用户名: 密码: 验证码:
玉米类胡萝卜素异构酶和番茄红素ε-环化酶基因的克隆与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类胡萝卜素对人类营养和健康具有重要价值。类胡萝卜素主要作为人体的抗氧化剂和维生素A的前体。较高的类胡萝卜素饮食摄入量与各种类胡萝卜素缺乏相关疾病的降低密切相关[1]。动物和人体无法直接合成类胡萝卜素,必须从其食物中获得类胡萝卜素。谷物里一般缺乏这些化合物,导致一些以谷物为主食国家的人们患有与类胡萝卜素缺乏相关的许多疾病。由于这些原因人们对植物类胡萝卜素合成途径和应用遗传工程技术改良禾谷类作物以及提高类胡萝卜素含量的研究产生了极大的兴趣。近年来通过对类胡萝卜素生物合成途径的遗传操作在提高主要农作物可食用器官的类胡萝卜素含量方面已取得了可喜的进展[2-4]。但在应用遗传工程技术提高植物靶器官中某一特定类胡萝卜素含量时,存在很大的盲目性,这主要是由于目前人们对植物体内类胡萝卜素合成和积累的调控机制等还不甚清楚。为了深入了解玉米(Zea mays L.)种子胚乳中类胡萝卜素生物合成和积累分子调节机制,我们从玉米自交系B73种子胚乳中克隆了编码类胡萝卜素异构酶(CRTISO)和番茄红素ε-环化酶(LYCE)的基因(cDNAs)。我们克隆到两个截然不同的玉米(Zea mays L.)crtiso cDNAs(Zmcrtiso1和Zmcrtiso2)。这两个crtiso基因分别位于玉米基因组的不同染色体上。与拟南芥和番茄crtiso基因相似,Zmcrtiso1和Zmcrtiso2基因在玉米基因组中也都具有12个内含子。Zmcrtiso1 cDNA核苷酸序列编码一个含587个氨基酸残基的蛋白质,分子量为63.7 kDa,等电点为8.24。用ChloroP 1.1信号肽预测工具预测ZmCRTISO1蛋白存在一个含有43个氨基酸残基的质体信号肽。在玉米自交系B73中,Zmcrtiso2 cDNA在第143个核苷酸序列(与Zmcrtiso1 cDNA对比,Zmcrtiso2 cDNA推测的翻译起始密码子第一个核苷酸序列为1)位置的碱基从胞嘧啶(C)颠换(transversion)为腺嘌呤(A)。但重要的是,这种碱基颠换(transversion)并不发生在白玉米M37W,黄玉米EP42和A632以及登录在国际基因数据库(GenBank)中的其他玉米品系中(登录号:FL133727和EU957482)。玉米自交系B73Zmcrtiso2 cDNA中的这种C到A的单碱基颠换,导致翻译提前终止而产生无义突变。因此,预测玉米自交系B73Zmcrtiso2 cDNA翻译成一个缩短(truncated,或截短)了127个氨基酸残基的蛋白质。研究表明,ZmCRTISO1能将7,9,7',9'-四顺式-番茄红素(前番茄红素)转换为全反式番茄红素,但不能异构化含有15-顺式双键的9,15,9'-三顺式-ζ-胡萝卜素。在玉米自交系B73,Zmcrtiso2 cDNA由于含有提前终止密码子,编码的缩短了的ZmCRTISO2没有类胡萝卜素异构酶活性,但在其它的玉米品种中由于缺乏这种DNA单碱基颠换,他们的Zmcrtiso2基因编码的蛋白质(酶)具有与ZmCRTISO1相同的类胡萝卜素异构酶活性的功能。
     玉米自交系B73Zmlyce的最长开放阅读框(ORF,open reading frame)预测可编码537个氨基酸残基的蛋白质;对其编码蛋白的预测,分子量为59.7 kDa,等电点为6.33。Zmlyce cDNA推导的氨基酸序列与拟南芥、番茄和黄花龙胆lyce cDNA推导的氨基酸序列有72.1%到73.8%的相似性(similarity)以及63.2%到63.9%的同一性(identity)。通过在大肠杆菌中的异源互补实验(complementation experiment)证实,Zmlyce cDNA编码的LYCE能经过含有一个ε-紫罗兰酮(ionone)环的δ-胡萝卜素,在δ-胡萝卜素的另一个末端添加第二个ε-紫罗兰酮环而生成含有两个ε-紫罗兰酮环的ε-胡萝卜素。这与拟南芥,番茄和黄花龙胆LYCE只能催化全反式番茄红素生成含有一个ε-紫罗兰酮环的δ-胡萝卜素的酶活性明显不同。
     为了探讨在玉米种子胚乳中类胡萝卜素生物合成和积累的分子调控机制,我们研究了Zmcrtiso1和Zmcrtiso2 mRNA表达与玉米种子胚乳中类胡萝卜素的积累之间的关系。随玉米种子胚乳发育,直到授粉后第25天,Zmcrtiso1和Zmcrtiso2 mRNA在胚乳中的积累量逐渐增加,这与玉米种子胚乳类胡萝卜素的积累(尤其是β-胡萝卜素,玉米黄质和叶黄体素组分的积累)相一致。Zmcrtiso1 mRNA积累量随后逐渐降低,而Zmcrtiso2 mRNA积累量一直保持到授粉后第30天。我们深入讨论了这两个Zmcrtiso平行同源基因(paralogs)在玉米种子胚乳类胡萝卜素合成和积累中的功能。
Carotenoids have fundamental roles in human nutrition as antioxidants and vitamin A precursors, and a high dietary intake of carotenoids is associated with a reduced risk for a range of diseases[1]. Animals are unable to synthesize carotenoids directly and must obtain them from their diets. Cereal grains are generally deficient in these compounds, leading to deficiency diseases in countries where cereals are the staple diet. For these reasons there is much interest in studying the carotenoid biosynthetic pathway in plants and in modifying crop plants to enhance their carotenoid content. The limited data concerning endogenous regulation of carotenogenic genes has made the precise engineering of crop plants to enhance carotenoid content and composition difficult despite recent progress in cereal crops, particularly in corn[2-4]. In order to gain further insight into the partly-characterized carotenoid biosynthetic pathway in corn (Zea mays L.), we cloned cDNAs encoding the enzymes carotenoid isomerase (CRTISO) and lycopeneε-cyclase (LYCE) using endosperm mRNA isolated from inbred corn line B73. For CRTISO enzyme, two different cDNAs (Zmcrtiso1 and Zmcrtiso2), encoding full-length carotenoid isomerase (CRTISO) enzymes, were amplified from 25 DAP (days after pollination) B73 corn endosperm mRNA. The full-length Zmcrtiso1 cDNA encoded a 587-amino-acid protein with a molecular weight of 63.7 kDa, a pI of 8.24, and a putative 43-residue transit peptide for chloroplast targeting. The B73 Zmcrtiso2 cDNA contained a C-to-A transversion at position 143 (the putative translation start codon of the Zmcrtiso2 cDNA is referred to as 1) which was not present in homologous EST and cDNA sequences from white maize (M37W), yellow maize (EP42 and A632), and sequences from other cultivars (accession nos. FL133727 