用户名: 密码: 验证码:
小麦紫黄质脱环氧化酶基因的克隆及其表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物光合机构中叶绿体色素吸收的光能通过光化学过程转化为稳定的化学能。然而,大多数情况下植物接受的能量要超过其所能转化的能量,如果过量的光能不及时耗散掉,光合功能会降低,导致光合作用的光抑制,甚至出现光氧化、光破坏。依赖于叶黄素循环(Xanthophyll cycle)的热耗散作用近年来受到普遍的关注。它在耗散过剩激发能、保护光合机构中起着主要的作用,被认为是光保护的主要途径。叶黄素循环是指植物吸收的光能过剩时,双环氧的紫黄质(V)在紫黄质脱环氧化酶(VDE)的催化下,经过中间物单环氧的花药黄质(A)转化为无环氧的玉米黄质(Z);在暗处,则在玉米黄质环氧化酶(ZE)的作用下朝相反的方向进行,将Z重新环氧化为V,形成一个循环。关于叶黄素循环在防御光抑制和光破坏中的作用已成为光合作用研究的一个热点领域。
    本研究欲根据已知植物的紫黄质脱环氧化酶基因序列从小麦叶片中克隆该基因,并利用根癌农杆菌介导法将其反义基因导入烟草中,研究其在烟草植株内的功能表达,为VDE基因工程提供基因资源和理论依据。
    RT-PCR法得到小麦紫黄质脱环氧化酶(WVDE)的全系列,cDNA的全长为1,746。其ORF长度为1365bp,编码454个氨基酸,分子量为39.8KD,其中转运肽长度为106个氨基酸,成熟蛋白348氨基酸。GenBank注册号为AF265294。
    WVDE cDNA的编码区序列与水稻、拟南芥、烟草、莴苣、菠菜和茶树的同源性分别为78.7%、62.6%、58.3%、60.8%、60.6%和61.2%;
    小麦叶片在晴天情况下的PSII最大光化学效率(Fv/Fm)在上午随光强的增加而呈迅速下降,中午12:00达到最低点,表明发生光抑制。与此同时,非光化学猝灭(NPQ)迅速上升,在中午12:00达到最高值,光化学效率变化趋势相反。强光和弱光下叶黄素循环脱环氧化状态存在明显的差异。RT-PCT southern检测结果表明,小麦叶片中的WVDE的表达与反映过剩光能热耗散的NPQ值有很好的线性关系。
    选用pBI121载体系统,将WVDE的5'端反向插入到载体中。利用根癌农杆菌介导法转化烟草。经过近60天左右的培养,共获得烟草再生植株80余株。Southern杂交和RT-PCR检测结果,可以断定目的基因已经整合到转基因烟草的基因组中。
    
    
    转基因烟草与对照植株在强光处理的初期和早上照光时间较短、光强较弱时的Fv/Fm和NPQ无较大的差别,但随着照光时间的延长和光强的增加两者的Fv/Fm值的下降和NPQ值的升高开始呈现较大的差异。盐胁迫中转基因烟草与对照的Fv/Fm和NPQ的变化也有相似的结果,胁迫初期两者的Fv/Fm的下降几乎相同,但随着处理时间的增加,转基因株迅速降低,而对照则保持缓慢下降的趋势。4℃低温处理中转基因烟草与对照的Fv/Fm在开始的前3h中下降幅度基本一致,而3h之后转基因株表现出Fv/Fm的急剧降低,但置于弱光下48h后转基因植株的Fv/Fm可以恢复到与对照相同的初始值。研究表明转反义WVDE基因植株抑制了烟草VDE的活性,导致热耗散能力下降。逆境条件下,植物的碳同化过程受到抑制,导致光能更加过剩,在此情况下抑制VDE,光抑制加重。说明WVDE在过剩光能耗散中起重要作用。
The radiant energy absorbed by the photosynthetic apparatus will finally be partially converted into steady chemical energy via photochemical processes. When plants absorb more light than that can be used for photosynthesis, the excess energy, which is not promptly quenched, can reduce the photosynthetic efficiency and result in photoinhibition, even photooxidative damage to the photosynthetic reaction center. The heat dissipation depended on xanthophyll cycle has been wildly concerned recently. It is regarded as an important photoprotective way because it can deal with the excess energy and protect the photosynthetic apparatus from photodamage. The xanthophyll cycle involves the interconversions between the three pigments, violaxanthin(V), antheraxanthin(A) and zeaxanthin(Z). The cycle is catalyzed by two enzymes, violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE). When the energy is excessive, VDE converts V to Z via A in the presence of ascorbate and an acidic lumen generated by the proton pump, and ZE catalyzes the reverse reaction in the dark. The study on the function of xanthophyll cycle in reducing photoinhibition and photodamage has been a hot field in the research of photosynthesis.
     In this experiment, the gene, which was named WVDE, encoding VDE enzyme from wheat was cloned by RT-PCR. The GenBank accession number is AF265294. The WVDE cDNA is 1,746bp long. The length of the open reading frame is 1,365bp and it encodes 464 amino acids. The length of the transpeptide is 464 amino acids, and mature protein is 348 amino acids. Its molecular weight is 39.8 Kda.
    The amino acid sequence of WVDE showed 78.7%, 62.6%, 58.3%, 60.8%, 60.6% and 61.2% identity with those of the rice, Arabidopsis thaliana, tobacco, lettuce, spinach and tea, respectively.
