用户名: 密码: 验证码:
转基因抗草甘膦棉花种质系的创造及利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂草是棉花生产主要障碍之一,棉花杂草为害常年造成损失为14%-16%。人工除草是我国控制草害的传统方法。随着城市化进程的加速,农村人口的转移以及劳动力成本的提高,棉田大面积人工除草已不能适应现代农业生产的需求。草甘膦是一种灭生性除草剂,具有广谱、高效、低毒和无残留的特点,其销售额占整个除草剂市场总量的30%,已连续多年占据世界农药销售额首位。抗草甘膦棉花品种是实现田间化学除草的先决条件,培育具有我国自主知识产权的抗草甘膦棉花品种则对于我国棉花产业具有重要的实践意义。本试验以珂字棉201和中棉所49为受体材料,分别通过农杆菌介导法和花粉管通道法两种方法,转化由本校自主研发并具有自主知识产权的抗草甘膦基因EPSPs-G6,创造抗草甘膦的转基因棉花种质资源,为培育具有我国自主知识产权的抗草甘膦转基因棉花品种提供新的种质。同时,对育成的转基因抗草甘膦棉花种质材料进行综合鉴定和评价,为该种质育种利用和抗草甘膦棉花的商业化生产提供科学依据。主要研究结果如下:1.转基因抗草甘膦棉花种质的创造
     本研究以珂字棉201下胚轴作为外植体,用50 mg.L-1卡那霉素作为抗性愈伤组织的筛选剂,将含有玉米泛素Ubi启动子驱动的EPSPS-G6基因通过农杆菌介导法导入棉花基因组,获得了2株T0代转基因植株,2株转基因植株开花正常,自交种子种成株行(T1)。经过PCR检测证实EPSPS-G6基因已经导入棉花基因组,但对草甘膦的抗性较差,可能与来源于单子叶玉米的Ubi启动子在棉花中驱动EPSPS-G6基因表达效率有关。
     通过花粉管通道法将Camv 35S启动子驱动的EPSPS-G6基因导入陆地棉品种中棉所49,共获得26个具有草甘膦抗性的转化植株。PCR检测、Southem点杂交、Southem杂交(双酶切和单酶切)均证实EPSPS-G6基因已经导入棉花基因组。T1田间抗性鉴定结果表明26个转化子中20个转化子经卡方测定符合一对基因的分离规律。经T2田间抗性鉴定,共获得152个纯合材料,分别来源于26个转化子。
     2.田问抗性鉴定
     各试验材料分别用15 mM、20 mM、30 mM和40 mM浓度的草甘膦进行涂抹鉴定。非转基因的中棉所49和TM-1对草甘膦十分敏感,15 mM浓度草甘膦处理下死亡。本研究获得的不同转基因材料对草甘膦抗性存在着显著差异,其中采用花粉通管法获得的26个转化子在20 mM田间使用草甘膦浓度下均无反应,但在30 mM草甘膦浓度下,EHC09-045和EHC09-029发生萎蔫或轻萎蔫,但都得到恢复。在40 mM草甘膦浓度下,有11个转化子的幼苗仍无反应,表现为高抗草甘膦;13个转化子发生轻萎蔫或萎蔫,但恢复,表现为中度抗草甘膦;2个转化子死亡,抗草甘膦性较弱。
     3.抗草甘膦性状的遗传分析
     选用5个转基因抗草甘膦棉花种质系(EHC09-002、EHC09-009、EHC09-036、EHC09-038和EHC09-045)进行遗传分析,结果表明5个转基因抗草甘膦棉花种质系均不受细胞质效应的影响,EHC09-002,EHC09-009和EHC09-036三个转化子与TM-1和中棉所49正反交F2,经χ2检验符合3:1的分离规律,分子检测表明这三个转化子都是单基因插入的,与遗传研究相符。但EHC09-038和EHC09-045两个转化子经χ2检验不符合3:1的分离规律,这可能与基因的插入位点和基因的整合有关。
     4.转基因抗草甘膦棉花种质系的农艺性状和纤维品质
     本研究中通过花粉管通道法获得的26个转化子,农艺性状和纤维品质总体表现较好,部分转化子表现优于对照。T,农艺性状考察结果表明转基因抗草甘膦棉花株高、果枝数和单株铃数三项指标与对照相比差异不大,但外源基因的导入对转基因抗草甘膦棉花的衣分影响较大。T2农艺性状和纤维品质考察结果表明外源基因的导入对纤维长度和整齐度影响不大,而对麦克隆值、伸长率和断裂比强度等纤维品质指标,以及铃重和衣分等农艺性状均有较大影响。因此,转基因棉花育种研究中不仅只注重目标性状的转育,还要注重非目标性状的筛选。
     5.市售草甘膦对转基因抗草甘膦棉花幼苗生长的影响
     以转基因抗草甘膦棉花种质系EHC09-008和EHC09-020及其非转基因遗传背景亲本对照中棉所49为材料,研究了市售10%草甘膦水剂和95%的草甘膦粉剂对抗草甘膦棉花种子萌发和幼苗生长的影响。研究结果表明,10%的草甘膦水剂中可能含有其他除草剂或对棉花幼苗生长发育有害的物质,影响抗草甘膦棉种子的萌发和幼苗的生长。因此,在转基因抗草甘膦棉花生产应用时,应必谨慎选用草甘膦除草剂产品。
weed infestation constitutes a major hazard in cotton production resulting in about 14-16% loss in yield. Manual tending is a primitive and traditional method for weeds control. However, due to the accelerated urbanization process, the transfer of rural population and the increase in labor cost, manual tending can no longer meet the needs of modern agricultural production. Glyphosate is a non-selective herbicide. Because of its broad-spectrum effect, high efficiency, and low toxicity and residual effect, it occupies 30% of the total herbicide market and has ranked the first agrochemical for many years. Selection and breeding glyphosate-resistant cotton varieties is the prerequisite to achieve chemical weed controlling on the cotton field. It is very necessary to breed our own patent of glyphosate-tolerant GM cotton for cotton production in China. In this study, Glyphosate-resistant EPSPS-G6 gene, which was cloned by Zhejiang University, was introduced into upland cottons culitivars, using coker 201 and CCRI-49 as the receptors by Agrobacterium- mediated method and pollen tube pathway method, and glyphosate-resistant transgenic cotton germplasms were obtained, which provided the new germplasm for development of glyphosate-tolerant cotton cultivars with our own intellectual property rights. Meanwhile, comprehensive identification and evaluation of germplasms provided a scientific basis for breeding and commercial production of transgenic glyphosate-resistant cotton. The major results in this study are as follows: 1. Developing of transgenic glyphosate-resistant cotton germplasms
     The EPSPS-G6 gene driven by ubiquitin promoter from maize was introduced into the upland cotton through agrobacterium- mediated method using coker 201 hypocotyls as explants and 50 mg.L-1 kanamycin as screening agent. Two T0 transgenic plants were obtained and the T1 lines was planted from the self-crossed seeds. The EPSPS-G6 gene was confirmed by PCR in the T0 plants and their T1 lines. But the resistance to glyphosate of the transgenic plants by agrobacterium-mediated method was not satisfied, probably because the Ubi promoter derived from monocot maize was not effective enough in expression of EPSPS-G6 gene in dicot cotton.