and EU957482). The resulting nonsense mutation prematurely terminates protein synthesis and yields a truncated 127-amino-acid protein. Zmcrtiso1 and Zmcrtiso2 were identified mapping to unlinked genes each containing 12 introns, a feature conserved among all crtiso genes studied thus far. ZmCRTISO1 was able to convert tetra-cis prolycopene to all-trans lycopene but could not isomerize the 15-cis double bond of 9,15,9′‐tri‐cis-ζ-carotene. ZmCRTISO2 is inactivated by the premature termination codon in B73 corn as described above, but importantly the mutation is absent in other corn cultivars and the active enzyme showed the same activity as ZmCRTISO1.
     ZmLYCE from maize B73 was predicted to be 59.7 kDa (537 residues) and a pI of 6.33. The full-length amino acid residues of Zmlyce have high similarities (72.1% to 73.8%) and identities (63.2% to 63.9%) with functional LYCE proteins from Arabidopsis, tomato and gentian. However, by heterologous complementation experiment in Escherichia coli, ZmLYCE can add twoε-ionone rings at the both ends of lycopene to generate the bicyclicε,ε-carotene through mono-cyclicδ-carotene, which is significant different from that from Arabidopsis, tomato and gentian where LYCE can add only oneε-ionone ring at one end of lycopene to give rise to mono-cyclicδ-carotene. Furthermore, in order to understand how carotenoid accumulation is regulated in maize endosperm development, we investigated the correlation between carotenoid accumulation in endosperm and mRNA expression of Zmcrtiso1 and Zmcrtiso2. Both of Zmcrtiso1 and Zmcrtiso2 genes were expressed during endosperm development, with mRNA levels rising in line with carotenoid accumulation (especiallyβ-carotene, zeaxanthin and lutein) until 25 DAP. Thereafter, expression declined for Zmcrtiso1 gene, whereas Zmcrtiso2 mRNA levels maintained by 30 DAP. We discuss the impact of paralogs with different expression profiles and functions on the regulation of carotenoid synthesis in corn.
引文
[1] Fraser PD and Bramley PM. The biosynthesis and nutritional uses of carotenoids [J]. Progress in Lipid Research, 2004, 43(3):228-265.
    [2] Sandmann G, Romer S and Fraser PD. Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants [J]. Metab Eng, 2006, 8(4):291-302.
    [3] Giuliano G, Tavazza R, Diretto G, et al. Metabolic engineering of carotenoid bio-synthesis in plants [J]. Trends Biotechnol, 2008, 26(3):139-145.
    [4] Zhu C, Naqvi S, Capell T, et al. Metabolic engineering of ketocarotenoid biosynthesis in higher plants [J]. Arch Biochem Biophys, 2009, 483:182-190.
    [5]朱长甫、陈星、王英典。植物类胡萝卜素生物合成及其相关基因在基因工程中的应用[J]。植物生理与分子生物学学报,2004, 30(6):609-618。
    [6] Sandmann G. Evolution of carotene desaturation: the complication of a simple pathway [J]. Arch Biochem Biophys, 2009, 483(2):169-174.
    [7] Britton G, Liaaen-Jenson S and Pfander H (Eds), Carotenoids Handbook [M], Compiled by A. Z. Mercadante and E. S. Egeland, Birkhauser Verlag, Basle, Switzerland, 2004.
    [8] Frank HA and Cogdell RJ. Carotenoids in photosynthesis [J]. Photochemistry and Photobiology, 1996, 63(3):257-264.
    [9] Demmig-Adams B and Adams WW. Antioxidants in photosynthesis and human nutrition [J]. Science, 2002, 298(5601):2149-2153.
    [10]Park H, Kreunen SS, Cuttriss AJ, et al. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis [J]. Plant Cell, 2002, 14(2):289-292.
    [11]Pogson B, Niyogi KK, Bj?rkman O, et al. Altered xanthophylls compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants [J]. Proc Natl Acad Sci USA. 1998, 95(22):13324–13329.
    [12]Franco AC, Matsubara S, Orthen B, et al. Photoinhibition, carotenoid composition and the co-regulation of photochemical and non-photochemical quenching in neotropical savanna trees [J]. Tree Physiol, 2007, 27(5):717-725.
    [13]Havaux M and Niyogi KK. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism [J]. Proc Natl Acad Sci USA, 1999, 96(15):8762-8767.