    The 5' end sequence of WVDE was amplified by RT-PCR, and its reverse sequence was inserted into the plant expression vector pBI121. About 80 antisense transgenic tobacco plants were obtained from leaves' explants via Agrobacterium tumefaciens-mediated transformation in 60 days. It has been confirmed that the antisense WVDE gene was transferred into the
    
    genome of the transgenic tobacco plants by analysis of Southern blot and RT-PCR amplification.
     In natural condition, the PSII maximal photochemical efficiency (Fv/Fm) of wheat leaves declined quickly in according with the increasing of the light intensity in the morning, and touched bottom at 12 o'clock, which indicated that the photoinhibition occurred. At the same time, non-photochemical quenching (NPQ) increased and reached maximum at 12 o'clock, and the diurnal changes of NPQ was reverse to those of Fv/Fm. The results of RT-PCR southern blot indicated there was a linear relationship between NPQ and WVDE expression in wheat leaves.
     There was no great difference between Fv/Fm and NPQ of the transgenic and wild-type tobacco plants at the beginning of the strong light treatment or under the low light intensity in the morning, but the obvious difference appeared when Fv/Fm was declined and NPQ was increased following the increase of the light treatment time and light intensity.
     Similar changes of Fv/Fm and NPQ between the transgenic and wild-type tobacco plants were noted under the salt stress. The decline of their Fv/Fm was almost accordant at the beginning of the treatment, but along with the extending of treating time, Fv/Fm of the transgenic plants dropped rapidly. Under the 4℃ temperature stress, the decrease of Fv/Fm in the transgenic and wild-type tobacco leaves was similar for the first 3 h. After 3 hour's chilling stress, Fv/Fm in the transgenic plants decreased more sharply than that of the wild-type plants, but it could recover to the initial value of wild-type tobacco plants. These results demonstrated that transferring antisense WVDE gene inhibited VDE activity and led to the decrease of heat dissipation in the transgenic tobacco plants. Under the stress condition, the carbon assimilation was inhibited, and the light energy was more excessive. If VDE was inhibited a
引文
1. 陈贻竹,李晓萍.叶绿素荧光技术在植物环境胁迫研究中的应用,燕劳亚煮劳jI拗笋 按,1995,3(4):79—86
    2. 董高峰,陈贻竹.植物叶黄素循环与非辐射能量耗散.街物生理号籀祝,1999,35(2) :141—146
    3. 郭连旺,许大全,沈允钢.田间棉花叶片光合速率中午下降的原因.茁物生理学按,1 994, 20:360—366
    4. 郭连旺,许大全,沈允钢.棉花叶片光合作用的光抑制和光呼吸的关系.群学翅獬199 5,40-1 885.1888
    5. 郝伯林,张淑誉.生物信息学手册,上海科学技术出版社,2000
    6. 贾虎森,李德全,韩素琴.高等植物光合作用的光抑制研究进展.哲纺学翅报,2000 ,17(3):218—224,
    7. 李滨,邹琦,李全梓,崔家俊.小麦紫黄质脱环氧化酶WVDE序列,稽.物生理学报,2 00l,27: 359.360
    8. 林荣呈,李良璧,匡廷云.水稻紫黄质脱环氧化酶基因的克隆、体外表达及酶促反应 .群学翅报, 2002,47:449—451
    9. 林荣呈,许长成,李良壁,匡廷云.叶黄素循环及其在光保护中的分子机理研究,暂 纺笋掇, 2002,44:379—383
    lO.林荣呈,李良壁,匡廷云.水稻紫黄质脱环氧化酶基因的克隆、体外表达及酶促反应, 群学通报,2002,47(6):449.451
    11.林世青,许春辉.叶绿素荧光动力学在植物抗性生理学,生态学和农业现代化中的应用 ,稽纺学通掇1992,9(1):1-16
    12.孟庆伟,赵世杰.午间强光胁迫下叶黄素循环对小麦光合机构的保护作用,萨纺≠拯, 1998, 24:747.750
    13.孟庆伟,赵世杰.午间强光胁迫下叶黄素循环对小麦叶片光合机构的保护作用,结物学 掘1998, 24(6):747-750
    14.萨姆布鲁克等,金冬雁等译.分子克隆实验指南(第二版),科学出版社,1999
    15.谭新星,许大全,沈允钢.小麦叶片的状态转换涉及PSII向PSI激发能满溢的变化,植 物生理学报.1997.23:9.14
    16.谭新星,许大全,沈允钢.小麦叶片状态转换和光合作用的光抑制的关系,群学近獬, 1997, 42:2208-2212
    17.陶宗娅,邹琦.光呼吸在光合效率调节的作用中的作用,植物光合作用机理与生理学术 研讨会论文汇编,1998,中国植物生理学会,107-109
     18.王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响,赢嘉农业右学学獬,2002,2 5(4):1l-14
    
    
    19.王仁雷,刘友良,华春.植物叶黄素循环的组成、功能和调节,亚热带植物科学,2000 ,29(4):59-66
    20.吴长艾,孟庆伟,邹琦.叶黄素循环及其调控,植物生理学通讯,200l,37:1-5
    21.吴长艾.不同小麦品种的光破坏防御机理的研究,山东农业大学硕士学位论文.2001
    22.吴乃虎.基因工程原理(第二版),1998,科学出版社.
