用户名: 密码: 验证码:
我国不同年代主推玉米品种耐旱抗病性的变化趋势
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L.)是中国第一大粮食作物,也可用于饲料、工业原料与再生能源,在国民经济中占有重要地位。近几年由于干旱频繁发生,病虫害日益加重,严重威胁了玉米生产。因此需要设定新的育种目标及方案改善玉米的抗病虫能力,适应恶劣环境的能力。以美国为代表的玉米种业发达国家的经验表明,对推广品种的回顾性研究可以为进一步开发新品种遗传产量潜力以及提高产量能力提供有益的依据和指导。因此,本研究试图通过对我国玉米主产区1950-2000年间主要推广品种的耐旱与抗病鉴定试验,探讨:(1)主推玉米品种耐旱性的变化趋势。(2)主推玉米品种在干旱与正常浇水条件下产量、农艺性状及其杂种优势效应的变化趋势。(3)主推玉米品种抗病性的演变趋势。探索今后进一步提高产量潜力的育种策略,为高产育种实践提供理论依据。
     本研究所采用的试验材料均为玉米主产区大面积推广的品种,包括1950年代的农家种,1960年代的双交种以及1970-2000年代的单交种共35个。2010年在旱棚内进行苗期耐旱鉴定试验。2010-2011年在新疆和海南进行开花期耐旱鉴定试验。2010年在北京、济宁、吉林等地开展病害鉴定试验。通过以上试验,主要结果结论如下:
     1、主推玉米品种的苗期耐旱性随年代的变化趋势缓慢下降,其中20世纪50到60年代快速提高,60年代以后呈下降趋势。70年代以来的单交种苗期耐旱性随年份变化是呈下降趋势。70年代以来的27个单交种可分为3类,耐旱性强的杂交种为鲁单50、群单105、农大108、掖单13、掖单4号、郑单2号;耐旱性弱的杂交种为农大3138、农大60、沈单16;其余为中间类型。今后育种工作的重点之一就是在自交系选育中加大苗期水分胁迫,进而为培育耐旱杂交种奠定基础。
     2、干旱条件下,主推玉米品种产量较灌溉条件下降。在灌溉与干旱条件下,我国玉米主推品种的产量与年代呈线性上升趋势。在海南试验点的灌溉条件下产量的遗传增益为85.8Kg.ha~(-10).year~(-1)(R~2=0.96),干旱条件下的遗传增益为53.88Kg.ha~(-1).year~(-1)(R~2=0.94)。在新疆试验点,灌溉条件下产量遗传增益为94.3Kg.ha~(-1).year~(-1)(R~2=0.97),干旱条件下的遗传增益为61Kg.ha-.1year~(-1)(R~2=0.99)。
     在水浇条件下产量的遗传增益高于干旱条件。主推玉米品种的耐旱系数随着年代更替而下降,即我国玉米主推品种的耐旱性呈下降趋势。虽然玉米育种家一直比较重视品种的耐旱性,但是在干旱严重的情况下,主推玉米品种的耐旱性呈现下降趋势。因此在今后自交系选育与杂交种比较试验中应当加大干旱胁迫的选择压力,才能进一步提高品种的耐旱性。
     在干旱条件下,1950-2000年代农家种及骨干杂交种被改良的植株性状为,ASI,叶夹角、雄穗分枝数、空秆率、最大绿叶数。光合速率和叶片卷曲度没有得到改良。被改良的穗部性状为穗长、穗粗、穗粒数、百粒重、秃尖长。出籽率没有改良。耐旱性上升的主要植株性状为株高、穗位高、最大绿叶数,叶夹角与空秆率的耐旱性在下降。干旱条件下ASI、雄穗大小、光合速率与产量的相关性较高。
     因此得出,我国主推玉米品种的大部分农艺性状都得到了改良,但要提高品种的耐旱性需要继续提高干旱条件下的光合速率,减小雄穗,减少空秆率,减小秃尖,提高出籽率等方面的工作,选择叶片卷曲的基因型。
     3、亲本自交系的产量均随着年代而直线上升。大体趋势是1960-1980年代自交系产量迅速升高,1990年代下降,2000年代又有所回升。亲本自交系的耐旱系数随着年代更替呈上升趋势,2000年代出现下降。这说明我国骨干自交系的耐旱性在逐渐提高,但近十年出现倒退。今后需要拓宽种质基础,加大自交系选育中干旱的选择压力,进一步提高自交系的耐旱性。
     干旱条件下,亲本自交系被改良的植株性状为ASI、株高与穗位、雄穗分支数、叶夹角、空秆率、最大绿叶数。果穗性状都得到了改良。主要农艺性状的耐旱性上升的为株高、空秆率、穗长、穗粗、穗粒数,下降的为穗位高、百粒重。因此得出,玉米骨干自交系大部分农艺性状的耐旱性得到了很好的改良,下一步要加强干旱条件下百粒重的改良。
     4、干旱条件下的绝对杂种优势低于灌溉条件。这说明干旱引起杂交种的减产幅度大于其亲本自交系。绝对杂种优势均随着年代延伸而增加。在干旱条件下玉米杂交种绝对杂种优势增加速度低于灌溉条件。干旱条件下相对杂种优势较正常水浇条件没有明显差异。在所有灌溉条件中,1970-2000年代杂交种的相对杂种优势总体保持稳定。因此可以认为,杂交种产量的提高,并不是来源于逆境条件下杂种优势的提高,而是由于抗逆性得到改良。
     5、随着年代更替玉米品种对矮花叶病与瘤黑粉病的抗性总体呈上升趋势,杂交种对这两种病害的抗性远远高于农家品种。品种对丝黑穗病的抗性随年代更替而上升,但是1970年代单交种的出现,对丝黑穗病的抗性大大降低,1980年代以后,玉米杂交种对丝黑穗病的抗性迅速升高。因此1980年代以后通过针对性的育种途径,品种对丝黑穗病的抗性得到了较好的改良。本试验中1950-2000年代的35个时代品种都不抗粗缩病。因此选育抗粗缩病品种是生产上亟需解决的问题。
Maize(Zea mays L.)is the first food in China. It is also used as fodder, industry material andrenewable energy and is very important in national economy. Corn production was affected severelybecause drought frequently occurred and pests and diseases aggravated increasingly. Therefore, newbreeding objective and scheme were needed to establish to improve diseases resistance and adaption tosevere environment. Experience of the nations with developed seed industries indicated thatretrospective study could afford useful advice and instruction for improving yield ability. Identificationexperiments on drought tolerance and disease resistance were carried out for spreading cultivars from1950to2000. The aim was to discover:(1)trend of drought tolerance of Chinese spreading cultivars,(2) trend of yield, plant trait and heterosis of spanning cultivars in full irrigation and drought stressenvironments in China,(3) trend of disease resistance of spreding cultivars. The research can explorenew breeding strategies to further improve yield potential in the future and also offord theory basis forhigh yield breeding.