    [14]McNulty HP, Byun J, Lockwood SF, et al. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2007, 1768(1):167-174.
    [15]Calucci L, Capocchi A, Galleschi L, et al. Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging [J]. J Agric Food Chem, 2004, 52(13):4274–4281.
    [16]Schwartz SH, Tan BC, McCarty DR, et al. Substrate specificity and kinetics for VP14, a carotenoid cleavage dioxygenase in the ABA biosynthetic pathway [J]. Biochimica et Biophysica Acta, 2003, 1619(1):9-14.
    [17]Gomez-Roldan V, Fermas S, Brewer PB, et al. Strigolactone inhibition of shoot branching [J]. Nature, 2008, 455(7210):189-194.
    [18]Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones [J]. Nature, 2008, 455(7210):195-200.
    [19]Bouvier F, Suire C, Mutterer J, et al. Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis [J]. Plant Cell, 2003, 15(1):47-62.
    [20]Bouvier F, Dogbo O and Camara B. Biosynthesis of the food and cosmetic plant pigment bixin (annatto) [J]. Science, 2003, 300(5628):2089-2091.
    [21]Simkin AJ, Underwood BA, Auldridge M, et al. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers [J]. Plant Physiol, 2004, 136(3):3504-3514.
    [22]Simkin AJ, Schwartz SH, Auldridge M, et al. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone [J]. Plant J, 2004, 40(6):882-892.
    [23]Bartley G and Scolnik P. Plant carotenoids: pigments for photoprotection, visual attraction, and human health [J]. Plant Cell, 1995, 7(7):1027-1038.
    [24]Chen Y, Li F, Wurtzel ET. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants [J]. Plant Physiol, 2010, DOI:10.1104/pp.110.153916.
    [25]Breitenbach J and Sandmann G.ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene [J]. Planta, 2005, 220(5):785-793.
    [26]Li Q, FarréG, Naqvi S, et al. Cloning and functional characterization of the maize carotenoid isomerase andβ-carotene hydroxylase genes and their regulation during endosperm maturation [J]. Transgenic Res, 2010, DOI 10.1007/s11248-010-9381-x.
    [27]Porter JW and Lincoln RE. Lycopersicon selections containing a high content of carotenes and colorless polyenes.Ⅱ. The mechanism of carotene biosynthesis [J]. Arch Biochem Biophys, 1950, 27(3):390-403.
    [28]Armstrong GA, Alberti M, Leach F, et al. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis [J]. Mol Gen Genet, 1989, 216(2-3):254-268.
    [29]Misawa N, Nakagawa M, Kobayashi K, et al. Elucidation of the Erwinia uredevora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli [J]. Journal of Bacteriology, 1990, 172(12):6704-6712.
    [30]Misawa N, Satomi Y, Kondo K, et al. Structure and functional analysis of a marine bacterial carotenoid biosynthesis genecluster and astaxanthin biosynthetic pathway proposed at the gene level [J]. Journal of Bacteriology, 1995, 177(22):6575-6584.
    [31]Cunningham FX, Pogson B, Sun Z, et al. Functional analysis of theβandεlycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation [J]. Plant Cell, 1996, 8(9):1613-1626.
    [32]Moehs CP, Tian L, Osteryoung KW, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development [J]. Plant Mol Biol, 2001, 45(3): 281-293.
    [33]Rao AV and Agarwal S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases [J]. Nutrition Research, 1999, 19(2):305-323.
    [34]Schwarz S, Obermuller-Jevic UC, Hellmis E, et al. Lycopene inhibits disease progression in patients with benign prostate hyperplasia [J]. J Nutr, 2008, 138(1):49–53.
    [35]Fleshner N and Zlotta AR. Prostate cancer prevention: Past, present, and future [J]. Cancer, 2007, 110(9):1889-1899.
    [36]Harjes CE, Rocheford TR, Bai L, et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification [J]. Science, 2008, 319(5861):330-333.
    [37]UNICEF, Promotion and protection of the rights of children [G]. 2007. http://www.unicef.org/worldfitforchildren/files/SGs_report_WFFC_2007.pdf.
    [38]Van den Berg H, Faulks R, Granado HF, et al. The potential for the improvement of carotenoid levels in foods and the likely systemic effects [J]. J Sci Food Agric, 2000, 80(7):880-912.
    [39]Landrum JT and Bone RA. Lutein, zeaxanthin, and the macular pigment [J]. Arch Biochem Biophys, 2001, 385(1):28-40.
    [40]R?mer S, Lubeck J, Kauder F, et al. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation [J]. Metab Eng, 2002, 4(3):263-272.
    [41]Guerin M, Huntley ME and Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition [J]. Trends Biotechnol, 2003, 21(5):210-216.
    [42]Karadas F, Grammenidis E, Surai PF, et al. Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition [J]. Br Poult Sci, 2006, 47(5):561-566.
    [43]Zhu C, Naqvi S, Gómez-Galera S, et al. Transgenic strategies for the nutritional enhancement of plants [J]. Trends Plant Sci, 2007, 12(12):548-556.
    [44]Cong L, Wang C, Chen L, et al. Expression of phytoene synthase 1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.)[J]. J Agric Food Chem, 2009, 57(18):8652-8660.
    [45]Naqvi S, FarréG, Sanahuja G, et al. When more is better: multigene engineering in plants [J]. Trends Plant Sci, 2010, 15(1):48-56.
    [46]Farre R, Fornari F, Blondeau K, et al. Acid and weakly acidic solutions impair mucosal integrity of distal exposed and proximal non-exposed human oesophagus [J]. Journal of the British Society of Gastroenterology, 2010, 59(2):164-169.
    [47]Cunningham FX and Gantt E. Genes and enzymes of carotenoid biosynthesis in plants [C]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49:557-583.