    23.武海,许大全.依赖叶黄素循环的非辐射能量耗散在防御珊瑚树叶片光抑制破坏中的作 用.稽物生理学报,1993,19(2):181~187
    24.徐志放等.光合作用的光抑制与光合器官的活性氧代谢,植物生理学通讯,1999,35(1 ):325-332
    25.许大全.植物光合作用的光抑制,植物生理学通讯,1992,28(4):237-243
    26.许长成,张建华.干旱条件下冬小麦不同叶龄叶绿素荧光及叶黄素循环组分的变化,值 物生理学通讯,1999,25(1):29-37
    27.阳成伟,陈贻竹.叶黄素循环酶,广西植物,2002,22(3):264-267
    28.叶梁,高辉远.光温交叉胁迫对菜豆幼苗叶黄素循环启动的影响,植物生理学通讯,19 98,34(2):88-93
    29.张成岗,贺福初.生物信息学方法与实践,科学出版社,2002
    30.张宁,孟庆伟.光胁迫下银杏光合作用的光抑制,西北植学学报,1999,19(3):461-4 65
    31.张守仁叶绿素荧光动力学参数的意义及讨论,稽物学通报,1999,16(4):444-448
    32.赵会杰,邹琦.叶绿素荧光分析技术及其在植物光合机理研究中的应用,河南业大学学 报,2000,34(3):248-251
    33.赵世杰,孟庆伟.植物组织中叶黄素循环组分的高效液相色谱分析法,殖物生理学通讯 ,1995,31:438-442
    34.朱新光,张其德,匡廷云.NaCI对小麦光合功能的伤害主要是由离子效应造成的,殖物 学通报,2000,17(4):360-365
    35.朱玉贤.现代分子生物学,1997,高等教育出版社
    36.邹琦,孟庆伟.逆境条件下植物耗散过剩光能的途径.1999,植物环境生理学术讨论文 汇编
    37.Adams WW III,Demmig-Adams B,Logan BA.Rapid changes in xanthophyll cycle-d ependent energy dissipation and photosystem II efficiency in two vines,Stephania Japonica A
    nd Smilax Australis, growing in the under storey of an open eucalyptus forest.Plant,Cell And Env
    ironment 1 999,22, 125-136.
    38.Adams WW III,Demmig-Adams B,Verhoeven AS,Barker DH.Photoinhibition durin g winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation.Aus
    t JPlant Physiol,1995, 22:261-276
    
    
    39.Akerlund HE,Arivissson r,Q,Bratt CE,Carlsson M.Partial purification of the violaxanthin 11-14
    19.王仁雷,刘友良,华春.植物叶黄素循环的组成、功能和调节,亚热带植物科学,2000 ,29(4): 59-66
    20.吴长艾,孟庆伟,邹琦.叶黄素循环及其调控,植物生理学通讯,200l,37:1-5
    21.吴长艾.不同小麦品种的光破坏防御机理的研究.,山东农业大学硕士学位论文.2001
    22.吴乃虎.基因工程原理(第二版),1998,科学出版社.
    23.武海,许大全.依赖叶黄素循环的非辐射能量耗散在防御珊瑚树叶片光抑制破坏中的作 用.稽物生理学报,1993,19(2):181~187
    24.徐志放等.光合作用的光抑制与光合器官的活性氧代谢,植物生理学通讯,1999,35(1 ):325-332
    25.许大全.植物光合作用的光抑制,植物生理学通讯, 1992,28(4):237-243
    26.许长成,张建华.干旱条件下冬小麦不同叶龄叶绿素荧光及叶黄素循环组分的变化,值 物生理学通讯, 1999,25(1):29-37
    27.阳成伟,陈贻竹.叶黄素循环酶,广西植物,2002,22(3):264-267
    28.叶梁,高辉远.光温交叉胁迫对菜豆幼苗叶黄素循环启动的影响,植物生理学通讯,19 98,34(2): 88-93
    29.张成岗,贺福初.生物信息学方法与实践,科学出版社,2002
    30.张宁,孟庆伟.光胁迫下银杏光合作用的光抑制,西北植学学报,1999,19(3):461-4 65
    31.张守仁叶绿素荧光动力学参数的意义及讨论,稽物学通报,1999,16(4):444-448
    32.赵会杰,邹琦.叶绿素荧光分析技术及其在植物光合机理研究中的应用,河南业大学学 报, 2000,34(3):248-251
    33.赵世杰,孟庆伟.植物组织中叶黄素循环组分的高效液相色谱分析法,殖物生理学通讯 ,1995, 31:438-442
    34.朱新光,张其德,匡廷云.NaCI对小麦光合功能的伤害主要是由离子效应造成的,殖物 学通报, 2000,17(4):360-365
    35.朱玉贤.现代分子生物学,1997,高等教育出版社
    36.邹琦,孟庆伟.逆境条件下植物耗散过剩光能的途径.1999,植物环境生理学术讨论文 汇编
    37.Adams WW III,Demmig-Adams B,Logan BA.Rapid changes in xanthophyll cycle-d
    ependent energy dissipation and photosystem II efficiency in two vines,Stephania Japonica A nd Smilax Australis, growing in the under storey of an open eucalyptus forest.Plant,Cell And Env
    ironment 1 999,22, 125-136.
    38.Adams WW III,Demmig-Adams B,Verhoeven AS,Barker DH.Photoinhibition durin
    
    g winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation.Aus
    t JPlant Physiol,1995, 22:261-276
     39.Akerlund HE,Arivissson r,Q,Bratt CE,Carlsson M.Partial purification of the violaxanthin de-epoxidase.In Photosynthesisfrom light to Biochem.1 995,V01.IV.PP.1 03
    -106
    40.Anderson JM,Aro EM.Arana stacking and protection of photosystem II in thyl akoid membranes of higher plant leavesunder sustained high irradiance,Photosynth Res,1 994,4 1
    :3 1 5—326
    41.Arsalane W,Rousseau B,Duval J-C.Influence of the pool size of the xanthop hyll cycle on the effects of lightstress in a diatom:competition between photoprotection and photoinhib
    ition.Photochem Photobiol,1994,60:237-243
    42.Arvidsson P-O,Bratt CE,Carlsson M,Akerlund HE.Purification and identif ication of the violaxanthin deepoxidase as a43 kda protein.Photosynth Res,1 996,49:1 1 9-
    1 29
    43.Asada K.The water-water cycle in chloroplasts:Scavenging if active oxygens and dissipation of excess photos.Annu.Rev.Plant.Physiol Plant Mol BioL 1 999.35:1 5—44
    44.Barber SB.Photoinhibition of photosynthesis induced by visible light,Annu .Rev.Plant.Physiol,1 984, 35:15.44
    45.Barker DH.Adams III WW.The xanthophyll cycle and energy dissipation in dif ferently oriented faces ofthe cactus opuntia macrorhiza.Oecologia,1997,109:353-361.