     Another vector with the EPSPS-G6 gene driven by Camv 35S promoter was introduced into CCRI-49 by the pollen tube pathway, and 26 transformants with glyphosate-resistance were obtained. PCR, dot blot hybridization, Southern hybridization (single and double restriction enzymes digestion) showed successful integration of the foreign EPSPS-G6 gene into the cotton genome. Field resistance test in T1 plants showed that the 20 of 26 transformants were consistent with single-gene Mendelian inheritance.152 homozygous resistance lines were obtained derived from 26 transformants, respectively. 2. Field test of glyphosate-resistance
     The test materials were treated with 15 mM,20 mM,30 mM and 40 mM of glyphosate. Non-transgenic CCRI-49 and TM-1 is highly sensitive to glyphosate herbicide, and their plants were died even treated by 15 mM glyphosate. While the transgenic plants obtained from the pollen tube pathway expressed glyphosate resistance with different levels. All the transgenic cotton plant were not affected with the treatment of 20 mM glyphosate, while a light wilting occurred in two transformants (EHC09-045 and EHC09-029) when they were treated with 30 mM glyphosate. At the treatment of 40 mM glyphosate, the resistance to glyphosate were greatly difference among the transformants,11 transformants of them showed no reaction at all, which indicated to be high resistant ones.13 transformants initially wilting or light wilting but recovered eventually, which shown moderate resistant ones; and 2 transformants died which indicated to be low resistant.
     3. Genetic analysis of glyphosate-resistant trait in transgenic cotton
     Reciprocal crosses of five selected transgenic cotton lines, namely EHC09-002, E HC09-009, EHC09-036, EHC09-038 and EHC09-045, with TM-1 and CCRI-49 were performed. The glyphosate resistant trait of the transgenic cotton in F1 showed that there was no cytoplasmic effect as the same results of the crosses used the transgenic cotton germplasm either as female parent or male parent. The separation and distribution of the glyphosate resistant trait in F2 showed that EHC09-002, EHC09-009 and EHC09-036 were consistent with 3:1 ratio, according toχ2 test and confirmed by southern blot. However, EHC09-038 and EHC09-045 were inconsistent with the ratio 3:1, probably due to gene insertion sites and the integration of the gene.
     4. Agronomic traits and fiber quality in transgenic glyphosate-resistant cotton
     The overall performance of agronomic traits and fiber quality of 26 transformants obtained by pollen tube pathway was normal and some even better than the control. The agronomic traits of T1 showed that plant height, fruiting branch number and boll number were not significantly different from those of the control. However, the integration of exogenous gene into cotton had a great impact on lint percentage and boll weight. The results in T2 plants showed that the transgenic cotton had little impact on fiber uniformity and fiber length, but had major impact on micronaire value, fiber elongation, and fiber strength, It suggested that the breeding of the transgenic cotton should focus on not only goal-oriented characters but also non-target traits during the selection.
     5. The effects of commercial glyphosate on the growth of the transgenic cotton seedlings
     The effects of three commercial glyphosates, (two 10% glyphosate aqueous solution and one 95% glyphosate powder) on the seed germination and seedling growth of transgenic cotton with glyphosate resistance were studies, using the transgenic glyphosate-resistant cotton, EHC09-008 and EHC09-020, as the materials, and their non-transgenic genetic background cultivar CCRI-49 as control. The results showed that 10% glyphosate aqueous solution may contain some harmful substances and affect the growth and development of the transgenic glyphosate-resistant cotton seedlings. Therefore the kinds of glyphosate should be selected carefully when they were used in chemical weed controlling in the transgenic glyphosate-resistant cotton field.
引文
1. 蔡立旺,潘群斌,陈建平,刘标,施庆华,杨明凤,陈丽萌,徐文华.江苏省棉花育种的现状与发展策略[J].江西农业学报,2009,21(4):21-23
    2. 蔡应繁,叶鹏盛,江怀忠,何洪华,谭永久,裴炎,郭余龙,李名扬,侯磊.抗真菌基因导入棉花创造高抗黄萎病材料研究[J].西南农业学报,2000,13(4):45-49
    3. 陈大军,简桂良,李仁敬,张振南,刘丰疆,姚正陪.转天麻抗真菌蛋白基因彩色棉新品系抗枯黄萎病研究[J].分子植物育种,2003,1(5):673-676
    4. 陈国庆,王武源,李忠超,王小兰.花粉管通道法转基因改良小麦品质的初步研究[J].广西植物,2005,25(3):245-248