    [48]Chappell J. Biochemistry and molecular biology of the isoprenoid biosyntheticpathway in plants [C]. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46:521-547.
    [49]Croteau R, Kutchan T and Lewis N. Natural products (secondary metabolites) [M]. In Biochemistry and Molecular Biology of Plants, Chapter 24, Edited by Bob Buchanan, Whihelm Grussem, Russell L, Jones, 2000, 24:1250-1268.
    [50]Lichtenthaler K. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosyn-thesis in plants [C]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50:47-66.
    [51]Eisenreich W, Rohdich F and Bacher A. Deoxyxylulose phosphate pathway to terpenoids [J]. Trends Plant Sci, 2001, 6(2):78-84.
    [52]Rodrig?uez-Concepcion? M and Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics [J]. Plant Physiol, 2002, 130(3):1079-1089.
    [53]Rodriguez-Concepcion M, Fores O, Martinez-Garcia JF, et al. Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development [J]. Plant Cell, 2004, 16(1):144-156.
    [54]Rodriguez-Concepcion M. Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in pant cells [J]. Phytochemistry Reviews, 2006, 5(1):1-15.
    [55]Rohdich F, Zepeck F, Adam P, et al. The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein [J]. Proc Natl Acad Sci USA, 2003, 100(4):1586-1591.
    [56]Misawa N, Truesdale MR, Sandmann G, et al. Expression of a tomato cDNA coding for phytoene synthase in Escherichia coli, phytoene formation in vivo and in vitro, and functional analysis of the various truncated gene products [J]. J Biochem, 1994, 116(5):980-985.
    [57]Isaacson T, Ohad I, Beyer P, et al. Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants [J]. Plant Physiol, 2004, 136(4):4246-4255.
    [58]Pecker I, Gabbay R, Cunningham FX, et al. Cloning and characterization of the cDNA for lycopeneβ-cyclase from tomato reveals decrease in its expression during fruit ripening [J]. Plant Mol Biol, 1996, 30(4):807-819.
    [59]Ronen G, Cohen M, Zamir D, et al. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon cyclase is down regulated during ripening and is elevated in the mutant delta [J]. Plant J, 1999, 17(4):341–352.
    [60]Zhu C, Yamamura S, Nishihara M, et al. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development [J]. Biochimica et Biophysica Acta, 2003,1625(3):305–308.
    [61]Von Lintig J and Wyss A. Molecular analysis of vitamin A formation: cloning and characterization ofβ-carotene 15,15’-dioxygenase [J]. Arch Biochem Biophys, 2001, 385(1):47-52.
    [62]Kiefer C, Hessel S, Lampert JM, et al. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A [J]. J Biol Chem, 2001, 276(17):14110-14116.
    [63]Von Lintig J and Vogt K. Vitamin A formation in animals: molecular identification and functional characterization of carotene cleaving enzymes [J]. J Nutr, 2004, 134(1):251S-256S.
    [64]Cunningham FX and Gantt E. One Ring or Two? Determination of ring number in carotenoids by lycopeneε-cyclases [J]. Proc Natl Acad Sci USA, 2001, 98(5):2905-2910.
    [65]Sun Z, Gantt E and Cunninhgam F. Cloning and functional analysis of theβ-carotene hydroxylase of Arabidopsis thaliana [J]. J Biol Chem, 1996, 271(40):24349-24352.
    [66]Bouvier F, Keller Y, Harlingue A, et al. Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.) [J]. Biochimica et Biophysica Acta, 1998, 1391(3):320-328.
    [67]Kim J, Smith JJ, Tian L, et al. The evolution and function of carotenoid hydroxylases in Arabidopsis [J]. Plant Cell Physiol, 2009, 50(3):463-479.
    [68]Tian L and DellaPenna D. Characterization of a second carotenoidβ-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus [J]. Plant Mol Biol, 2001, 47(3):379-388.
    [69]Tian L and DellaPenna D. Progress in understanding the origin and functions of carotenoid hydroxylases in plants [J]. Arch Biochem Biophys, 2004, 430(1):22-29.
    [70]Tian L, Musetti V, Kim J. et al. The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoidε-ring hydroxylation activity [J]. Proc Natl Acad Sci USA, 2004, 101(1):402-407.
    [71]Kim J and DellaPenna D. Defining the primary route for lutein synthesis in plants: The role of Arabidopsis carotenoidβ-ring hydroxylase CYP97A3 [J]. Proc Natl Acad Sci USA, 2006, 103(9):3474-3479.
    [72]Quinlan RF, Jaradat TT and Wurtzel ET. Escherichia coli as a platform for functional expression of plant P450 carotene hydroxylases [J]. Arch Biochem Biophys, 2007, 458(2):146-157.
    [73]Kim JE, Cheng KM, Craft NE, et al. Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with aβ-carotene ketolase provides insight into in vivo functions [J]. Phytochem, 2010, 71(2-3):168-178.
    [74]Marin E, Nussaume L, Quesada A, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana [J]. EMBO J, 1996, 15(10):2331-2342.
    [75]Bugos RC and Yamamoto HY. Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli [J]. Proc Natl Acad Sci USA, 1996, 93(13):6320-6325.
    [76]Yamamoto HY. Xanthophyll cycles. Methods Enzymol[M],1985, 110:301-312.
    [77]Demmig-Adams B, Gilmore AM and Adams WW. In vivo functions of carotenoids in higher plants [J]. FASEB J, 1996, 10(4):403-412.
    [78]Taiz L and Zeiger E. Plant Physiology [M]. Sunderland, Mass: Sinauer Associates, Inc. Publishers, Fourth edition, 2006, 764.
    [79] Phillips MA, León P, Boronat A, et al. The plastidial MEP pathway: unified nomenclature and resources [J].Trends Plant Sci, 2008, 13(12):619-623.