     The material of the research was mainly spanning cultivars in maize central production region from1950to2000, including the4OPVs in1950s,4double-cross hybrids in1960s and27single-crosshybrids after1970s. Evaluation of drought tolerance in seedling stage was carried out in dry house in2010. Identification of drought tolerance in the flowering stage was developed in Xinjiang and Hainanin2010and2011. Evaluation on diseases resistance was lunched in Beijing, Jining and Jilin in2010.From these experiments, the results were acquired as follows:
     1. Drought tolerance in seedling stage slowed down along with the decades. It increased rapidlyfrom1950to1960and decreased after1960. It also declined with released years for single-crosshybrids after1970. Twenty seven single-cross hybrids were clustered into three categories, hybrids withbetter tolerance to drought including Ludan50, Qundan105, Nongda108, Yedan13, Yedan4, Zhengdan2;worse tolerant hybrids comprising Nongda138, Nongda60, Shendan16; the rest belonging to middletype. One of emphasis in maize breeding is to strengthen water stress in seedling stage, whichestablishes the basis for breeding new hybrids tolerant to drought.
     2. The change between grain yield of cultivars and decades was linear increase in full irrigation anddrought stress treatments. The yield gain was85.8Kg.ha~(-1).year~(-1)(R~2=0.96)in full irrigation and53.88Kg.ha~(-1).year~(-1)(R~2=0.94)in drought stress at Hainan location。At Xinjiang location, it was94.3Kg.ha~(-1).year~(-1)(R~2=0.97)in full irrigation and61Kg.ha~(-1).year~(-1)(R~2=0.99)in drought stress.
     The yield gain was higher in full irrigation treatment than in drought stress treatment. Thecoefficient of drought tolerance (Cd) of cultivars decreased with decades, that is to say, the droughttolerance declined with decades. Although the breeders always attached importance to the droughttolerance of cultivars, it declined in severe stress environments. Therefore, drought stress should bestrengthened in breeding progress including inbred lines and hybrids in the future for further improvingthe ability of adaption to stress environments.
     In drought treatments, improved agronomic traits included that ASI, leaf angle, tassel branches number, green leaves number, empty ear rate, ear length, ear diameter, kernel number per ear, weightper hundred kernels, barren tip length. The traits with no improvements included that photosynthesis,leaf rolling and shell percentage. The traits with decreased drought tolerance were comprised of leafangle and empty ear rate.
     The next tusk emphasized on diminishing tassel, empty ear rate and barren tip length, andimproving photosynthesis and shelling percentage in drought tolerance breeding in maize.