    5. 陈良鸿,王新望,张文俊,张晓东,胡道芬,刘广田.抗除草剂草甘膦EPSPS基因在小麦中的转化[J].遗传学报,1999,25(3):239-243
    6. 陈志贤,范云六,李淑君,郭三堆,焦改丽,赵俊侠.利用农杆菌介导法转移tfdA基因获得可遗传的抗2,4-D棉株[J].中国农业科学,1994,27(2):31-37
    7. 程海刚,张锐,罗淑萍,代培红,郭三堆.青麻epsps基因在酵母中表达[J].新疆农业大学学报,2007,30(4):52-56
    8. 程红梅,简桂良,倪万潮,杨红华,王志兴,孙文姬,张保龙,王晓峰,马存,贾士荣.转几丁质酶和β-1,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性[J].中国农业科学,2005,38(6):1160-1166
    9. 崔金杰,简桂良,马艳.棉花病虫草害防治技术[M].北京:中国农业出版社,2008
    ]0.崔瑞敏,张寒霜,王凯辉,吴振良,郭宝生,张香云,耿军义,王兆晓,刘素恩,刘存敬.河北省棉花新品种主要性状参数分布解析[J].河北农业科学,2006,10(4):26-31
    11.丁亮.外源基因和棉酚对陆地棉茎尖培养和体细胞培养的影响[D].浙江大学硕士学位论文,2003
    12.樊翠芹,王贵启,李秉华,许贤.河北省棉田杂草发生规律及化学防除[J].河北农业科学,2009,13(10):23-25
    13.方军.苏云金杆菌营养期杀虫蛋白vip3基因及其在转基因水稻中的应用[D].浙江大学博士学位论文,2008
    14.丰嵘,张宝红,郭香墨.外源Bt基因对棉花产量性状及抗虫性的影响[J].棉花学报,1996,8(1):10-13
    15.冯宏祖,王兰.新疆南部棉区棉田杂草调查[J].安徽农业科学,2008,36(7):2819-2820,2986
    16.巩万奎,吴家和,姚长兵,刘方,喻树迅,陈志贤,刘志红,李燕娥.葡萄糖氧化酶基因在棉花中的高效转化-转基因再生棉株的获得[J].棉花学报,2002,14(20):76-79
    17.管敏,崔洪志,张锐,郭三堆.棉花arfl启动子驱动CrylA基因在烟草中特异性表达研究[J].作物学报,2008,34(4):565-570
    18.郭彩菊,王省芬,张桂寅,迟吉娜,吴立强,李志坤,马峙英.农杆菌介导的植酸酶基因转化棉花的研究[J].中国农学通报,2009,25(20):68-71
    19.郭金英.转Bt+Sck双价基因抗虫棉的培育及其遗传稳定性研究[D].南京农业大学博士学位论文,2006
    20.郭三堆,崔洪志,夏兰芹,武东亮.双价抗虫转基因棉花研究[J].中国农业科学,1999,32(3):1-7
    21.郭三堆,张秀梅,崔洪志,徐琼芳,倪万潮,张震林,张保龙,许英俊.抗蚜虫兼抗除草剂的转基因棉花研究[J].云南大学学报,1999
    22.郭余龙,李名扬,罗小英,裴炎.用基因枪法将外源基因导入棉花胚性愈伤[C].重庆市遗传学会第一届学术年会暨纪念孟德尔规律再发现100周年学术讨论会论文集.2000,181-184
    23.韩丽珍,刘辰,谢柳,李有志.苏云金芽孢杆菌营养期杀虫蛋白VIP3研究进展[J].基因组学与应用生物学.2009,28(4):779-785
    24.何鸣,曾海燕,徐培林,叶长明.aroA基因的克隆和优化[J].中山大学学报(自然科学版),2002,41(2):76-79
    25.赫福霞,郎志宏,陆伟,林敏,张杰,黄大防.以耐草甘膦2mG2-epsps基因为选择标记的玉米转化体系的建立[J],生物技术通报,2008, (5):92-97
    26.赫福霞.抗虫/耐草甘膦多价转基因玉米的研究[D].东北农业大学博士学位论文,2008
    27.侯丙凯,夏光敏,陈正华.植物基因工程表达载体的改进和优化策略[J].遗传,2001,23(5):492-497
    28.胡廷章,罗凯,甘丽萍,石汝杰.植物基因启动子的类型及其应用[J].湖北农业科学,2007,46(1):149-151
    29.华乃震.草甘膦活性和助剂[J].农药,2002,41(2):1-5
    30.黄骏麟,龚蓁蓁,吴敬音,陈松,束春娥,谢伟军,周宝良,沈新莲.慈姑蛋白酶抑制剂(API)基因导入棉花获得转基因植株[J].江苏农业科学,2001,17(2):65-68
    31.黄全生,刘霞,王义琴,王冬梅,杨克锐,李建平,葛峰.基因枪轰击法将蜘蛛丝蛋白基因(ADF3)转人海岛棉的研究[J].新疆农业科学,2004,41(4):248-250
    32.黄全生,刘霞,王义琴,王冬梅,杨克锐,李建平,葛峰.基因枪轰击法将蜘蛛丝蛋白基因(ADF3)转入海岛棉的研究[J].新疆农业科学,2004,41(4)
    33.蒋玉蓉.棉花遗传转化方法与耐盐、抗除草剂基因的转化利用研究[D].浙江大学博士学位论文,2007
    34.金丹.新型高抗草甘膦EPSPS基因的克隆及草甘膦N-乙酰转移酶的活性位点鉴定[D].四川大学博士学位论文,2007
    35.乐锦华,祝建波,崔百明,朱新霞,王爱英,陈正华,刘桂珍,李国英,简桂良,吴刚.利用目的基因转化技术培育棉花抗病新品种[J].石河子大学学报(自然科学版),2002,6(3):173-178
    36.雷江荣,王冬梅,邵林,危晓薇,黄乐平.农杆菌法转化茎尖获得转SNC1基因棉花及其T1植株对棉花枯萎病的抗性[J].分子植物育种,2010,8(2):252-258
    37.雷江荣.转snc1基因棉花抗枯萎病棉株检测与选育[D].新疆农业大学硕士学位论文,2009
    38.雷凯健,卢维维,洪玉枝.土壤总DNA中草甘膦N_乙酰转移酶基因的克隆及酶学特性分析[J].农业生物技术学报,2007,15(1):153-156
    39.李付广,崔金杰,刘传亮,武芝霞,李凤莲,周勇,李秀兰,郭三堆,崔洪志.双价基因抗虫棉及其抗虫性研究[J],中国农业科学,2000,33(1):46-52
    40.李付广,郭三堆,刘传亮,李风莲,崔洪志,周勇,李秀兰.双价基因抗虫棉的转化与筛选研究[J].棉花学报,1999,11(2):106-112
    41.李静,韩秀兰,沈法富,刘莲.提高棉花花粉管通道技术转化率的研究[J].棉花学报,2005,17(2):67-71
    42.李静,沈法富,于东海,韩秀兰.转基因抗早衰棉的获得[J].西北植物学报,2004,24(8):1419-1423
    43.李亮.Ⅱ型EPSP合酶的功能域鉴定及大肠杆菌在草甘膦冲击下的基因表达谱分析[D].中国农业科学院博士学位论文,2010
    44.李朋波,曹美莲,杨六六,刘惠民,李燕娥.转Vip3基因作物研究进展[J].山西农业科学,2010,38(11):81-84
    45.李淑萍.农杆菌T-DNA导入植物基因组的分子机理[J].河南农业科学.2005,4:16-20
    46.李淑英,马艳,朱加保,路曦结,张兵.安徽省沿江棉区移栽棉田杂草发生及其化学防除研究[J].中国棉花,2010,(6),8-12
    47.李晓,王学德,朱玉贤,卢迎春,赵向前.农杆菌真空渗透法转化花粉获得棉花转acsB基因植株[J].作物学报,2002,28(5):709-712
    48.李晓,王学德.根癌农杆菌转化棉花花粉的研究[J],棉花学报.2004,16(6):323-327
    49.李雪.基因枪介导的棉花遗传转化及后代遗传分析[D].河北农业大学硕士学位论文.2007
    50.李燕娥,朱祯,陈志贤,吴霞,王伟,李淑君,朱玉,焦改丽,吴家和,徐鸿林,范小平,孟晋红,肖桂芳,李向辉.豇豆胰蛋白酶抑制剂转基因棉花的获得[J].棉花学报,1998,10(5):237-243
    51.李元宝,罗晓丽,肖娟丽,王志安,司怀军,吴家和.几个棉花基因的过量表达对遗传转化的影响[J].中国农业科技导报.2011,13(1):9-14
    52.李忠.根癌农杆菌介导转化鄂抗棉9号愈伤组织获得含Chitinase和β-(1,3)-glucanase基因的棉花再生植株[D].华中农业大学硕士学位论文,2003
    53.连丽君,吕素莲,李汝忠,张可炜.转BetA/als基因棉花材料的农艺性状考察[J].棉花学报,2008,20(6):447-451
    54.林君.陆地棉体细胞胚胎发生和植株再生体系的建立[D].浙江大学硕士学位论文,2006
    55.刘辰,谢柳,张文飞.新型Bt杀虫蛋白:VIP杀虫的机理与植物转基因应用[J].分子植物育种,2008,6(6):1031-1037
    56.刘冬梅.转基因棉花材料获得及主要农艺性状变异分析[D].中国农业科学院硕士学位论文,2006
    57.刘凤娟,陈清,俞守义.化学发光技术在Southern印迹杂交中的应用[J].中国卫生检验杂志,2007,17(6):997-998
    58.刘慧君,简桂良,邹亚飞.GO基因导人对棉花农艺性状及抗病性的影响[J].分子植物育种,2003,1(5):669-672
    59.刘生荣,张俊杰,李葆来,贾涛.我国棉田化学除草应用研究现状及展望[J].西北农业学报,2003,12(3):106-110
    60.刘生荣.关中棉区棉田杂草分布及化学除草技术[J].陕西农业科学,2004,(5):96-97
    61.刘锡娟,刘昱辉,王志兴,王旭静,张永强.转5-烯醇式丙酮酰莽草酸-3-磷酸合酶(EPSPS)基因抗草甘膦烟草和棉花的获得[J].农业生物技术学报,2007,15(6):958-963
    62.刘晓军.诸葛莱(Orychophragmus violaceus) EPSP合成酶基因的克隆与分析[D].四川大学硕士学位论文,2002
    63.刘延.田旋花和打碗花对草甘膦的耐药性研究[D].中国农业科学院博士学位论文.2008
    64.刘志,郭旺珍,朱协飞,朱祯,张天真.转Bt +GNA双价基因抗虫棉花中抗虫基因及其抗虫性的遗传稳定性[J].作物学报,2004,30(1):6-10.