    46.Bassi R,Dainese P.A supramolecular light-harvesting complex from chloropla st photosystem-II membranes.EurJBiochem,1992,204:317-326
    47.Bassi R,Giacometti GM,Simpson D.Changes in the composition of stroma lame llae following state I-state II transitions.Biochim BiophysActa,1988,935:152-165
    48.Bassi R,Hinz U,Barbato R.The role of light harvesting complex and photosy stem II in thylakoid stacking in the chlorina-F2 barley mutant.Carlsberg Res Commun,1985,50:347-367
     49.Bassi R,Pineau B,Dainese P,Marquardt J.Carotenoid-binding proteins of p hotosystem 11.Eur J Biochem,1 993,2 1 2:297-303
     50.Bassi R,Sandona D,Croce R.Novel aspects of chlorophyll a/b-binding prot eins.Physiol Plant, 1997,100:769-779
     51.Bilger W,No-Rknlan O.Relationship among violaxanthin de-epoxidation,th ylakoid membrane conformation,and non-photochemical chlorophyll fluorescence quenching in le
    aves of coaon (Gossypium Hirsutum L.).Planta,1994,193:238-246
    
    
    52.Bilger W,Bjorkman O.Role of the xanthophyll cycle in photoprotection eluc idated by measurements of light-induced absorbance changes: Fluorescence and photosynthesis in le
    aves of Hedera Canariensis,Photosynth Res,1990,25:173~185
     53.Bilger W,Bjorkman O.Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium Hirsu tum L.and Malva Parviflora L,Planta,1991,184:226~234
     54. Bilger W,Bjorkman O,Thayer S.Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in
    coaon leaves,Plant Physiol,1989,91:542~551
    55.Bj6rkman O,Demmig B.Photon yield of 02 Evolution and chlorophyll fluoresce nce at 77k among vascular plants of diverse origins.Planta,1 987,170,489-504.
    56.Bouvier F,D Harlingue A,Hugueney P,Marin E,Marion-Poll A,Camara B.Xant hophyll biosynthesis:cloning,expression,functional reconstitution,and regulation, Plant Physi01.1 996,27 1: 28861-28867
    57.Bratt CE,Arvidsson PO,Carlsson M,Akerlund HE.Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration.Photosynth Res.1995,45:1 69-175
    58.Bugos RC,Hieber AD,Yamamoto HY.Xanthophyll cycle enzymes are members of t he lipocalin family,the first identified from plants.JBiol Chem,1 998,273:1 532 1-1532 4
    59.Bugos RC,Yamamoto HY.Molecular cloning of violaxanthin de-epoxidase from r omaine lettuce and expression in Escherichia eoli.Proc Natl Acad Sci USA,1 996,93:6320-6325
    60.Bungard RA,Ruban AV,Hibberd JM,Press MC,Hortonp,Scholes JD.Unusual car otenoid composition and a new type of xanthophyll cycle in plants.Proc Natl.Acad Sci USA,1 999 96: 1135-1139
    6 1.Chang S-H,Bugos RC,Sun W-H,Yamamoto HY.Antisense suppression of violaxa nthin de-epoxidase in tobacco does not affect plant performance in controlled grow th conditions.Photosyn Res,2000,64:95-103
    62.Church GM,Gilbert W.Genomic Sequencing.Proc.Natl.AcadSci USA.1984,81 :1991-1995
    63.Demmig—Adams,B.&Adams,W.W.III.The role of xanthophyll cycle carotenoi d in protection of photosynthesis,Trends Plantsci,1996,1:21 -26
    64.Demmig B,Winter K,Czygan F-C.Photoinhibition and zeaxanthin formation in intact leaves:a possible role ofthe xanthophyll cycle in the dissipation ofexcess light Energy
    .Plant Physiol,1987,84: 218-224
    
    
    65.Demmig B,Winter K,KrUGer A,Czygan F-C.Zeaxanthin and the heat dissipatio n of excess light energy in nerium oleander exposed to a combination of high light and water str
    ess.Plant Physiol 1 988, 87:17-24
    66.Demmig-Adams B.Carotenoids and photoprotection in plants:a role for the xa nthophyll zeaxanthin. Biochim Biophys ACta,1990,1 020:l-24
    67.Demmig-Adams B,Adams III WW,Ebbert V,Logan BA.Ecophysiology of the xanth ophyll cycle.In Hafrank,AJ Young,BG Britton,ILl Cogdell,Eds,The photochemistry of carotenoids.Kluwer Academic Publishers,Dordrecht,The Netherlands,1 999,245~269
    68.Demmig-Adams B,Adams III WW,Logan BA,Verhoeven AS.Xanthophyll cycle depe ndent energy dissipation and flexible photosystem II Efficiency in plants acclimated to lig
    ht stress.Australian Journal ofPlant Physiology,1995,22,249-260.