     3. The grain yield of inbred lines increased linearly with decades. The yield increased from1960to1980, decreased in1990, and then increased in2000. The grain yield of inbred lines in droughttreatment reduced comparative with full irrigation treatment. The yield gap of new inbred lines waslarger than that of old one. The Cd of inbred lines decreased with decades, but declined in2000.Therefore, the drought stress tolerance of inbred lines increased step by step, but backward in2000. Weshould introduce new germplasm and strengthen drought pressure in breeding lines in the future.
     In drought treatments, improved agronomic traits included ASI, plant and ear height, leaf angle,tassel branches number, empty ear rate, green leaves number and all the ear traits. The traits whosedrought tolerance declined were comprised of ear height and weight per hundred kernels.
     Therefore, most agronomic traits of parental lines and their drought tolerance were improved. Andwe should further improve weight per hundred kernels for breeding new inbred lines tolerance todrought.
     4. The absolute heterosis in drought stress was less than that of full irrigation. It indicated that theyield reduction range of hybrid was higher than parental lines. Absolute heterosis increased withdecades from1970to2000in drought stress and in full irrigation treatments. The relative heterosisdeclined from1970to2000slowly, so it kept steady generally. No obvious difference exists betweenrelative heterosis in drought stress and full irrigation treatments. Thus we can conclude that theimprovement of hybrids was impertinent to relative heterosis in drought stress.
     5. The resistance to maize dwarf mosaic virus (MDMV) and common smut disease (CSD)increased with decades. The resistance of hybrids was better than OPVs to the two diseases. Theresistance to head smut disease (HSD) increased from1950to1960, decreased in1970, and increasedagain from1980to2000. So the HSD resistance decreases in1970because of single hybrid occurrence.But it was improved from1980as the result of purposive breeding strategies. All of the entries werehighly susceptible to maize rough dwarf virus (MRDV). Therefore, breeding new varieties resistant toMRDV is a key problem to solve.
引文
1.白琪林,孙煊,石平,陈稳良,郭国亮.玉米自交系抗丝黑穗病鉴定[J].山西农业科学,2010,38(7):19~21.
    2.陈艳萍,袁建华,孟庆长,张彦兵.玉米自交系粗缩病毒抗性鉴定研究[J].金陵科技学院学报,2007,23(3):57~60.
    3.陈永坤,李新海,肖木辑,李明顺,苑森行,王向东,张世煌.64份玉米自交系抗粗缩病的遗传变异分析[J].作物学报,2006,32(12):1848~1854.
    4.长子中.当前我国粮食安全的现状及面临的问题[J].北方经济,2011,4:13~17.
    5.董树亭.玉米生态生理与产量品质形成[M].北京:高等教育出版社,2006:168~225.
    6.鄂文弟,王振华,张立国,张林,王霞,孙广权.玉米瘤黑粉病的研究进展[J].玉米科学,2006,14(1):153~157.
    7.付凤玲,周树峰,潘光堂,杨婉身,荣廷昭.玉米耐旱系数的多元回归分析[J].作物学报,2003,29(3):468~472.
    8.高洁,祁新,蔚荣海,王玉兰.玉米种质资源对丝黑穗病的抗性鉴定[J].吉林农业大学学报,2006,28(2):143~146,151.
    9.郭庆法,王庆成,汪黎明.中国玉米栽培学[M].上海:上海科学技术出版社,2004:284~300.
    10.侯建华,吕凤山.玉米苗期抗旱性鉴定研究[J].华北农学报,1995,10(03):89~93.
    11.胡昌浩,董树亭,王空军,孙庆泉.我国不同年代玉米品种生育特性演进规律研究Ⅰ产量性状的演进[J].玉米科学,1998,6(2):44~48.
    12.胡瑞法,张世煌,石晓华.采用参与式方法评估中国玉米研究的优先序[J].中国农业科学,2004,37(6):781~787.
    13.黄强,李晚忱,王振营,何康来.玉米粗缩病研究的回顾与展望[J].玉米科学,2011,19(2):140~143.
    14.黄文秀,李飞,谷树忠.农业自然资源[M].北京:科学出版社,1998:105~110.
    15.贾志森,智建奇,郑联寿,苑森行,马淑文,李郑.玉米种质资源抗病毒病鉴定[J].山西农业科学,2008,36(1):76~79.
    16.黎裕,王天宇,刘成,石云素,宋燕春.玉米抗旱品种的筛选指标研究[J].植物遗传资源学报,2004,5(03):210~215.
    17.李晚忱,付凤玲.玉米苗期耐旱性鉴定方法研究[J].西南农业学报,2001,14(3):29~32.
    18.李新海,高根来,梁晓玲,袁力行,李明顺,张世煌.我国主要玉米自交系开花期耐旱性差异及改良[J].作物学报,2002,28(05):595~600.
    19.李新海,韩晓清,王振华,张世煌.玉米矮花叶病研究进展[J].玉米科学,2000,8(3):67~72.