    65.刘柱.可变盐单胞菌中草甘膦抗性EPSP合酶新基因克隆、大肠杆菌表达及其抗性机制的研究[D].四川大学博士学位论文,2004
    66.卢中秋,梁欢,胡国新.溴苯腈毒理学研究进展[J].中国公共卫生,2008,24(8):1014-1015
    67.卢宗志,张朝贤,傅俊范,李茂海,李贵军.抗苄嘧磺隆雨久花ALS基因突变研究[J].中国农业科学.2009,42(10):3516-3521
    68.吕淑平,郭小平,赵元明.转基因抗虫棉Bt基因导入对受体材料农艺性状的影响[J].农业生物技术科学,2004,20(3):36-37
    69.吕素莲,尹小燕,张可炜,张举仁.农杆菌介导的棉花茎尖遗传转化及转betA植株的产生[J].高技术通讯,2004,14(11):20-25
    70.吕秀娟,危晓薇,艾秀莲,罗淑萍.新疆陆地棉转化雪莲XLPEBP基因的研究[J].新疆农业科学,2007,44(1)
    71.罗小敏.棉花组织培养与雪花莲凝集素基因转化[D].河北大学硕士学位论文,2004
    72.马盾,周小云,黄乐平.花粉管通道法转基因棉花后代的遗传特性[J].西北农业学报,2008,17(3):147-149
    73.马小艳,马艳,彭军,奚建平,马亚杰,李希风.我国棉田杂草研究现状与发展趋势[J].棉花学报.2010,22(4):372-380
    74.南芝润,李红芳,张换样,李静,李俊峰,王娇娟,焦改丽.转反义GhADF1基因对陆地棉纤维品质的影响[J].中国农业科学,2009,42(12):4139-4144
    75.倪万潮,郭三堆,贾士荣.花粉管通道法介导的棉花遗传转化[J].中国农业科技导报,2000,2(2):27-31
    76.欧阳杰.内切-1,4-β-葡聚糖酶基因转化棉花及转基因植株的再生研究[D].湖南农业大学硕士学位论文,2007
    77.潘刚.水稻抗两类除草剂的内源基因cyp81a6的分离与克隆[D].浙江大学博士学位论文,2005
    78.强胜,魏守辉,胡金良.江苏省主棉区棉田杂草草害发生规律的研究[J].南京农业大学学报,2000,23(2):18-22
    79.强胜.杂草学[M].中国农业出版社,北京,2001
    80.秦超,倪志勇,闫洪颖,吕萌,郝晓燕,范玲.棉花GhCCR4基因的瞬时表达研究[J].棉花学报,2010,22(1):10-16
    81.秦永华,乔志新,刘进元.转基因技术在棉花育种上的应用[J].棉花学报,2007,19(6):482-488
    82.秦治中,姜辉,陶传江,林荣华,吴学民.施用10%草甘膦水剂对土壤盐碱化的影响[J].安徽农业科学,2006,34(9):1929-1933
    83.任海红,任小俊,王英,刘学义.非组培遗传转化法在农作物上的应用[J].山西农业科学,2010,38(11):85-88
    84.任永霞,季静,王罡,王萍.植物遗传转化方法概述[J].河北北方学院学报.2005,21(6):38-41
    85.沙纪莹.斯氏假单胞菌A1501 EPSP合酶基因的克隆及表达.四川师范大学硕士学位论文,2008
    86.申建茹,郭巍.苏云金芽孢杆菌营养期杀虫蛋白Vips研究进展[J].植物保护,2008,34(5):1-5
    87.沈法富,于元杰,尹承佾.抗盐碱罗布麻DNA导入棉花的研究[J].棉花学报,1996,7(1):18-21
    88.宋贵生,冯德江,魏晓丽,唐家斌,朱祯.水稻乙酰乳酸合成酶基因的克隆和功能分析[J].中国农业科技导报.2007,9(3):66-72
    89.宋敏,刘丽军,苏颖异,张锐.抗草甘膦EPSPS基因的专利保护分析[J].中国生物工程杂志,2010,30(2):147-152
    90.苏少泉.非草甘膦除草剂抗性作物的新发展[J].农药,2009,48(12):859-863
    91.苏少泉.酰胺类除草剂评述[J].农药,2002,41(11):1-5
    92.孙京燕,李伟明,张寒霜,赵俊莉,王永强,王立安.低酚棉胚性愈伤组织农杆菌转化 体系建立及转DREBlC植株的获得[J].河北农业科学,2009,6
    93.孙旭,苏翔,凌磊,蔡沂,洪萨丽,林毅,蔡永萍.农杆菌介导茎尖转化体系对不同基因型棉花转化率的影响[J].中国农学通报,2009,25(07):62-66
    94.孙玉强.棉花原生质体培养和原生质体对称融合研究[D].华中农业大学博士学位论文,2005
    95.谭效松,贺红武.除草剂的作用靶标与作用模式.[J]农药,2005,44(12):533-537
    96.汤洪.草甘膦对烟草超微结构的影响及烟草EPSPS I基因克隆[D].广西大学硕士学位论文,2008
    97.唐中节.河南省棉花生产与品种遗传改良研究[D].河南农业大学硕士学位论文,2009
    98.童旭宏,吴玉香,祝水金.陆地棉EPSPS基因的克隆及其组织特异性表达分析[J].棉花学报,2009,4:259-264
    99.童旭宏.抗草甘膦棉花突变体R1098的选育及其抗性机理研究[D].浙江大学博士学位论文,2010
    100.汪由,吴禹,王岩,李兆波,王光霞.五种常用的植物转基因技术[J].杂粮作物.2010,30(3):186-189
    101.王昌涛,梁粤,王欢,张宝石,赵琦,张世煌.玉米Ubiqutin启动子的克隆及功能鉴定[J].沈阳农业大学学报,2006,37(1):9-12
    102.王冬梅,李建平,张艳红,周小云,黄乐平.利用转基因技术获得抗病陆地棉的初步研究[J].新疆农业科学,2007,44(11):108-110
    103.王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,2002,2
    104.王海洋,陈建平,张萼.杂交抗虫棉主要农艺及经济性状比较研究[J].江西棉花,2005,27(4):23-25
    105.王家宝,王留明,沈法富,张学坤,杨静,刘任重.环境因素对转Bt基因棉Bt杀虫蛋白表达量的影响[J].山东农业科学,2000,6:4-6
    106.王景雪,赵福永,徐培林,田颖川.‘油菜转抗草甘膦、抗虫基因获得双抗植株[J].遗传学报,2005,32(12):1293-1300
    107.王娟,余渝,孔宪辉,刘丽,王旭文.棉花转基因育种研究现状与前景展望[J].安徽农学通报,2010,16(15):59-60
    108.王清连,张宝红,郭腾龙,许欣然.转基因棉花外源基因的遗传[J].生命科学研究,2001,5(4):345-350