    [80]Al-Babili S, Hugueney P, Schledz M, et al. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum [J]. FEBS Lett, 2000, 485(2):168-172.
    [81]Bouvier F, Suire C, Harlingue A, et al. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells [J]. Plant J, 2000, 24(2):241-252.
    [82]Schwartz SH, Tan BC, Gage DA, et al. Specific oxidative cleavage of carotenoids by VP14 of maize [J]. Science, 1997, 276(5320):1872-1874.
    [83]Qin X and Zeevaart JA. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean [J]. Proc Natl Acad Sci USA, 1999, 96(26):15354-15361.
    [84]Seo M and Koshiba T. Complex regulation of ABA biosynthesis in plants [J]. Trends Plant Sci, 2002, 7(1):41-48.
    [85]Taylor IB, Burbidge A and Thompson AJ. Control of abscisic acid synthesis [J]. J Exp Bot,2000,51(350):1563-1574.
    [86]Bouvier F, Hugueney P, Harlingue A, et al. Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid [J]. Plant J, 1994, 6(1):45-54.
    [87]Hugueney P, Badillo A, Chen HC, et al. Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts [J]. Plant J, 1995, 8(3):417-424.
    [88]Cunningham FX and Gantt E. A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis [J]. Plant J, 2005, 41(3): 478-492.
    [89]von Lintig J, Welsch R, Bonk M, et al. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings [J]. Plant J, 1997, 12(3):625-634.
    [90]Wetzel CM and Rodermel SR. Regulation of phytoene desaturase expression is independent of leaf pigment content in Arabidopsis thaliana [J]. Plant Mol Biol, 1998, 37(6):1045-1053.
    [91]Okada K, Saito T, Nakagawa T, et al. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis [J]. Plant Physiol, 2000, 122(4):1045-1056.
    [92]Tian L, Magallanes-Lundback M, Musetti V, et al. Functional analysis of beta- and epsilon-ring carotenoid hydroxylases in Arabidopsis [J]. Plant Cell, 2003, 15(6):1320-1332.
    [93]Giuliano G, Bartley G and Scolnik PA. Regulation of carotenoid biosynthesis during tomato fruit development [J]. Plant Cell, 1993, 5(4):379-387.
    [94]Fraser PD, Truesdale MR, Bird CR, et al. Carotenoid biosynthesis during tomato fruitdevelopment [J]. Plant Physiol, 1994, 105(1):405-413.
    [95]Isaacson T, Ronen G, Zamir D, et al. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants [J]. Plant Cell, 2002, 14(2):333-342.
    [96]Galpaz N, Ronen G, Khalfa Z, et al. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus [J]. Plant Cell, 2006, 18(8):1947–1960.
    [97]Galpaz N, Wang Q, Menda N, et al. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content [J]. Plant J, 2008, 53(5):717-730.
    [98]Al-Babili S, von Lintig J, Haubruck H, et al. A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation, membrane association and enzymatic activation [J]. Plant J, 1996, 9(5):601-612.
    [99]Schledz M, al-Babili S, von Lintig J, et al. Phytoene synthase from Narcissus pseudonarcissus: functional expression, galactolipid requirement, topological distribution in chromoplasts and induction during flowering [J]. Plant J, 1996, 10(5):781-792.
    [100]Zhu C, Yamamura S, Koiwa H, et al. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea [J]. Plant Mol Biol, 2002, 48(3):277-285.
    [101]Kuntz M, R?mer S, Suire C, et al. Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening [J]. Plant J, 1992, 2(1):25-34.
    [102]Hugueney P, Romer S, Kuntz M, et al. Characterization and molecular cloning of a flavoprotein catalyzing the synthesis of phytofluene andζ-carotene in Capsicum chromoplasts [J]. Eur J Biochem, 1992, 209(1):399-407.
    [103]R?mer S, Hugueney P, Bouvier F, et al. Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum [J]. Biochem Biophys Res Commun, 1993, 196(3):1414-1421.
    [104]Castillo R, Fernandez JA and Gomez-Gomez L. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives [J]. Plant Physiol, 2005, 139(2):674–689.
    [105]Ahrazem O, Rubio-Moraga A, López RC, et al. The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron's apocarotenoid precursors [J]. J Exp Bot, 2010, 61(1):105-119.
    [106]Yu B, Lydiate D, Young L, et al. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase [J]. Transgenic Res, 2008, 17(4):573-585.
    [107]Cunningham FX and Gantt E. A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study [J]. Photosynthesis Res, 2007, 92(2):245-259.
    [108]Gallagher CE, Matthews PD, Li F, et al. Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses [J]. Plant Physiol, 2004, 135(3):1776–1783.
    [109]Welsch R, Wust F, Bar C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes [J]. Plant Physiol, 2008, 147(1):367-380.
    [110]Chaudhary N, Nijhawan A, Khurana JP, et al. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis [J]. Mol Genet Genomics, 2010, 283(1):13-33.
    [111]Buckner B, Kelson TL and Robertson DS. Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids [J]. Plant Cell, 1990, 2(9):867–876.
    [112]Buckner B, Miguel PS, Janick-Buckner D, et al. The y1 gene of maize codes for phytoene synthase [J]. Genetics, 1996, 143(1):479-488.
    [113]Li ZH, Matthews PD, Burr B, et al. Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway [J]. Plant Mol Biol, 1996, 30(2):269–279.
    [114]Gallagher CE, Cervantes-Cervantes M and Wurtzel ET. Surrogate biochemistry:use of Escherichia coli to identify plant cDNAs that impact metabolic engineering of ca-rotenoid accumulation [J]. Applied Microbiology and Biotechnology, 2003, 60(6):713-719.