    20.李运朝,王元东,崔彦宏,赵久然,郭景伦,段民孝,杨国航,邢锦峰.玉米抗旱性鉴定研究进展[J].玉米科学,2004,12(01):63~68.
    21.刘爱国,张成和,石洁.玉米杂交种对多种病害抗性鉴定结果初报[J].华北农学报,2000,15(增刊):85~89.
    22.刘纪麟.玉米育种学[M].中国农业出版社,1991:290~291.
    23.刘开昌,董树亭,赵海军,王庆成,李宗新.我国玉米自交系叶片保绿性及其与产量的关系[J].中国农业科学.2009,35(09):1662~1671.
    24.刘鹏,阮长春,任英,韩立军,藤文星.玉米品种抗旱性指标筛选的研究[J].吉林农业科学2009,34(04):21~24,34
    25.刘贤德,李晓辉,李文华,李明顺,李新海.玉米自交系苗期耐旱性差异分析[J].玉米科学,2004,12(03):63~65.
    26.路银贵,邸垫平,苗洪芹,田兰芝.国外及国内玉米自交系抗粗缩病性鉴定及分析[J].河北农业科学,2001,5(04):22~25.
    27.吕香玲,宋波,刘玉梅,李新海.玉米矮花叶病的抗性遗传分析[J].华北农学报,2009,24(01):169~173.
    28.吕香玲,张宝石.玉米矮花叶病研究进展[J].作物杂志,2007,3:27~31.
    29.罗娜,金益,董玲,孙艳杰,刘红军.浅谈玉米抗丝黑穗病育种[J].黑龙江农业科学,2007,1:13~16.
    30.卢振宇,李明顺,谢振江,谢传晓,李新海,李炳华,张世煌.我国玉米杂交种产量性状变化趋势研究[J].玉米科学,2010,18(04):13~17.
    31.苗洪芹,田兰芹,路银贵,邿垫平,陈禩祯.简便易行的玉米粗缩病严重度分级标准[J].植物保护,2005,31(06):88~89.
    32.牛连杰.不同年代玉米自交系性状改良趋势的研究[J].中国种业,2004(12):37~38.
    33.裴英杰,郑家玲,庾红,王金胜,丁起盛,郭栋生,郭春绒.用于玉米品种抗旱性鉴定的生理生化指标[J].华北农学报,1992,7(01):31~35.
    34.乔奇,张振臣,靳秀兰,王永江,陈龙华.河南省玉米主要病害及防治对策[J].河南农业科学,2005,1:35~37.
    35.邱建军,李哲敏.21世纪我国农业生产面临的问题[J].农业信息探索,2000(05):11~15.
    36.曲铭丹,张宝石,张宇,孙雪峰,王晓磊.辽宁省不同年代玉米杂交种杂种优势的演变特点[J].安徽农业科学,2008,36(12):4918~4920.
    37.石秀清,王富荣,石银鹿,王文静,王建军,史海萍.玉米种质资源抗矮花叶病鉴定[J].植物遗传资源学报,2003,4(04):338~340.
    38.史新海,李可敬,孙为森,赵尧先,王金姣,李勇.山东省不同年代玉米杂交种主要农艺性状演变规律的研究[J].玉米科学,2000,8(02):33~35.
    39.史新海,赵永厚,赵格,星耀武,于福新.山东省中间型玉米杂交种主要性状选育目标的分析[J].莱阳农学院学报,2003,24(01):42~45.
    40.苏前富,张伟,宋淑云,晋齐鸣,李红,张欣芳,隋晶.2007年吉林省玉米主要病害调查及其发生趋势[J].玉米科学,2008,16(05):135~137.
    41.孙道杰,王辉.保障我国粮食安全的作物育种方向探讨[J].安徽农业科学,2000,28(03):272~273.
    42.谭静,黄必华,陈红梅,肖卫华,韩学莉,姚文华,番兴明.玉米品种耐旱性鉴定及耐旱指标筛选[J].云南农业大学学报(自然科学版),2010,25(02):189~194.
    43.田雪亮,赵洪勋,陈锡岭.玉米杂交种对4种病害的兼抗性鉴定初报[J].玉米科学,2007,15(03):141~143.
    44.佟圣辉,陈刚,王孝杰,王作英,陈丽,岳辉.我国玉米杂优群对主要病害的抗性鉴定与评价[J].杂粮作物,2005,25(02):101~103.
    45.王峰,李光,单丽艳.山东省主推玉米品种粗缩病抗性鉴定及其应用[J].山东农业科学,2011,4:73~75.
    46.王安乐,陈朝晖.玉米自交系材料抗粗缩病鉴定筛选初报[J].玉米科学,1998,6(04):65~66.
    47.王连生,孔令晓,赵聚王莹,罗畔池.玉米新种质资源对多种病害的抗病性鉴定[J].河北农业大学学报,2001,24(04):62~63,111.