    109.王荣龙,刘定忠,鲍大明,陶碧庆,吴福利.赣北棉区棉田杂草调查初报[J],江西棉花,2000,22(1):23-25
    110.王守才.转基因在玉米中的规律及其稳定性的研究[D].中国农业大学博士学位论文,1996
    111.王伟,朱祯,高越峰,石春林,陈宛新,郭仲琛,李向辉.双价抗虫基因陆地棉转化植株的获得[J].植物学报,1999,41(4):384-388
    112.王小军,刘玉乐,田波.可育的抗除草剂溴苯腈转基因小麦[J].植物学报,1996,38(12):942-948
    113.王秀君,郎志宏,陆伟,林敏,单安山,黄大昉.利用花粉管通道法将耐草甘膦基因mG2-epsps导入玉米自交系的研究初报[J].中国农业科技导报,2008,10(4):56-62
    114.王延琴,杨伟华,许红霞,周大云,匡猛,冯新爱.我国棉花生产成本与收益调查及分析[J].中国棉花,2010,37(11):8-9
    115.王义琴,陈大军,危晓薇,吴明刚,王冬梅,姚正培,黄全生,刘丰疆,美丽古利,李仁敬,孙勇如.天麻抗真菌蛋白基因(gafp)转化彩色棉的研究[J].植物学通报,2003,20(6)
    116.王颖,麦维军,梁承邺,张明永.高等植物启动子的研究进展[J].西北植物学报,2003,23(11):2040-2048
    117.王永芳,张军,崔润丽,李伟,智慧,李海权,刁现民.利用花粉管通道转化谷子DNAj基因获得转基因小麦[J].华北农学报,2009,24(2):17-21
    118.王振怡,吴立柱,王省芬,张桂寅,刘建凤,马峙英.基因枪介导棉花成熟种子胚尖的遗传转化[J].河北农业大学学报,2010,33(3):1-4
    119.王志伟,王清连.外源抗虫基因对棉花杂种优势的影响[J].贵州农业科学,2010,38(1):7-9
    120.文春描,徐正君,蔡平钟,向跃武,张志雄,刘俊,王闵霞,蒲志刚,张志勇.拟南芥热激启动子(HSP18.2)在水稻中的启动效率探讨[J].中国水稻科学,2008,23(3):323-326
    121.文学,张宝红.转基因抗虫棉研究现状与展望[J].农业生物技术学报,2000,8(2):194-199
    122.翁琴.海岛棉(G. barbadense L.)茎尖再生体系的建立及农杆菌介导抗虫基因(Bt;SATI)转化研究[D].新疆农业大学硕士学位论文,2007
    123.吴夫安,吴敬音,韩长胜,李泽田,朱和民,孙雪梅.AP1抗虫基因导入高品质棉株研究新进展[J].中国棉花,2003,30(5):8-10
    124.吴家和,田颖川,罗晓丽,郭洪年,石跃进,陈晓英,贾燕涛,肖娟丽,张献龙.转两类抗虫基因棉优良纯和品系的选育[J].中国农业科学,2003b,36(6):651-656.
    125.吴家和,张献龙,罗晓丽,聂以春,田颖川,陈正华.转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性[J].遗传学报,2004,31(2):183-188.
    126.吴家和,张献龙,罗晓丽,田颖川.转新型双抗虫基因棉花的遗传分析[J].遗传学报,2003,30(7):631-636
    127.吴伟,张颖,祝水金,童旭宏.杂交棉纯度鉴定技术及其纯度控制效果研究[J].棉花学报,2006,18(1):27-31
    128.吴霞,李燕娥,王娇娟,上官小霞,朱祯.转三价抗虫基因棉花遗传特性研究[J].中国生态农业学报,2006,14(1):21-23.
    129.武小霞,刘伟婷,刘琦,李静,马永,李文滨.利用花粉管通道法将抗虫基因(cry V)转入大豆的研究[J].大豆科学,2010,29(4):565-568
    130.夏兰芹,郭三堆.高温对转基因抗虫棉Bt杀虫基因表达的影响[J].中国农业科学,2004,37(11):1733-1737
    131.向文胜,张文吉,陶波,王相晶,李景鹏,苏少泉,张文吉.耐草甘膦菜豆耐性分子学机理研究[J].农药学学报,2001,3(1):23-29
    132.肖松华,吴巧娟,刘剑光,狄佳春,许乃银,陈旭升,柏立新.高品质转野生荠菜凝集素基因棉花的获得[J].棉花学报,2005,17(6):334-338
    133.谢道昕,范云六,倪万潮,黄骏麒.苏云金杆菌(Bacillus thuringiensis)杀虫晶体蛋白基因导入棉花获得转基因植株[J].中国科学(B辑),1991,21(4):367-373
    134.谢龙旭,李云锋,徐培林.根癌农杆菌介导的转aroAM12基因棉花植株的草甘膦抗性[J].植物生理与分子生物学学报,2004,30(2):173-178
    135.谢伟,乐超银,郭政宏,戴志鹏,刘敏,姚伟.不同调控序列作用下GUS基因在烟草中瞬时表达活性[J].植物学通报,2007,24(4):452-458
    136.徐军望,冯德江,李旭刚,常团结,朱祯.水稻EPSP合酶基因的克隆、结构分析和定位[J].中国科学,2002,32(2):97-104
    137.徐文丽.抗冻蛋白基因转化烟草及转基因植株抗寒性研究[D].北京林业大学硕士学位论文,2005
    138.杨书华,倪万潮,葛才林,朱静,王泽港,罗时石.花粉管通道法导入标记DNA在棉花胚珠内的分布[J].核农学报,2007,21(1):13-16
    139.杨燕涛,朱明华,王东华.沿江棉区棉田杂草发生及其化学防除[J].农药,1999,38(9):34
    140.叶旭红,茅云翔,莫照兰,郝彬,邹玉霞,李杰.从鳗弧菌M3 Fosmid文库筛选aroA基因[J].高技术通讯,2008,(9)
    141.易玲.短柄草EPSP合酶基因的克隆及序列分析[D].四川农业大学硕士学位论文,2009
    142.易弋.盐生杜氏藻EPSP合成酶基因的克隆、功能鉴定及其结构的光谱学性质分析[D].四川大学博士学位论文,2007
    143.游大慧,骞宇,王健美,郭经宇,杨毅,李旭锋.芸苔EPSPs基因cDNA的克隆和表达载体的构建[J].四川大学学报,2004,41(3):661-664
    144.游大慧.白菜型油菜EPSPs全长cDNA的克隆和原核表达[D].四川大学硕士学位论文.2004
    145.于寒颖.核盘菌生物除草剂特性及其相关基因的克隆表达[D].哈尔滨工业大学博士学位论文,2006
    146.于同.EPA不同意在转基因棉上使用溴苯腈(译文)[J].生物技术通报,1998,4
    147.于晓红,朱勇清,陈晓亚,许智宏,周宝良,陈松,沈新莲.种子特异表达ipt转基因棉花根和纤维的改变[J].植物学报,2000,42(1):59-63.