    69.Demmig-Adams B,Adams III WW.Photoprotection and other responses of plants to high light stress· Annual Review ofPlant Physiology And Plant Molecular Biology,1 992,43,599-6
    26.
    70.Demmig.Adams B.Adams WW III.Carotenoid compositionin sun and shade leaves of plants with dif.ferent life forms.Plant Cel,Environ,1992,15:41 l-419
    7 1.Demmig-Adams B.Adams WW III.Xanthophyll cycle and light stress in nature :uniform response to excess direct sunlight among higher plant species.Planta,1996,198:460·470
    72.Demmig-Adams B,Adams WW III,Barker DH,Logan BA,Bowling DR,Verhoeven AS .Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation.Physiol Plant,1 996,98:254-264
    73.Demmig-Adams B,Adams WW III,Logan BA,Verhoeven AS.Xanthophyll cycle—dep endent energy dissipation and flexiblephotosystem ii efficiency in plants acclimated to ligh
    t stress.A ust J Plant Physiol,1995,22:249-260
    74.Demmig-Adams B,Moeller DL,Logan BA,Adams WW III.Positive correlation bet ween levels of retained zeaxanthin and antheraxanthin and degree of photoinhibition in shade
    leaves of Schefflera .Arboricola.Planta,1998,205:367-374
     75.Demmig-Adams B,William W,Winter K,Inhibition of zeaxanthin formation and
     of rapid changes in radiationless energy dissipation by DTT in spinach leaves and chloroplasts,Pl
    anta,1 990,92:293~ 301
     76.Demmig-Adams B,Winter K,Czyger F.Photoinhibition and zeaxanthin formatio n in intact Leaves, Plant Physiol,1987,84:218~224
     77.Demmig-Adams B,Winter K,Krger A,Czygan FC.Zeaxanthin synthesis,energy dissipation,and phototection ofphotosystem II at chilling temporation,Plant Physiol,
    
    1989,90
    :894~898
     78.Demmig-Adams B,Winter K,Zeaxanthin and the heat dissipation of excess lig ht energy in nerium oleander exposed to a combination of light and water stress,Plant Physiol,
    1 988,87:1 7~24
     79.Edwards GE,Baker NR.Can C02 Assimilation in maize leaves be predicted acc urately from chlorophyll fluorescence analysis?Photosynthesis Research,1993,37,89—102
    .
    80.Eskling M,Akerlund H-E.Changes In the quantities of violaxanthin de-epoxid ase,xanthophylls and ascorbate in spinachupon shift from low to high light.Photosynth Res,19985
    7:41-50
    81.Eskling M,Arvidsson P-O,Akerlund H·A.The xanthophyll cycle,its regulati on and components. Physiol Plant,1997,100:806-81
     82.Farber A,Young AJ,Ruban AV,Horton P,Jahns P.Dynamics of xanthophyll—c ycle activity in different antenna subcomplexes in the photosynthetic membranes of higher pla
    nts.The relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching.P
    lant Physiol, 1997.115:1609-1618
     83.Foumey RM,Miyakoshi J,Day RS III,Paterson MC.Northern blotting:efficie nt RNA staining andtransfer.Focus,1988,10:5-7
    84.Foyer CH,Harbinson J.Relationships between antioxidant metabolism and caro tenoids in the regulation of photosynthesis.In HA Frank,AJ Young,G Britton,Rjcogdell,Eds,
    The photochemistry of carotenoids.Kluweracademic Publishers,Dordrecht,The Netherlands,1999,305
    -325
    85.Frank HA,Bautista JA,Josue JS,Young AJ.Mechanismof non-photochemical que nching in green plants:energies of the lowest excited singlet states of violaxanthin and zeaxan
     thin.Biochemistry,2000,39:283 1-2837
    86.Gamon JA,Pearcy RW.Leaf movement,stress avoidance and photosynthesis in v itis Califomica. Oecologia,1 989,79,475-481
    87. Gao SJ,Chen SS,Li MQ..Effect of phosphorus nutrition on photosynthesis a nd photorespiration in tobacco leaves.Acta Phytophysioiogica Sinica|1989,15:281-287
    88.Genty B,Briantais J-M,Baker NR.The relationship between quantum yield ofp
     hotosynthetic electron transport and quenching of chlorophyll fluorescence.Biochimica Et Biophysica Ac ta,1989-1990,87-92.