    48.王同芹,孔祥彬,白星焕,郭永清,徐砚军.玉米抗(耐)旱育种研究[J].现代农业科技,2008(17):203~205.
    49.王燕,石秀清,王建军,赵丽芳,刘惠民,王富荣.玉米杂交种抗丝黑穗病鉴定[J].玉米科学,2010,18(02):110~112.
    50.王振华,王义波,王永普,张新.玉米自交系株型和产量性状的遗传改良效果[J].作物杂志,2000(01):15~16.
    51.王振华,王义波,王永普.玉米自交系株形和产量性状的遗传改良效果[J].作物杂志,2001(01):15~16.
    52.吴建宇,席章营,盖钧镒.玉米抗病遗传育种的研究进展[J].玉米科学,1999,7(02):6~11.
    53.武斌,李新海,肖木辑,谢传晓,郝转芳,李明顺,张世煌.53份玉米自交系的苗期耐旱性分析[J].中国农业科学,2007,40(04):665~676.
    54.席章营,吴克宁,王同朝,王晨阳.玉米抗旱性生理生化鉴定指标及利用价值分析[J].河南农业大学学报,2000,34(01):7~12.
    55.谢社香,何代元,陈梅英,冯留锁.玉米自交系抗粗缩病的鉴定与分析[J].农业科技通讯,2009(012):50~52.
    56.谢振江,李明顺,李新海,张世煌.华北地区不同年代玉米杂交种农艺性状的改良进展[J].玉米科学,2007,15(02):102~106.
    57.谢振江,李明顺,徐家舜,张世煌.遗传改良对中国华北不同年代玉米单交种产量的贡献[J].中国农业科学,2009,42(03):781~789.
    58.谢志军,郭满库,刘永刚,郭建国.玉米种质资源抗丝黑穗病鉴定与评价[J].植物保护,2008,34(6):92~95.性状演变规律的研究[J].玉米科学,2000,8(02):33~35.
    59.杨国航,孙世贤,张春原,赵久然,王卫红.从品种性状及遗传背景看全国玉米杂交种推广[J].种子,2006,25(003):55~57.
    60.杨兴飞,温广波,杨轶.玉米不同种质对粗缩病的抗性鉴定和分析[J].玉米科学,2010,18(3):144~146.
    61.杨子光,张灿军,冀天会,郭军伟,孟丽梅,张珂.小麦抗旱性鉴定方法及评价指标研究Ⅴ苗期抗旱指标的比较研究[J].中国农学通报,2008,24(01):156~159.
    62.张霞,孙艳梅.吉林省玉米新品种抗丝黑穗病鉴定[J].吉林农业科技学院学报,2009,18(3):4~5.
    63.张成和,刘爱国,罗畔池,张晓青.玉米自交系和杂交种对六种玉米病害的抗性鉴定[J].华北农学报,1993,8(3):106~111.
    64.张铭堂,李建生,才卓.作物遗传学发展历程回顾与玉米育种目标的前瞻[J].玉米科学,2011,19(2):1~5.
    65.张仁和,马国胜,卜令铎,史俊通,薛吉全.不同基因型玉米品种抗旱性鉴定及综合评价[J].种子,2009,28(10):91~94.
    66.张世煌,徐伟平,李明顺,李新海,徐家舜.玉米育种面临的机遇和挑战[J].玉米科学,2008,16(006):1~5.
    67.张学才,崔蕴刚,丁俊强,王永霞,武轲,吴建宇.主要杂种优势群玉米矮花叶病抗性评价与比较分析[J].植物保护科学,2008,24(4):337~340.
    68.赵延明,张海艳.玉米叶片保绿度开花后衰减特性与产量性状相关性初步研究[J].中国农学通报.2009,25(17):102~104.
    69.中华人民共和国农业部.玉米抗病虫鉴定技术规范第3部分:玉米抗丝黑穗病鉴定技术规范[S].2006.
    70.中华人民共和国农业部.玉米抗病虫鉴定技术规范第4部分:玉米抗矮花叶病鉴定技术规范[S].2006.
    71.周树峰,李晚忱,付凤玲,荣廷昭.57个常用玉米自交系的耐旱性鉴定[J].干旱地区农业研究,2002,20(02):127~130.
    72.周玉芝,段会军,姬惜珠,崔彦宏,周进宝,董晓亮.河北省夏播玉米品种主要农艺性状演变规律的研究[J].河北农业大学学报,2005,28(02):1~5.
    73.朱永波,张仁和,卜令铎,韩苗苗,薛吉全.玉米苗期抗旱性鉴定指标的研究[J].西北农业学报,2008,17(3):143~146.
    74. Ahmadzadeh A, Lee E A, Tollenaar M. Heterosis for leaf CER during the grain-filling period inmaize [J]. Crop Science,2004,44:2095~2100.