    148.于晓玲,崔百明,卫海滨,赵平娟,彭明.基因枪转化法在棉纤维细胞中瞬时表达外源基因的研究[J].棉花学报,2007,19(6):419-423
    149.于娅.棉花基因枪转化体系的建立[D].河北农业大学硕士学位论文.2003
    150.曾潜,肖才升,谢崇湘,张雪林,李建彬,何淑军.抗除草剂棉选育初报[J].作物研究,2001,15(4):25-28
    151.张宝红,郭腾龙,王清连.转基因棉花的遗传研究[J].生命科学研究,2000,4(2):136-142
    152.张宝红,刘方,姚长兵,巩万奎,刘志红,王红梅,刘玉乐.葡萄糖氧化酶基因转化棉花和抗性愈伤组织的获得[J].棉花学报,2001,13(2):78-81
    153.张朝军.棉花叶柄高效再生体系的建立与遗传分析[D].中国农业科学院博士学位论文.2008
    154.张朝贤,倪汉文,魏守辉,黄红娟,刘延,崔海兰,隋标峰,张猛,郭峰.杂草抗药性 研究进展[J].中国农业科学,2009,42(4):1274-1289
    155.张海平,王学德,邵明彦,袁淑娜,李晓.外源纤维素合酶基因对棉纤维品质的改良作用[J].棉花学报,2008,20(2):110-115
    156.张浩.棉花茎尖基因枪-农杆菌转化体系的建立和GLU-CHI基因的导入[D].西南农业大学硕士学位论文,2002
    157.张慧军,董合忠,石跃进,陈受宜,朱永红.山菠菜胆碱单加氧酶基因对棉花的遗传转化和耐盐性表达[J].作物学报.2007,33(7):1073-1078
    158.张金文,熊春蓉,李静雯,王旺田,孟亚雄,陈正华.臭鼻杆菌腈水解酶基因(bxn)的克隆及其在原核生物中的表达[J].草业学报.2006,15(6):87-92
    159.张磊.水稻苯达松抗性基因Bel的精细定位与克隆[D].华中农业大学硕士学位论文,2006
    160.张巧,汪静儿,林君,等.不同凝固剂对陆地棉体细胞胚胎发生和植株再生的影响[J].棉花学报.2010,22(1):3-9
    161.张天真,马国佳,郭旺珍.陆地棉内切-1,4-β-葡聚糖酶基因.专利号:200510040232,2005
    162.张旺锋,勾玲,王振林,李少昆,余松烈,曹连莆,李伟明.不同生态棉区棉花单铃重的变化及与气象因子关系的研究[J].中国农业科学,2002,35(7):872-872
    163.张献龙,张家明,姚明镜,孙济中,刘金兰.棉花体细胞培养及其应用基础研究[J].华中农业大学学,1993,12(5):421-426
    164.张香桂,周宝良,陈松,张震林.抗虫棉与常规棉主要农艺及经济性状的比较研究[J].中国棉花,2004,5:14-16
    165.张兴华,田绍仁,乔艳艳,李捷.转基因抗病棉花所转抗病基因(Chi+Glu)对棉花生物学特性的影响[J].中国农学通报,2011,27(03):116-123
    166.张秀菊,黄爱云.豫北棉田常见杂草的化学防除技术[J].中国棉花,1999,26(6):45
    167.张燕红,黄乐平,周小云,王冬梅.农杆菌真空渗透法转化棉花花粉的初步研究[J].棉花学报,2008,5
    168.张震林,陈松,刘正銮,周宝良,张香桂.转蚕丝芯蛋白基因获得高强纤维棉花植株[J].江西农业学报,2004b,16(1):15-19
    169.张震林,刘正銮,周宝良,陈松,张香桂.转兔角蛋白基因改良棉纤维品质研究[J].棉 花学报,2004a,16(2):72-76
    170.张志良.植物生理学实理指导[M].北京:高等教育出版社,2000
    171.赵常燕.农杆菌介导棉花遗传转化及转phyA植株的获得[D].河北农业大学硕士学位论文,2008
    172.赵福永,谢龙旭,田颖川,徐培林.抗草甘膦基因aroAM12及抗虫基因Btslm的转基因棉株[J].作物学报.2005,31(1):108-113
    173.赵丽芬,赵国忠,李爱国.利用转角蛋白基因改良棉纤维品质的研究[J].中国农学通报,2005,21(7):61-63
    174.赵特.一种抗草甘膦基因的发现和抗草甘膦转基因水稻的培育[D].浙江大学博士学位论文,2008
    175.钟蓉,朱峰,刘玉乐.油菜的遗传转化及抗溴苯腈转基因油菜的获得[J].植物学报,1997,39(1):22-27
    176.钟育海,申艮宝.植物基因的遗传转化方法[J].安徽农学通报,2010,16(11):65-66
    177.周长发,张锐,张晓,罗淑萍,郭三堆.地高辛随机引物法标记探针的Southern杂交技术优化[J].中国农业科技导报,2009,11(4):123-128
    178.周芳,姚山麟,朱云国.基因枪技术在现代生物领域中的应用[J].中国仪器仪表,2009,(9):51-54
    179.周小云,马盾,危小薇,艾秀莲,黄乐平.新疆陆地棉转雪莲PEBP基因抗寒性研究[J].棉花学报,2009,21(1):64-66
    180.周晓卉,黄丽华,蒋向,李育强,张学文.薤白EPSP合成酶基因cDNA的克隆与原核表达分析[J].中国农业科学,2009,42(7)
    181.朱卫民,吴敬音,余建明,蔡小宁,朱祯,李向辉.棉花茎尖分生组织在微粒轰击法基因转化中的应用[J].江苏农业学报,1998,14(2):74-79
    182.朱玉.极端污染环境下草甘膦耐受菌株荧光假单胞菌G2的鉴定及其EPSP合成酶基因的克隆[D].中国农业科学院硕士学位论文.2002
    183.祝水金,汪静儿,俞志华,季道藩.棉花抗草甘膦突变体筛选及其在杂种优势利用中的应用[J].棉花学报,2003,15(4):227-230
    184.左示敏,张平,祝树德,陈宗祥,田文忠,朱祯,潘学彪.水稻转GNA基因后代对褐飞虱的抗性研究[J].作物学报,2004,30(4):371-375
    185.Banerjee AK, Agrawal DC, Nalawade SM, Krishnamurthy KV. Transient Expression of (3-Glucuronidase in Embryo Axes of Cotton by Agrobacterium and Particle Bombardment Methods[J]. Biologia Plantarum,2002,45(3):359-365
    186. Bauer PJ, McAlister DD, Frederick JR. A Comparison of Bollgard/Glyphosate Tolerant Cotton Cultivars to Their Conventional Parents for Open End Yarn Processing Performance[J]. Journal of Cotton Science,2006,10:168-174
    187. Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry JE, Ow W. Engineering 2,4-D resistance into cotton[J]. Theoretical and Applied Genetics,1992,83:645-649
    188. Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu DL, Lassner MW. Discovery and directed evolution of a glyphosate tolerance gene[J]. Science,2004,304(5674):1151-1154
    189. Chen TZ, Wu SJ, Zhao J, Guo WZ, Zhang TZ. Pistil drip following pollination:a simple in planta Agrobacterium-mediated transformation in cotton[J]. Biotechnology Letters,2010,32: 547-555
    190. Chen WY, Townes TM. Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin condensation[J]. Proceedings of the National Academy of Sciences.2000,97(1):377-382
    191. Chen Y, Wang YQ. Sun YR, Zhang LM, Li WB. Highly efficient expression of rabbit neutrophil pepiidc-1 gene in Chlorella ellipsoidea cells[J]. Current Genetics,2001,39, 365-372
    192. Chlan CA, Lin J, Cary JW, Cleveland TE. A procedure for biolistic transformation and regeneration of transgenic cotton from meristematic tissue[J]. Plant Molecular Biology Reporter.1995.13:31-37
    193. Christenscn AH, Quail PH. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants[J]. Transgenic Research,1996,5(3):213-218
    194. Christensen AH, Sharrock RA and Quail PH. Maize polyubiquitin genes:structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation[J]. Plant Molecular Biology,1992.18(4):675-689
    195. Christou P. Particle Bombardment for Genetic Engineering of Plants. R.G[M]. Landes Company and Academic Press, Austin, TX,1996a
    196. Christou P. Transformation technology[J]. Trends in Plant Science,1996b,1:423-431
    197. Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE. Activity of a maize ubiquitin promoter in transgenic rice[J]. Plant Molecular Biology,1993,23(3):567-581
    198. Cousins YL, Lyon BR, Llewellyn DJ. Transformation of an Australian cultivar:Prospects for cotton improvement through genetic engineering[J]. Australian Journal of Plant Physiology, 1991,18:481-494
    199. Daniell H, Dugger P, Richter D. Genetic engineering of cotton to increase fiber strength, water absorption and dye binding[C]. Proceedings Beltwide Cotton Conferences, San Diego, California, USA,1998, (1):595-598
    200. Daud MK, Variath MT, Ali S, Jamil M, Khan MT, Shafi M, Zhu SJ. Genetic transformation of Bar gene and its inheritance and segregation behavior in the resultant transgenic cotton germplasm (BR001) [J]. Pakistan Journal of Botany,2009,41(5):2167-2178
    201. Davidonis GH, Hatmlton RH. Plant regeneration from callus tissues of Gossypium hirsutum L.[J]. Plant Science Letters,1983,32:89-93
    202. Della-cioppa G, Bauer SC, Klein BK, Shah DM, Fraley RT, Kishore GM. Translocation of the precursor of 5-enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America,1986,83:6873-6877
    203. Dill GM. Glyphosate-resistant crops:history, status and future[J]. Pest Management Science, 2005, (61):219-224