    89.Gilmore AM.Mechanistic aspects of xanthophyll cycle—dependent photoprotect ion in higher plantchloroplasts and leaves.Physiol Plantl 997 99:197-209
    90.Gilmore AM、Ball MC.Protection and storage of chlorophyll in overwintering
    
    
    evergreens.Proc NatlAcad.Sci USA,2000,97:11098-11101
    9 1.Gilmore AM,Bjorkman O.Temperature-sensitive coupling and uncoupling o
    f at pase-mediated,non-radiative energy dissipation:similarities between chloroplast and leaves
    .Planta,1 995,1 97:646-654
    92.Gilmore AM,Hazier TL,Debrunner PG,Govindjee.Photosystem II chlorophyll a
     fluorescence lifetimes and intensity are independent of the antenna size differences between
    barley wild-type and chlorina mutants:photochemical quenching and xanthophyll cycle—dependent non
     photochemical quenching offluorescence.Photosynth Res,1996,48:171-187
    93.Gilmore AM,Hazier TL,Debrunner PG,Govindjee.Comparative time-resolved ph
    otosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photo inhibitory reaction center damage and xanthophyll cycle—dependent energy dissipation.Photochem Pho
    tobiol,1 996,64552-563
    94.Gilmore AM,Hazier TL,Govindjee.Xanthophyll cycle dependent quenching of p
    hotosystem IIchlorophyll a fluorescence:formation of a quenching complex with a short fluore scence lifetime.ProcNatlAcadSci USA,1995,92:2273-2277
    95.Gilmore AM,Yamamoto HY.Resolution of lutein and zeaxanthin using a non—en
    dcapped,lightlycarbon-loaded C 1 8 high·performance liquid chromatographic Column.J Chromat ogr,1991,543:137-145
    96.Gilmore AM.Yamamoto HY.Linear models relating xanthophylls and lumen acidi
    ty to non-photochemical fluorescence quenching:evidence that antheraxanthin ex
    plain
    s zeaxanthinin dependent quenching.Photosynth Res,1 993,3 5:67-78
    97.Gilmore AM,Yamamoto HY.Dark Induction of zeaxanthin dependent non-photoc
    hemical fluorescence quenching mediated by ATP.Proc Natl Acad Sci USA,1 992,89:1 8
    99-1903
    98.Gilmore AM,Yamamoto HY.Zeaxanthin formation and energy dependent fluoresce
    nce quenching in pea chloroplasts,Plant Physiol,1991,96:636~643
    99.Giuffra E,Cugini D,Croce R,Bassi R.Reconstitution and pigment·binding p
    roperties of recombinant CP29.Eur JBiochem,1996,238:112-120
    100.Goss R,Bo..me K,Wilhelm C.The xanthophyll cycle of Mantoniella squamat
    a converts violaxanthin into antheraxanthin but not to zeaxanthin:consequences for the m
    echanism of enhanced non-photochemical energy dissipation.Planta,1998,205:613-621
    101.Goss R,Richter M,Wild A.Pigment composition of PSII pigment protein co
    mplexes purified by anion exchange chromatography:Identification of xanthophyll cycle pigment bin
    ding proteins.J Plant Physiol,1997.151:115-119
    102.Govindjee.Sixty-three years since Kautsky:chlorophyll a fluorescence.Aus
    tralian Journal ofPlant Physiology,1995,22,131-160.
    
    
    103.Griffiths H,Maxwell K.In memory of CS pittendrigh:Photoprotective strate
    gies in epiphytic bromeliads in relation to exposure within the forest canopy.Functional Ecolog
    y,1999.13:15-23.
    104.Groom QJ,Baker NR.Analysis of light-induced depressions of photosynthesis
     in leaves of a wheat crop during the winter.Plant Physiology,1992,100,1217-1223.
    105.Gruszecki WI,Strzalka K.Does the xanthophyll cycle take part in the regul
    ation of fluidity of the thylakoid membrane?Biochim BiophysActa,1991,1060:310-314
    106.Hager A.Die reversiblen,lichtabha"’ngigen xanthophyll umwandlungenim chl
    oroplasten.Ber Dtsch Bot Ges Bd,1975.88:27-44
    107.Hager A,Holocher K.Localization of the xanthophyll-cycle enzyme Violaxant
    hin de-epoxidase within the hyracoid lumen and abolition of its mobility by a(1ight-dependent)p
    H decrease.Planta, 1994.192:581-589
    108.Havaux M,Bonfils J-P,Lu”Tz C,Niyogi KK.Photodamage of the photosynthet
    ic apparatus and its dependence on the leaf developmental stage in the npq 1 Arabidopsis mutant def
    icient in the xanthophyll-cycle enzyme violaxanthin de-epoxidase.Plant Physiol,2000,1 24:
    273-284
    109.Havaux M,Niyogi KK.The violaxanthin cycle protects plants from photooxida
    tive damage by more than one mechanism.Proc Natl Acad&f USA 1 999 96:8762-8767
    110.He J,Chee CW,Goh CJ.Photoinhibition of Heliconia under natural tropical
    conditions:the importance of leaf orientation for light interception and leaf temperature.Pl
    ant,Cell And Environment 1996,19,1238-1248.
    111.Horton P,Bove.cer JR.Chlorophyll fluorescence transients.In:Harwood J
    ,Bowyer JR,Eds.Methods in plant biochemistry.London:Academic Press,1990,259-296.
    112.Horton P,Hague A.Studies on the induction of chlorophyll fluorescence in
    isolated barley protoplasts: IV.Resolution of non—photochemical quenching.Biochimbiophys Acta,1998,932
    :107-115
    113.Honon P,Ruban A,Wentworth M.Allosteric regulation of the light harvestin
    g svtem of photosystem II.Phil Trans R Soc Lond B,2000,355:1361-1370
    114.Horton P,Ruban AV,Rees D,Pascal AA,Noctor G,Young AJ,Control of the l
    ight-harvesting function of chloroplast membranes by aggregation of the LHC II chlorophyll-pro
    tein complex.FEBS Lett,1991.292:l-4
    115.Horton P,Ruban AV,Waiters RG.Regulation of light harvesting in green pla nts:indication by non—photochemical quenching of chlorophyll fluorescence.Plant Physiol,1994
    ,106:415-420
    
    
    116.Horton P,Ruban AV,Waiters RG.Regulation of light harvesting in green pla
    nts.Annual revieu,of plantphysiology andplant molecular biology,1996,47,655-684.
    117.Hymus GJ,Ellsworth DS,Baker NR,Long SP.Does free-air carbon dioxide enr
    ichment affect photochemical energy use by evergreen trees in different seasons?A chlorophyll
     fluorescence study of mature loblolly pine.Plant Physiology,1999,120,1183-1191.