    75. Andrade F H, Echarte L, Rizzalli R, Della Maggiora A, Casanovas M. Kernel NumberPrediction in Maize under Nitrogen or Water Stress [J]. Crop Science,2002,42:1173~1179.
    76. B nziger M. Breeding for drought and nitrogen stress tolerance in maize: from theory topractice [M]. CIMMYT,2000,9~11. Association, Washington, D C:1997,144~156.
    77. Barker T, Campos H, Cooper M, Dolan D, Edmeades G, Habben J, Schussler J, Wright D,Zinselmeier C. Improving drought tolerance in maize[J]. Plant Breeding Reviews,2005:173~253.
    78. Bekavac G, Purar B, Stojakovi M, Jockovi D, Ivanovi M, Nastasi A. Genetic analysis ofstay~green trait in broad~based maize populations [J]. Cereal Research Communications.2007,35(1):31~41.
    79. Betran F J, Beckb D, Banzigerc M, Edmeadesd G O. Secondary traits in parental inbreds andhybrids under stress and non~stress environments in tropical maize[J]. Field Crops Research,2003,83:51~56.
    80. Betran F J, Ribaut J M, Beck D, Gonzalez D. Genetic Diversity, Specific Combining Ability,and Heterosis in Tropical Maize under Stress and Nonstress Environments[J]. Crop Science,2003,43:797~806.
    81. Blum A. Plant breeding for stress environments [M]. CRC press,1988.
    82. Bola os J, Edmeades G O. Eight cycles of selection for drought tolerance in lowland tropicalmaize. I. Responses in grain yield, biomass, and radiation utilization [J]. Field Crops Research,1993,31(3~4):233~252.
    83. Bolanos J, Edmeades G O. The importance of the anthesis~silking interval in breeding fordrought tolerance in tropical maize [J]. Field Crops Research,1996,48(1):65~80.
    84. Briggs S P. Plant genomics: more than food for thought [J]. Proceedings of the NationalAcademy of Sciences,1998,95(5):1986.
    85. Campos H, Cooper M, Habben J E, Edmeades G O, Schussler J R. Improving drought tolerancein maize: a view from industry[J]. Field Crops Research,2004,90(1):19~34.
    86. Cardwell V B. Fifty Years of Minnesota Corn Production: Sources of Yield Increase [J]. Pestcontrol,1982,12(58):89.
    87. Carlone M R, Russell W A. Response to plant densities and nitrogen levels for four maizecultivars from different eras of breeding [J]. Crop Science,1987,27:465~470.
    88. Cassman K G. Ecological intensification of cereal production systems: Yield potential, soilquality, and precision agriculture [J]. Proceedings of the National Academy of Sciences,1999,96(11):5952.
    89. Castleberry R M, Crum C W, Krull C F. Genetic yield improvement of US maize cultivarsunder varying fertility and climatic environments[J]. Crop Science,1984,24:33~36.
    90. Cavalieri A J, Smith O S. Grain filling and field drying of a set of maize hybrids released from1930to1982[J]. Crop Science,1985,25:856~860.
    91. Chapman S C, Edmeades G O. Selection improves drought tolerance in tropical maizepopulations: II. Direct and correlated responses among secondary traits [J]. Crop Science,1999,39(5):1315~1324.
    92. Ci X, Li M, Liang X, Xie Z, Zhang D, Li X, Lu Z, Ru G, Bai L, Xie C. Genetic contribution toadvanced yield for maize hybrids released from1970to2000in China[J]. Crop Science,2011,51:1~8.
    93. Claassen M M, Shaw R H. Water deficit effects on corn. I. Vegetative components [J].Agronomy Journal,1970,62:649~652.
    94. Clements M J, Campbell K W, Maragos C M, Pilcher C, Headrick J M, Pataky J K, White D G.Influence of Cry1Ab protein and hybrid genotype on fumonisin contamination and Fusarium earrot of corn.[J]. Crop Science,2003,43:1283~1293.
    95. Crosbie T M. Changes in physiological traits associated with long-term breeding efforts toimprove grain yield of maize[C]. In “Proceeding of37th Annual Corn﹠Sorghum researchcoference,5-9Dec.1982”(H.D. Loden and D. Wilkinson, Eds),1982(37):206-223. Americanseed trade association, Whshington, DC, Chicgo, IL.
    96. Crow J F.90years ago: The begainning of hybrid maize [J]. Genetics,1998,148:923~928.
    97. Cunha Fernandes J S, Franzon J F. Thirty years of genetic progress in maize (Zea mays L.) in atropical environment [Brazil][J]. Maydica,1997,42:21~27.
    98. Derieux M, Darrigrand M, Gallais A, Barriere Y, Bloc D, Montalant B Y. Estimation du progrèsgénétique réalisé chez le ma s grain en France entre1950et1985[J]. Agronomie,1987,7:1~11.
