hall F G, LeDrew E F. Spectral mixture analysis and geometric-optical reflectance modeling of boreal forest biophysical structure. Remote Sensing of Environment,1999,67(3): 288-297.
    [152]Purcell L C. Soybean canopy coverage and light interception measurements using digital imagery. Crop Science,2000,40(4):834-837.
    [153]Reddy K R, Koti S, Davidonis G H, Reddy V R. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield, and fiber quality. Agronomy Journal,2004,96: 1148-1157.
    [154]Richardson M D, Karcher D E, Purcell L C. Quantifying turfgrass cover using digital image analysis. Crop Science,2001,41:1884-1888.
    [155]Scharf P C, Lory J A. Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agronomy Journal,2002,94:397-404.
    [156]Schepers J S, Blackmer T M, Wilhelm W W, Resende M. Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. Journal of Plant Physiology,1996,148:523-529.
    [157]Schlemmer M R, Francis D D, Shanahan J F, Schepers J S. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agronomy Journal,2005,97: 106-112.
    [158]Schut A G T, Ketelaars J J M H. Imaging spectroscopy for early detection of nitrogen deficiency in grass swards. Netherlands Journal of Agricultural Science,2003,51:297-317.
    [159]Serna Jr D G, Pinto F A C, Queiroz D M, Viana P A. Fall Armyworm damaged maize plant identification using digital images. Biosystems Engineering,2003,85:449-454.
    [160]Shearer S A, Payne F A. Color and defect sorting of bell peppers using machine vision. Transactions of the ASAE,1990,33(6):2045-2050.
    [161]Shibayama M, Akiyama T. A Spectroradiometer for field use.VII.Radiometric estimation of nitrogen levels in field rice canopies. Japanese Journal of crop science,1986,55(4):439-445.
    [162]Tao Y. Method and apparatus for sorting objects including stable color transformation. U.S. Patent No,1996 (5):533-628.
    [163]Thomas J R, Gausman H W. Leaf reflectance vs leaf chlorophyll and carotenoid concentration for eight crops. Agronomy Journal,1977,69:799-802.
    [164]Vina A, Gitelson A A. New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophysical Research Letter,2005,32, L17403, doi:10.1029/2005GL023647.
    [165]White M A, Asner G P, Nemani R R, Privette J L, Running S W. Measuring fractional cover and leaf area index in arid ecosystems:Digital camera, radiation transmittance, and laser altimetry methods. Remote Sensing of Environment,2000,74:45-57.
    [166]Wilhelm W W, Ruwe K, and Schlemmer M R. Comparison of three leaf area index meters in a corn canopy. Crop Science,2000,40:1179-1183.
    [167]Wu J, Wang D, Rosen C J, Bauer M E. Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird imagery in detecting nitrogen status of potato canopies. Field Crops Research,2007,101:96-103.
    [168]Xue L, Cao W, Luo W, Dai T, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal,2004,96:135-142.
    [169]Xue L, Yang L. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS Journal of Photogrammetry and Remote Sensing,2009,64,97-106.
    [170]Yang Q. An approach to apple surface feature detection by machine vision. Computers and Electronics in Agriculture,1994, (11):249-264.
    [171]Yang W H, Peng S B, Huang J L, Sanico A L, Buresh R J, Witt C. Using leaf color charts to estimate leaf nitrogen status of rice. Agronomy Journal,2003,95:212-217.
    [172]Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 1995,53:199-211.
    [173]Yutaka Sasakoi, Tsuguo Okamoto, et al. Automatic diagnosis between healthy and diseased leaf. Journal of the Agricultural Machinery Society of Japan,1999,61(2):119-126.
    [174]Zhao D, Reddy K R, Kakani V G, Read J J, Koti S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agronomy Journal, 2005,97:89-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700