    [115]Palaisa KA, Morgante M, Williams M, et al. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci [J]. Plant Cell, 2003, 15(8):1795-1806.
    [116]Palaisa K, Morgante M, Tingey S, et al. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep [J]. Proc Natl Acad Sci USA, 2004, 101(26):9885-9890.
    [117]Matthews PD, Luo R and Wurtzel ET. Maize phytoene desaturase and zeta-carotene desaturase catalyze a poly-Z desaturation pathway: implications for genetic engi-neering of carotenoid content among cereal crops [J]. J Exp Bot, 2003, 54(391):2215–2230.
    [118]Cervantes-Cervantes M, Gallagher CE, Zhu C, et al. Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity [J]. Plant Physiol, 2006, 141(1):220-231.
    [119]Li F, Vallabhaneni R and Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root ca-rotenogenesis [J]. Plant Physiol, 2008, 146(3):1333-1345.
    [120]Li F, Vallabhaneni R, Yu J, et al. The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance [J]. Plant Physiol, 2008, 147(3):1334-1346.
    [121]Vallabhaneni R and Wurtzel E. Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize [J]. Plant Physiol, 2009, 150(2):562-572.
    [122]Vallabhaneni R, Gallagher C, Licciardello N, et al. Metabolite sorting of a germplasm collection revelas the hydroxylase 3 locus as a new target for maize provitamin A biofortification [J]. Plant Physiol, 2009, 151(3):1635-1645.
    [123]Sprenger GA, Schorken U, Wiegert T, et al. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose5-phosphate precursor to isoprenoids, thiamin, and pyridoxol [J]. Proc Natl Acad Sci USA, 1997, 94(24):12857-12862.
    [124]Lois LM, Campos N, Putra SR, et al. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of 1-deoxy-D-xylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis [J]. Proc Natl Acad Sci USA, 1998, 95(5):2105-2110.
    [125]Matthews PD and Wurtzel ET. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase [J]. Applied Microbiology and Biotechnology, 2000, 53(4):396-400.
    [126]Estevez JM, Cantero A, Romero C, et al. Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methy1-D-erythritol-4-phosphate pathway in Arabidopsis [J]. Plant Physiol, 2000, 124(1):95-104.
    [127]Estevez JM, Cantero A, Reindl A, et al. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants [J]. J Biol Chem, 2001, 276(25):22901-22909.
    [128]Walter M, Hans J and Strack D. Two distantly related genes encoding 1-deoxy-D- xylulose 5-phosphate synthases:differential regulation in shoots and apocaroteno-id-accumulating mycorrhizal roots [J]. Plant J, 2002, 31(3):243-254.
    [129]Kim BR, Kim SU and Chang YJ. Differential expression of three 1-deoxy-D-xylulose 5-phosphate synthase genes in rice [J]. Biotechnol Lett, 2005, 27(14):997-1001.
    [130]Emanuelsson O, Nielsen H, von Heijing G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites [J]. Protein Sci, 1999, 8(5):978-984.
    [131]Walter MH, Fester T and Strack D. Arbuscular mycorrhizal fungi induce the non- mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the‘yellow pigment’and other apocarotenoids [J]. Plant J, 2000, 21(6):571-578.
    [132]Kim SW and Keasling JD. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production [J]. Biotechnology and Bioengineering, 2001, 72(4):408-415.
    [133]Carretero-paulet L, Ahumada I, Cunillera N, et al. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-D-erythritol 4-phosphate pathway [J]. Plant Physiol, 2002, 129(4):1581-1591.
    [134]Takahashi S, Kuzuyama T, Watanabe H, et al. A 1-deoxy-D-xylulose 5-phosphate re-ductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis [J]. Proc Natl Acad Sci USA, 1998, 95(17):9879-9884.
    [135]Albrecht M and Sandmann G. Light-stimulated carotenoid biosynthesis during transformation of maize etioplasts is regulated by increased activity of isopentenyl pyrophosphate isomerase [J]. Plant Physiol, 1994, 105(2):529-534.
    [136]Gallagher CE, Cervantes-Cervantes M and Wurtzel ET. Surrogate biochemistry: use ofEscherichia coli to identify plant cDNAs that impact metabolic engineering of ca-rotenoid accumulation [J]. Applied Microbiology and Biotechnology, 2003, 60(6):713-719.
    [137]Randolph LF and Hand DB. Relation between carotenoid content and number of genes per cell in diploid and tetraploid corn [J]. J Agric Res, 1940, 60(1):51-64.
    [138]Shewmaker CK, Sheehy JA, Daley M, et al. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects [J]. Plant J, 1999, 20(4):401-412.
    [139]Ye X,Al Babili S,Kloti A, et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm [J]. Science,2000,287(5451):303-305.
    [140]Bramley P, Teulieres C, Blain I, et al. Biochemical characterization of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5 [J]. Plant J, 1992, 2(3):343-349.
    [141]芦小单。龙胆八氢番茄红素合成酶(PSY)基因的克隆与功能分析(D)。硕士论文,指导教师:朱长甫、王兴智, 2008。
    [142]Wurtzel ET. Genomics, genetics, and biochemistry of maize carotenoid biosynthesis [J]. Recent Advances in Phytochemistry, 2004, 38:85-110.
    [143]Breitenbach J, Braun G, Steiger S, et al. Chromatographic performance on a C30-bonded stationary phase of monohydroxycarotenoids with variable chain length or degree of desaturation and of lycopene isomers synthesized by various carotene desaturases [J]. Journal of Chromatography. 2001, 936(1-2):59-69.
    [144]Masamoto K, Wada H, Kaneko T, et al. Identification of a gene required for cis-to-trans carotene isomerization in carotenogenesis of the cyanobacterium Synechocystis sp. PCC 6803 [J]. Plant Cell Physiol, 2001, 42(12): 1398-1402.