    99. Dodd J. How to foresee corn disease outbreaks [C]. American Seed Trade Association, Chicago,IL:2000,91~98.
    100. Duvick D N, Smith J, Cooper M. Long‐Term Selection in a Commercial Hybrid MaizeBreeding Program [J]. Plant breeding reviews,2004:109~151.
    101. Duvick D N. Genetic contributions to advances in yield of US in maize [J]. Maydica,1992,37:69~79.
    102. Duvick D N. Genetic diversity in major farm crops on the farm and in reserve [J]. EconomicBotany,1984,38(2):161~178.
    103. Duvick D N. Genetic rates of gain in hybrid maize yields during the past40years [J]. Maydica,1977,22(4):187~196.
    104. Duvick D N. The Contribution of Breeding to Yield Advances in maize (Zea mays L.)[J].Advances in Agronomy,2005,86:83~145.
    105. Duvick D N. What is yield?[C]. CIMMYT, El Batan, Mexico:1997,332~335.
    106. Dwyer L M, Stewart D W, Tollenaar M. Changes in plant density dependence of leafphotosynthesis of maize (Zea mays L.) hybrids,1959to1988[J]. Canadian Journal of PlantScience,1991,71(1):1~11.
    107. Echarte L, Andrade F H, Vega C R C, Tollenaar M. Kernel number determination in Agentineanmaize hybrids released between1965and1993[J]. Crop Science,2004,44(5):1654~1661.
    108. Edmeades G O, Bolanos J, C C S. Value of secondary traits in selecting for drought tolerancein tropical maize[C]. CIMMYT, El Batan, Mexico:1997,222~234.
    109. Edmeades G O, Bola os J, Chapman S C, Hapman S C, Lafitte H R, B nziger M. Selectionimproves drought tolerance in tropical maize populations. I. Gains in biomass, grain yield andharvest index[J]. Crop Science,1999,39:1306~1315.
    110. Edmeades G O, Bolanos J, Elings A, Ribaut J M, B nziger M, Westgate M E, Boote K J. Therole and regulation of the anthesis-silking interval in maize [C]. Crop Science Society ofAmerica,2000,43~73.
    111. Edmeades G O, Schussler J, Campos H, Zinselmeier C, Habben J, Collinson S, Cooper M,Hoffbeck M, Smith O. Increasing the odds of success in selecting for abiotic stress tolerance inmaize[C].2003,18~20.
    112. Edmeades G, B nziger M, Campos H, Schussler J. Improving Tolerance to Abiotic Stresses inStaple Crops: A Random or Planned Process?[C]. Wiley Online Library,2006,293~309.
    113. Eyherabide G H, Damilano A L, Colazo J C. Genetic gain for grain yield of maize in Argentina[J]. Maydica,1994,39:207~211.
    114. Eyherabide G H, Damilano A L. Comparison of genetic gain for grain yield of maize betweenthe1980s and1990s in Argentina [J]. Maydica,2001,46(4):277~281.
    115. Flint-Garcia S A, Buckler E S, Tiffin P, Ersoz E, Springer N M. Heterosis is prevalent formultiple traits in diverse maize germplasm [J]. PloS one,2009,4(10):1~11.
    116. Gianessi L P, Carpenter J E. Agricultural biotechnology: Insect control benefits[C]. NationalCenter for Food and Agricultural Policy, Washington, DC:1999.
    117. Grant R F, Jackson B S, Kiniry J R, Arkin G F. Water deficit timing effects on yieldcomponents in maize [J]. Agronomy Journal,1989,81:61~65.
    118. Jensen S D, Cavalieri A J. Drought tolerance in US maize [J]. Agricultural Water Management,1983,7(13):223~236.
    119. Kitchen N R, Sudduth K A, Drummond S T. Soil electrical conductivity as a crop productivitymeasure for claypan soils [J]. Journal of Production Agriculture,1999,12(4):607~617.
    120. Kuntze, L., E. Fuchs, M. Grüntzig, B. Schulz, U. Henning, F. Hohmann, A.E. Melchinger.Evaluation of maize inbred lines for resistance to sugarcane mosaic virus (SCMV) and maizedwarf mosaic virus (MDMV). Agronomie,1995,15:463~467.
    121. Mccullough D E, Aguilera A, Tollenaar M. N uptake, N partitioning, and photosynthetic N~useefficiency of an old and a new maize hybrid[J]. Canadian Journal of Plant Science,1994,74(3):479~484.
    122. Meghji M R, Dudley J W, Lambert R J, Sprague G F. Inbreeding Depression, Inbred&HybridGrain Yields, and Other Traits of Maize Genotypes Representing Three Eras [J]. Crop Science,1984,24(3):545~549.