    204. Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim DJ, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS. Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens[J]. Plant Biotechnology Journal,2003,1(5): 321-336
    205. Fillati J, Mccall C, Comai L, Kiser J, McBride K. Stalker DM. Genetic engineering of cotton for herbicide and insect resistance[C]. Proceedings Beltwide Cotton Conferences, San Diego, California, USA,1989,17-19
    206. Finer JJ, McMullen MD. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment[J]. Plant Cell Reports,1990,8:886-889
    207. Finer JJ, Smith RH. Initiation of callus and somatic embryos from explants of mature cotton (Gossypium klotzschianum Anderss)[J]. Plant Cell Reports,1984,3:41-43
    208. Firoozabady E, DeBoer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE. Transformation of cotton(Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants[J]. Plant Molecular Biology,1987,10:105-116
    209. Firoozabady E, DeBoer DL. Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L.)[J]. In Vitro Cellular & Developmental Biology-Plant. 1993,29:166-173
    210. Fryxell PA. A revision of the Australian species of Gossypium with observations on the occurrence of Thespesia in Australia (Malvaceae)[J]. Australian Journal of Botany,1992,13: 71-102
    211.Funke T, Han H, Healy-Fried ML, Fischer M, Schonbrunn E. Molecular basis for the herbicide resistance of Roundup Ready crops[J]. Proceedings of the National Academy of Sciences,2006,103,13010-13015
    212. Genschik P, Marbach J, Uze M, Feuerman M, Plesse B, Fleck J. Structure and promoter activity of a stress and developmentally regulated polyubiquitin- encoding gene of Nicotiana tabacum[J]. Gene,1994,148(2):195-202
    213. Jayashanker R, Dani RG, Diatullina DL. A method for the production of embryogenic callus cultures of cotton (Gossypium herbaceum L.)[J]. Journal of Cotton Research and Development,1991,5:7-11
    214. John ME. Cotton crop improvement through genetic engineering[J]. Critical Reviews in Biotechnology,1997,17:185-208
    215. John ME. Structural characterization of genes corresponding to cotton fiber mRNA, E6: reduced E6 protein in transgenic plants by antisense gene[J]. Plant Molecular Biology,1996, 30:297-306
    216. Jordan AG, Wakelyn PJ, May OL. Transgenic cotton and fiber quality. Part 1. Effect of transgenic technology[C].16th Engineered Fiber Selection System Conference,2003,9-11
    217. Kang TJ, Kwon TH, Kim TG, Loc NH, Yang MS. Comparing constitutive promoters using CAT activity in transgenic tobacco plants[J]. Molecules and cells,2003,16(1):117-122
    218. Keller G,.Spatola L, Mccabe D, Martinell B, Swain W, Join ME. Transgenic cotton resistant to herbicide bialaphos[J]. Transgenic Research.1997,6(6):385-392
    219. Kishore GM, Shah DM. Amino acid biosynthesis inhibitors as herbicides[J]. Annual Review of Biochemistry,1988, (57):627-663
    220. Laurent F, Debrauwer L, Rathahao E, Scalla R.2,4-Dichlorophenoxyacetic acid metabolism in transgenic tolerant cotton (Gossypium hirsutum)[J]. Journal of Agricultural and Food Chemistry,2000,48(11):5307-11
    221. Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS. A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.):Embryogenic calli as a source to generate large numbers of transgenic plants[J]. Plant Cell Reports,2004,22:465-470
    222. Li X, Wang XD, Zhao X, Dutt Y. Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration[J]. Plant Cell Reports,2004,22(9):691-697
    223. Lyon BR, Cousins YL, Llewellyn DJ, Dennis ES. Cotton plants transformed with a bacterial degradation gene are protected from accidental spray drift damage by the herbicide 2,4-dichlorophenoxyacetic acid[J]. Transgenic Research,1993,2:162-169
    224. Mccabe DE, Martinell BJ. Transformation of elite cotton cultivars via particle bombardment of meristems[J]. Nature Biotechnology.1993,11:596-598
    225. Murray F, Llewellyn D, McFadden H, Last D, Dennis ES, Peacock WJ.. Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic[J]. Molecular Breeding,1999,5(3):219-232
    226. Nandeshwar SB, Moghe S, Chakrabarty PK, Deshattiwar MK, Kranthi K, Anandkumar P, Mayee CD, Khadi BM. Agrobacterium-Mediated Transformation of crylAc Gene into Shoot-Tip Meristem of Diploid Cotton Gossypium arboreum cv. RG8 and Regeneration of Transgenic Plants[J]. Plant Molecular Biology Reporter,2009,27:549-557
    227. Negrutiu I, Heberle-Bors E, Potrykus I. Attempts to transform for kanamycin-resistance in mature pollen of tobacco[J]. Plant genetics and breeding,1986
    228. Nida DL, Kolacz KH, Buehler RE, Deaton WR, Schuler WR, Armstrong TA, Taylor ML, Ebert CC, Rogan GJ, Padgette SR, Fuchs RL. Glyphosate-tolerant cotton:genetic characterization and protein expression[J]. Journal of Agricultural and Food Chemistry,1996, 44(7):1960-1966
    229. Payton P, Allen RD, Trolinder N, Holaday AS. Over-expression of chloroplast- targeted Mn superoxide dismutase in cotton (Gossypium hirsutum L. cv. Coker 312) does not alter the reduction of photosynthesis after short exposures to low temperature and high light intensity[J]. Photosynthesis Research,1997,52:233-244
    230. Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA. Insect-resistant cotton plants[J]..Nature Biotechnology,1990,8:939-943
    231. Price HJ, Smith RH. Somatic embryogenesis in suspension cultures of Gossypium klotzschianum Anderss[J]. Planta,1979,145:305-307
    232. Rajasekaran K, Cary JW, Jaynes JM, Cleveland TE. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton(Gossypium hirsutum L.) plants[J]. Plant Biotechnology Journal,2005,3(6):545-554
    233. Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S, Anderson DM. Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase[J]. Molecular Breeding,1996,2:307-319
    234. Rajasekaran K, Hudspeth RL, Cary JW, Anderson DM, Cleveland TE. High-frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures[J]. Plant Cell Reports,2000,19:539-545
    235. Rech EL, Vianna GR, Aragao Francisco JL. High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants[J]. Nature Protocols,2008,3:410-418