    [145]Singh M, Lewis PE, Hardeman K, et al. Activator mutagenesis of the pink scutel-lum1/viviparous7 locus of maize [J]. Plant Cell, 2003, 15(4):874–884.
    [146]Bai L, Brutnell TP, Kim EH, et al. Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis [J]. Plant J, 2009, 59(4):588-599.
    [147]Vallabhaneni R, Kaczorowski DJ, Yaakovian MD, et al. Heme oxygenase 1 protects against hepatic hypoxia and injury from hemorrhage via regulation of cellular respiration [J]. Shock, 2010, 33(3):274-281.
    [148]Nambara E and Marion-Poll A. Abscisic acid biosynthesis and catabolism [J]. Annual Review of Plant Biology, 2005, 56:165-186.
    [149]Tan BC, Schwartz SH, Zeevaart JA, et al. Genetic control of abscisic acid biosynthesis in maize [J]. Proc Natl Acad Sci USA, 1997, 94(22):12235-12240.
    [150]Thompson AJ, Jackson AC, Parker RA, et al. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid [J]. Plant Mol Biol, 2000, 42(6):833-845.
    [151]Iuchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene ma-nipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis [J]. Plant J, 2001, 27(4):325-333.
    [152]Tan BC, Joseph LM, Deng WT, et al. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family [J]. Plant J, 2003, 35(1):44-56.
    [153]Simkin AJ, Zhu C, Kuntz M, et al. Light-dark regulation of carotenoid biosynthesis in pepper (Capsicum annuum) leaves [J]. J Plant Physiol, 2003, 160(5):439-443.
    [154]Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals [J]. Plant Physiol, 2006, 142(3):1193-1201.
    [155]Vishnevetsky M, Ovadis M, Zuker A, et al. Molecular mechanisms underlying caro-tenogenesis in the chromoplast: multilevel regulation of carotenoid-associated genes [J]. Plant J, 1999, 20(4):423-431.
    [156]Lu S, Eck J, Zhou X, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high-levels ofβ-carotene accumulation [J]. Plant Cell, 2006, 18(12):3594-3605.
    [157]Ronen G, Carmel-Goren L, Zamir D, et al. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutation in tomato [J]. Proc Natl Acad Sci USA, 2000, 97(20):11102-11107.
    [158]Yamamizo C, Kishimoto S and Ohmiya A. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development [J]. J Exp Bot, 2010, 61(3):709-719.
    [159]Yamagishi M, Kishimoto S and Nakayama M. Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily [J]. Plant Breeding, 2010, 129(1):100–107.
    [160]Kato M, Ikoma Y, Matsumoto H, et al. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in Citrus fruit [J]. Plant Physiol, 2004, 134(2):824-837.
    [161]Ampomah-Dwamena C, McGhie T, Wibisono R, et al. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit [J]. J Exp Bot, 2009, 60(13):3765-3779.
    [162]Devitt LC, Fanning K, Dietzgen RG, et al. Isolation and functional characterization of a lycopeneβ-cyclase gene that controls fruit colour of papaya (Carica papaya L.) [J]. J Exp Bot, 2010, 61(1):33-39.
    [163]Blas AL, Ming R, Liu Z, et al. Cloning of papaya chromoplast specific lycopene {beta}-cyclase, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hotspot [J]. Plant Physiol, 2010, DOI:10.1104/pp.109.152298.
    [164]Enfissi E, Fraser P, Lois L, et al. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato [J]. Plant Biotechnol J, 2005, 3(1):17-27.
    [165]Morris WL, Ducreux LJ, Fraser PD, et al. Engineering ketocarotenoid biosynthesis in potato tubers [J]. Metab Eng, 2006, 8(3):253-263.
    [166]Lu S and Li L. Carotenoid metabolism: biosynthesis, regulation, and beyond [J]. Journal of Integrative Plant Biology, 2008, 50(7):778-785.
    [167]Lopez AB, Eck JV, Conlin BJ, et al. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers [J]. J Exp Bot, 2008, 59(2):213-223.
    [168]Vogel JT, Tan BC, McCarty DR, et al. The carotenoid cleavage dioxygenase 1 enzyme hasbroad substrate specificity, cleaving multiple carotenoids at two different bond positions [J]. J Biol Chem, 2008, 283(17): 11364-11373.
    [169]Zhu C, Naqvi S, Breitenbach J, et al. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize [J]. Proc Natl Acad Sci USA, 2008, 105(47):18232-18237.
    [170]Fraser PD, Enfiss EMA and Bramley PM. Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches [J]. Arch Biochem Biophys, 2009, 483(2):196-204.
    [171]Misawa N, Yamano S, Linden H, et al. Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtI in transgenic plants showing an increase of be-ta-carotene biosynthesis activity and resistance to the bleaching herbicide nor-flurazon [J]. Plant J, 1993, 4(5):833-840.
    [172]Mann V, Harker M, Pecker I, et al. Metabolic engineering of astaxanthin production in tobacco flowers [J]. Nature Biotechnol, 2000, 18(8):888-892.
    [173]Yang Q J, Li Q R, Qian R,et al. Regulation and biotechnology of carotenoid formation in flowers[C]. From genomics to plant improvement. Proceedings of the 2nd International Conference on Plant Molecular Breeding. Sanya, Hainan, China, 2007, 190-191.
    [174]Zhu C, Gerjets T and Sandmann G. Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene [J]. Transgenic Res, 2007, 16(6):813-821.
    [175]Davison PA, Hunter CN and Horton P. Overexpression of beta-carotene hydroxylase enhances the stress tolerance in Arabidopsis [J].Nature, 2002, 418(6894):203-206.
    [176]Dharmapuri S, Rosati C, Pallara P, et al. Metabolic engineering of xanthophyll content in tomato fruits [J]. FEBS Lett, 2002, 519(1-3):30-34.