    118.Jahns P,Krause GH.Xanthophyll cycle and energy-dependent fluorescence que
    nching in leaves from pea plants grown under intermittent light,Planta,1 994,1 92:176~182
    119.Johnson GN,Young AJ,Scholes JD,Horton P.The dissipation of excess excit
    ation energy in British plant species.Plant,Cell And Environment,1 993,16:673-679.
    120.Kilian R,Bassi R,Schaefer C.Identification and characterization of photo
    system ii chlorophyll a/b binding proteins in Marcantia polimorpha L.Planta,1997,204:260-267121.Knoetzel J,Simpson D.Expression and organization of antenna proteins in t
    he light.and temperature-sensitive barley mutant Chlorina-104.Planta,1991 185:111-123
    122.Krause GH.The high-energy state of the thylakoid system as indicated by ch
    lorophyll fluorescence and chloroplast shrinkage.Biochim Biophys Acta,1973,292:715-728
    123.Krause GH.Photoinhibition induced by low temperatures.In Baker NR,Bowyer
     JR,EDS, Photoinhibition of photosynthesis:molecular mechanisms to the field.Bios sci
    entific publishers, Oxford,UK,1994,Pp 331-348
    124.Krause GH,Vernote C,Briantais JM.Photoinduced quenching of Chl fluoresce
    nce in intact chloroplasts and algae,Biochim Biophys Acta,1 982,679:116~124
    125.Krause GH,Weis E.Chlorophyll fluorescence and photosynthesis:the basics
    .Annu Rev Plant Physiol PlantmolBiol,1991,42:313-349
    126.Krieger A,Moya I,Weis E.Energy-dependent quenching of chlorophyll a fluo
    rescence:effect of pHon stationary fluorescence and picosecond·relaxation kineticsin thylakoid membr
    anes and photosystem II preparations.Biochim Biophys Acta,1992,1102:167-176
    127.Krupa Z,Huner NPA,Williams JP,Maissan E,James DR.Development at cold-h
    ardening temperatures.The structure and composition of purified rye light—harvesting
    complex II.Plant Physiol 1987,84:19-24
    128.Lee AL—C,Thornber JP.Analysis of the pigment stoichiometr),of pigment-p
    rotein complexes from barley(、Hordeum vulgare).Plant Physiol,1 995,1 07:565—574
    129.Li XP,BjO”RklTlan O,Shih C,Grossman AR,Rosenquist M,Jansson S,Niyogi
     KK.A pigment—binding protein essential for regulation of photosynthetic light harv
    esting.Nature,2000,403: 391—395
    130.Lindgren LO,Stfilberg KG,H6glund AS.Cleavage of structural proteins duri
    ng the assembly of the head of Bacteriophage T4.Nature,1 970,227:680-685
    
    
    131.Long SP,Humphries S.Photoinhibition of photosynthesis in nature,Annu.Re
    v.Plant.Physiol Plant Mol Biol,1994,45:633—662
    132.Lovelock CE,Winter K.Oxygen—Dependent Electron Transport And Protection
    From Photoinhibition In Leaves ofTropical Tree Species.Planta,1996,198,580-587.
    133.Marie E,Arvidsson E Akerlund HE.The xanthophyll cycle,its regulation and
     components.Physiogla Plantarum.1997,100:806-816
    134.Maxwell C,Griffiths H,Young AJ.Photosynthetic acclimation to light and w
    ater stress by the C3-CAM epiphyte Guzmania monostachia:Gas exchange characteristics,photochemi
    cal efficiency and the xanthophyll cycle.Functional Ecology,1994,8:746-754.
    135.Maxwell DP,Falk S,Trick CG,Huner NPA.Growth at low temperature mimics h
    ighlight acclimation in Chlorella Vulgaris.PlantPhysiology,1994,105,535-543.
    136.Mehler AH.Studies on reaction of illumination choloplast I:Menchanism of
    the reduction of oxygen and other Hill reagents,Arch Biochem Biophys,1952,33:65-77
    137.Meyer S,Genty B.Mapping intercellular C02 mole fraction(Ci)in Rosa rubigi
    nosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging.Plant Physiology,1 9
    98,1 1 6,947-957.
    138.Meyer S,Genty B.Heterogenous inhibition of photosynthesis over the leaf s
    urface of Rosa rubiginosa 1.during water stress and abscisic acid treatment:Induction of a metabolic c
    omponent by limitation of C02 diffusion.Planta,1999,210,126-131.
    139.Murchie EH,Chen YZ,Hubbart S,Peng SB,Horton P.Interactions between sen escence and leaf orientation determine in situ patterns of photosynthesis and photoirdaibition
    in field-grown rice.Plant Physiology,1999,119,553-563.
    140.Neubauer C,Yamamoto HY.Mehler-peroxidase reaction mediates zeaxanthin for
    mation and zeaxanthin-related fluorescencequenching in intact chloroplasts.Plant Physiol
    ,1 992,99:1 354-1 36 1
    141.Niinemets U,Bilger W,Kull O,Tenhunen JD.Responses of foliar photosynthe
     tic electron transport, pigment stoichiometry and stomatal conductance to interacting environmental fa
    ctors in a mixed species canopy.Tree Physiology,1999.19:839-852.
    142.Niyogi KK.Photoprotection revisited:Genetic and molecular approaches.Ann
    u Rev Plant Physi.iPlant.mol Biol,1999,50:333-359
    143.Niyogi KK,Grossman AR,.Bjo Rkman O.Arabidopsis mutants Define a central
     role for the xanthophyll cycle in the regulation of photosynthetic energy conversion.Plant
     Cell,1 998,1 0:1121-1 134
    144.Niyogi KK,Shih C,Chow WS,Pogson BJ,Dellapenna D,Bjo‘Rkman O.Photopro
     tection in a zeaxanthin and lutein deficient double mutant ofArabidopsis photosystems,,Pro
    c natl
    
    Acad Sc.i USA.