    123. Monneveux P, Sanchez C, Tiessen A. Future progress in drought tolerance in maize needs newsecondary traits cross combinations[J]. Journal of Agricultural Science,2008,146:287~300.
    124. Monneveux P, Sanchez P, Beck C, Edmeades G O. Drought tolerance improvement in tropicalmaize source populations: evidence of progress [J]. Crop Science,2006,46:180~191.
    125. Nissanka S P, Dixon M A, Tollenaar M. Canopy gas exchange response to moisture stress in oldand new maize hybrid [J]. Crop science,1997,37(1):172~181.
    126. Peferoen M. Engineering of insect~resistant plants with Bacillus thuringiensis crystal proteingenes[C]. CAB International, Wallingford, UK:1992,135~153.
    127. Reddy B V S, Ramaiah B, Kumar A A, Reddy P S. Evaluation of sorghum genotypes for thestay-green trait and grain yield [J]. Journal of Semi-Arid Tropical Agricultural Research,2007,3(1):1~4.
    128. Rice M E. Perception and performance of Bt corn[C]. American Seed Trade Association,Chicago, IL:2000,91~98.
    129. Russel W A. Agronomic performance of maize cultivars representing different eras of breeding[J]. Maydica,1984,29:375~390.
    130. Russell W A. Comparative performance for maize hybrids representing different eras of maizebreeding[C].1974,81~101.
    131. Russell W A. Evaluations for plant, ear, and grain traits of maize cultivars representing seveneras of breeding [J]. Maydica,1985,30:85~96.
    132. Russell W A. Genetic improvement of maize yields [J]. Advances in Agronomy,1991,46:245~298.
    133. Sas I. SAS system for windows. Version9.1.3. SAS Inst [Z]. Inc. Cary. NC,2009.
    134. Shaw R H. Water use and requirements of maize review [J]. Agrometeorology of the maize(corn) crop,1977,480:119~134.
    135. Simmonds N W. Selection for local adaptation in a plant breeding programme [J]. TAGTheoretical and Applied Genetics,1991,82(3):363~367.
    136. Smith D N D J, Cooper M. Changes in performance, parentage, and genetic diversity ofsuccessful corn hybrids,1930-2000[J]. Corn: Origin, history, technology, and production,2004,4:65.
    137. Tatum L A. The southern corn leaf blight epidemic [J]. Science,1971,171(3976):1113.
    138. Thomas H, Smart C M. Crops that stay green [J]. Annals of Applied Biology,1993,123(1):193~219.
    139. Tollenaar M, Dwyer L M, Stewart D W. Ear and kernel formation in maize hybrids representingthree decades of grain yield improvement in Ontario [J]. Crop Science,1992,32:432~438.
    140. Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize [J]. FieldCrops Research,2002,75(2~3):161~169.
    141.141. Tollenaar M, Mccullough D E, Dwyer L M. Physiological basis of the geneticimprovement of corn[C]. Dekker, New York:1994,183~236.
    142. Tollenaar M, and Wu J. Yield improvement in temperate maize is attributable to greater stresstolerance [J]. Crop Science,1999,39:1597~1604.
    143. Tollenaar M, Ying J, Duvick D N. Genetic gain in corn hybrids from the Northern and CentralCorn Belt[C]. Conf., Chicago: ASTA, Washington, D.C.,2000,53~62.
    144. Tollenaar M. Genetic improvement in grain yield of commercial maize hybrids grown inOntario from1959to1988[J]. Crop Science,1989,29:1365~1371.
    145. Tollenaar M. Physiological basis of genetic improvement of maize hybrids in Ontario from1959to1988[J]. Crop Science,1991,31(1):119~124.
    146. Traore S B, Carlson R E, Pilcher C D, Rice M E. Bt and non~Bt maize growth and developmentas affected by temperature and drought stress[J]. Agronomy Journal,2000,92(5):1027~1035.
    147. Troyer A F. Breeding widely adapted, popular maize hybrids [J]. Euphytica,1996,92(1):163~174.
    148. Valentinuz O, Tollenaar M. Vertical profi le of leaf senescence during the grain~filling periodin older and newer maize hybrids [J]. Crop Science,2004,44:827–834.
    149. Wang T, Ma X, Li Y, Bai D, Liu C, Liu Z, Tan X, Shi Y, Song Y, Carlone M. Changes in yieldand yield components of single-cross maize hybrids released in China between1964and2001[J]. Crop science,2011,51(2):512~525.
    150. Zaidi P H, Srinivasan G, Cordova H S, Sanchez C. Gains from improvement for mid~seasondrought tolerance in tropical maize (Zea mays L.)[J]. Field crops research,2004,89(1):135~152.
    151. Zwart S J, Bastiaanssen W G M. Review of measured crop water productivity values forirrigated wheat, rice, cotton and maize [J]. Agricultural Water Management,2004,69(2):115~133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700