    [177]Wurbs D, Ruf S and Bock R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome [J]. Plant J, 2007, 49(2):276-288.
    [178]Apel W and Bock R. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion [J]. Plant Physiol, 2009, 151(1):59-66.
    [179]Rosati C, Aquilani R, Dharmapuri S, et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit [J]. Plant J, 2000, 24(3):413-420.
    [180]R?mer S, Fraser P, Kiano J, et al. Elevation of the provitamin A content of transgenic tomato plants [J]. Nature Biotechnol, 2000, 18(6):666-669.
    [181]Fraser P, Romer S, Shipton C, et al. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner [J]. Proc Natl Acad Sci USA, 2002, 99(2):1092-1097.
    [182]Davuluri G, Tuinen A, Fraser P, et al. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes [J]. Nat Biotechnol, 2005, 23(7):890-895.
    [183]Shewmaker CK, Sheehy JA, Daley M, et al. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects [J]. Plant J, 1999,20(4):401-412.
    [184]Ravanello M, Dangyang K, Alvarez J, et al. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production [J]. Meta Eng, 2003, 5(4):255-263.
    [185]Fujisawa M, Takita E, Harada H, et al. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation [J]. J Exp Bot, 2009, 60(4):1319-1332.
    [186]Ducreux LJM, Morris WL, Hedley PE, et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels ofβ-carotene and lutein [J]. J Exp Bot, 2005, 56(409):81–89.
    [187]Diretto G, Al-Babili S, Tavazza R, et al. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway [J]. PLoS one, 2007,2(4):e350.
    [188]Jayaraj J, Devlin R and Punja Z. Metabolic engineering of novel ketocarotenoid production in carrot plants [J]. Transgenic Res, 2008, 17(4):489-501.
    [189]Paine JA, Shipton CA, Chaggar S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content [J]. Nat Biotechnol, 2005, 23(4):482-487.
    [190]Aluru M, Xu Y, Guo R, et al. Generation of transgenic maize with enhanced provitamin A content [J]. J Exp Bot, 2008, 59(13):3551-3562.
    [191]Naqvi S, Zhu C, Farre G, et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways [J]. Proc Natl Acad Sci USA, 2009, 106(19):7762-7767.
    [192]Howitt CA and Pogson BJ. Carotenoid accumulation and function in seeds and non-green tissues [J]. Plant, Cell Environment, 2006, 29(3):435-445.
    [193]Gerjets T and Sandmann G. Ketocarotenoid formation in transgenic potato [J]. J Exp Bot, 2006, 57(14):3639-3645.
    [194]Schoefs B, Rmiki N, Rachadi J, et al. Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids [J]. FEBS Lett, 2001, 500(3):125-128.
    [195]Higuchi R, Recombinant PCR. In: PCR protocols [M]. Academic Press, New York, 1990.
    [196]Linden H, Lucas MM, De Felipe MR, et al. Immunogold localization of phytoene desaturase in higher plant chloroplasts [J]. Physiologia Plantarum, 1993, 88(2): 229.
    [197]Schnurr G, Misawa N and Sandmann G. Expression, purification and properties of lycopene cyclase from Erwinia uredovora [J]. Biochem J, 1996, 315 (3):869-874.
    [198]Sander LC, Sharpless KE, Craft NE, et al. Development of engineered stationary phases for the separation of carotenoid isomers [J]. Analytical Chemistry, 1994, 66(10):1667-1674.
    [199]Iskandar HM, Simpson RS, Casu RE, et al. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane [J]. Plant Molecular Biology Reporter, 2004, 22(4):325-338.
    [200]Masamoto K, Wada H, Kaneko T, et al. Identification of a gene required for cis-to-trans carotene isomerization in carotenogenesis of the cyanobacterium Synechocystis sp. PCC 6803 [J]. Plant Cell Physiol, 2001, 42(12):1398-1402.
    [201]Yan J, Kandianis CB, Harjes C, et al. Rare genetic variation at Zea mays crtRB1 increasesβ-carotene in maize grain [J]. Nature Genetics, 2010,DOI:10.1038/ng.551.
    [202]Gottlieb LD. Conservation and duplication of isozymes in plants [J]. Science, 1982, 216(4544):373-380.
    [203]Krubasik P and Sandmann G. A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids [J]. Mol Gen Genet,2000,263(3):423-432.
    [204]Verdoes JC, Krubasik KP, Sandmann G, et al. Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous [J]. Mol Gen Genet,1999,262(3):453-461.
    [205]Arrach N, Fernández-Martín R, Cerdá-Olmedo E, et al. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces [J]. Proc Natl Acad Sci USA,2001, 98(4):1687-1692.
    [206]Arrach N, Schmidhauser TJ and Avalos J. Mutants of the carotene cyclase domain of al-2 from Neurospora crassa [J]. Mol Genet Genomics,2002,266(6):914-921.
    [207]Sandmann G, Zhu C, Krubasik P, et al. The biotechnological potential of the al-2 gene from Neurospora crassa for the production of monocyclic keto hydroxy carotenoids [J]. Biochim Biophys Acta,2006,1761(9):1085-1092.
    [208]Stickforth P, Steiger S, Hess WR, et al. A novel type of lycopene epsilon-cyclase in the marine cyanobacterium Prochlorococcus marinus MED4 [J]. Arch Microbiol,2003,179(6):409-415.
    [209]Kotani H, Tanaka A, Kaneko T, et al. Assignment of 82 known genes and gene clusters on the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803 [J]. DNA Res, 2(3):133-142.
    [210]Maresca JA, Graham JE, Wu M, et al. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria [J]. Proc Natl Acad Sci USA , 2007 , 104(28):11784-11789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700