    236. Rinehart JA, Petersen MW, John ME. Tissue-specific and developmental regulation of cotton gene FbL2A. Demonstration of promoter activity in transgenic plants[J]. Plant Physiology, 1996,112:1331-1341
    237. Roeckel P, Heizmann P, Dubois M, Dumas C. Attempts to transform Zea mays via pollen grains[J]. Sexual Plant Reproduction,1988.1(3):156-163
    238. Sakhanokho HF, Zipf A, Rajasekaran K, Saha S, Sharma GC, Chee PW. Somatic embryo initiation and germination in diploid cotton(Gossypium arboreum L.)[J]. In Vitro Cellular & Developmental Biology,2004,40:177-181
    239. Sakhanokho HF, Zipf A, Rajasekaran K, Saha S, Sharma GC. Induction of highly embryogenic calli and plant regeneration in upland (Gossypium hirsutum L.) and Pima (Gossypium barbadense L.) cottons[J]. Crop Science,2001,41:1235-1240
    240. Sanjaya, Satyavathi VV, Prasad V, Kirthi N, Maiya SP, Savithri HS, Sita GL. Development of cotton transgenics with antisense A V2 gene for resistance against cotton leaf curl virus (CLCuD) via Agrobacterium tumefaciens[J]. Plant Cell, Tissue and Organ Culture,2005,81: 55-63
    241. Schonbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JNS, Kabsch W. Interaction of the herbicide' glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(4):1376-1380
    242. Service RF. A growing threat down on the farm[J]. Science,2007,316:1114-1117
    243. Smith RH, Price HJ, Thaxton JB. Defined conditions for the initiation and growth of cotton callus in vitro I. Gossypium arboreum[J]. In Vitro Cellular & Developmental Biology-Plant, 1977,13:329-334
    244. Stallings WC, Abdel-Meguid SS, Lim LW, Shieh HS, Dayringer HE, Leimgruber NK, Stegeman RA, Anderson KS, Sikorski JA, Padgette SR, Kishore GM. Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: a distinctive protein fold[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(11):5046-5050
    245. Sun YC, Chen YC, Tian ZX, Li FM, Wang XY, Zhang J, Xiao ZL, Lin M, Gilmartin N, Dowling DN. Wang YP. Novel AroA with high tolerance to glyphosate, encoded by a gene of Pseudomonas putida 4G-1 isolated from an extremely polluted environment in China[J]. Applied and Environmental Microbiology,2005,71(8):4771-4776
    246. Sun YQ, Zhang XL, Huang C, Guo XP, Nie YC. Somatic embryogenesis and plant regeneration from different wild diploid cotton(Gossypium) species[J]. Plant Cell Reports, 2006,25:289-296
    247. Sun YQ, Zhang XL, Jin SX, Liang SG, Nie YC. Somatic embryogenesis and plant regeneration in wild cotton(Gossypium klotzschianum)[J]. Plant Cell, Tissue and Organ Culture,2003,75:247-253
    248. Sunilkumar G, Rathore KS. Transgenic cotton:factors influencing Agrobacterium-mediated transformation and regeneration[J]. Molecular Breeding,2001,8:37-52
    249. Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR, Bohnert HJ. Protease inhibitors of Manduca sexta expressed in transgenic cotton[J]. Plant Cell Reports, 1995,14:758-762
    250. Tohidfar M, Mohammadi M, Ghareyazie B. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene[J]. Plant Cell, Tissue and Organ Culture.2005,83(1):83-96
    251.Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium- mediated techniques[J]. Plant Cell Reports,2005,23(12):780-789
    252. Umbeck P, Johnson G, Barton K, Swain W. Genetically Transformed Cotton{Gossypium Hirsutum L.) Plants[J]. Nature Biotechnology,1987,5:263-266
    253. Verhalen LM, Greenhagen BE, Thacker RW. Lint yield, lint percentage, and fiber quality response in bollgard. roundup ready, and bollgard/roundup ready cotton[J]. Journal of Cotton Science.2003,7:23-38
    254. Wang YH, Ye GY, Luan N, Xiao J, Chen Y, Chen DH. Boll size affects the insecticidal protein content in Bacillus thuringiensis (Bt) cotton[J]. Field Crops Research,2009:106-110
    255. Wehrmann A, Vliet AV, Opsomer C, Botterman J, Schulz A. The similarities of bar and pat gene products make them equally applicable for plant engineers[J]. Nature Biotechnology, 1996,14,1274-1278
    256. Wilkins TA. Rajasekaran K, Anderson DM. cotton biotechnology. Critical Reviews in Plant Sciences.2000,19(6):511-550
    257. Wilson FD, Flint HM, Deaton WR, Buehler RE. Yield, yield components, and fiber properties of insect-resistant cotton lines containing a Bacillus thuringiensis toxin gene[J]. Crop Science,1994.34:38-41
    258. Wu JH, Zhang XL. Nie YC, Luo XL. High-efficiency transformation of Gossypium hirsutum embryogenic calli mediated by Agrobacterium tumefaciens and regeneration of insect-resistant plants[J]. Plant Breeding,2005.124:142-146
    259. Wu SJ, Wang HH, Li FF, Chen TZ, Zhang J, Jiang YJ, Ding YZ, Guo WZ, Zhang TZ. Enhanced Agrobacterium-mediated Transformation of Embryogenic Calli of Upland Cotton via Efficient Selection and Timely Subculture of Somatic Embryos[J]. Plant Molecular Biology Reporter,2008,26:174-185
    260. Yan SF, Zhang Q, Wang JE, Sun YQ, Daud MK, Zhu SJ. Somatic embryogenesis and plant regeneration in two wild cotton species belong to G genome[J]. In Vitro Cellular & Developmental Biology-Plant,2010,46:298-305
    261. York AC, Culpepper AS, Bowman DT, May OL. Performance of glyphosate-tolerant cotton cultivars in official cultivar trials[J]. The Journal of Cotton Science,2004,8:261-270
    262. Zapata C, Park SH, El-Zik KM, Smith RH. Transformation of a Texas cotton cultivar by using Agrobacterium and the shoot apex[J]. Theoretical and Applied Genetics,1999,98: 252-256
    263. Zhou GY, Weng J, Zeng Y, Huang J. Qian S, Liu G. Introduction of exogenous DNA into cotton embryos [J]. Methods in Enzymology,1983,101:433-481
    264. Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, Pajeau ME, Brown SM, Santino CG, Fry JE. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation[J]. Plant Cell Reports,1995, (15):159-163
    265. Zhou WJ, Leul M. Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation[J]. Plant Growth Regulation,1999,27:99-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700