    145.0gren E,Sj6str6m M.Estimation of the effect of photoinhibition on the car
    bon gain in leaves of awillow canopy,.Planta,.2001,181,560-567.
    146.Pastenes C,Horton P.Effect OfPhotOsynthesis In Beans.Plant Physi01.1996
    ,1 12:1253-1260
    147.Niyogi KK.,Peterson RB,Havir EA(2000)A Non-Photochemical quenching·.De
    ficient Mutant of Arabidopsis Thaliana Possessing normal Pigment Composition And Xanthophyll cyc
    le activity. Planta 210:205-214
    148.Peter J.Sandra H.Dicyclohexylcarbodiimide alters the pH dependence of vio
    laxanthin de-epoxidation. Planta.1999,207:393-400
    149.Pfundel E,Bilger W,Regulation And Possible Function of The Vioxanthin Cyc
    le,Photosynth Res, 1994.42:89~109
    150.Philtip D,Young A.Occurrence of the carotenoid lactucaxanthin in higher p
    lant LHCII.Photosynth Res,1 995,43:273-282
    151.Pogson BJ,Niyogi KK,BjO Rkman O,Dellapenna D.Altered xanthophyll compos
    itions adversely affect chlorophyll accumulation and non-photochemical quenching in Arabidopsis
     mutants.Proc Natl AcadSci USA,1998,95:13324-13329
    152.Pogson BJ,Rissler HM.Genetic Manipulation of carotenoid biosynthesis and
    photoprotection,.Phil Transr Soc Lond B,2000,355:1395-1403
    153.Powles SB.Photoinhihition of photosynthesis induced by visible light.Ann .Rev.Plant.Pbs'i01.1 984, 35:15-44
    154.Quick WP,Horton P.Studies on the induction of chlorophyll fluorescence in barley protoplasts.I. Factors affecting the observation of oscillations in the yield of chlorophyll fluorescence and the rate of oxygen evolution.Proceedings ofThe Royal Society ofLondon B,1984,220:361-3
    70.
    155.Rees D,Noctor G,Ruban AV,Crofts J,Young A,Horton P.pH·dependent chlo
    rophyll fluorescence quenching in spinach thylakoids from light treated or dark adapted leaves.Pho
    tosynth Res,1 992,3 1: 11-19
    156.Robert,C.B&Yamamoto,HY.Developmental expression of violaxanthin de—epo
    xidase in leaves of tobacco growing under high and low Light,Plant Physiology,1999.121:207-213
    157.Robert,CB,Yamamoto,H.Y.Molecular cloning of violaxanthin de-epoxidase
    from romaine lettuce and expression in Escherichia Coli,Proc,Natl,Acad,Sci,1996,93:6320-632
    5
    158.Robert,C.B,Yamamoto,H.Y.Xanthophyll—cycle enzymes are members of the
     lipocalin
    
    family-he first identified from plants,The Journal ofBiological Chemistry,1 998,273:15321-l5324
    159.Roberts A,Borland AM,Maxwell K,Griffiths H.Ecophysiology of the C3-CAM
     Intermediate clusia minor L.In Trinidad:Seasonal and short—term photosynthetic characteristics
    of sun and shade leaves. Journal ofExperimentalBotany,1998.49,1563—1573.
    160.Rockholm D.C,Yamamoto HY.Dainese P,Bassi R.Biochemistry ofthe chloropl
     st photosystem II antenna system and aggregation state of the component Chl A/B proteins.J Bio
    l Chem,1 99 1,266: 8136.8142
    161.Rockholm DC,Yamamoto HY.Purification of violaxanthinde—epoxidase by lipi
    d affinity precipitation. 1n HY Yamamoto,CM Smith,Eds,Photosynthetic responses to the environment.Am
    erican Society of Plant Physiologists,Rockville,MD,1 993,P 23 7162.Rockholm DC,Yamamoto HY.Violaxanthin De-epoxidase:Purification of a 43-k
    ilodalton lumenal protein from lettuce by lipid-affinity precipitation with monogatactosyldiacyl
    glyceride.Plant Physiozt 1996.1 10:697-703
    163.Rosaria Remelli,Claudio Varotto,Dorianna SandonA,Roberta Croce,Roberto
    Bassi.Chlorophyll binding to monomeric light-harvesting complex.A mutation analysis of chromoph
    ore—binding residues,Bi01.Chem.1 998,274:33510-3352 1.
    164.Ruban AV,Phillip D,Young AJ,Horton P.Carotenoid—dependent oligomerizat
    ion of the majorchlorophyll a/b light-harvesting complex of photosystem II of plants.Bi
    ochemistry,1 997,36: 7855-7859
    165.Ruban AV,Young AJ,Pascal AA,Horton P.The effects of illumination on the
     xanthophyll composition of the photosystem II light-harvesting complexes of spinach thylak
     oid membranes.Plant Physiol,1994,104:227-234
    166.Santini C,Tidu V,Tognon G,Ghiretti-Magaldi A,Bassi R.Three dimensional
     structure of higher plants photosystem ii reaction center:evidences for its dimeric organization
    in vivo.Eur J Biochem, 1994,221:307-315
    167.Sapozhinikov DI,Mayevskaya AN.Changes obsened in the relation between the
     main carotenoids in the plastids ofgreen leaves exposed to light, CCCP,1957,1 13:456~457
    168.Schagger H,Von Jagow G.Tricine sodium dodecyl sulfate—polyacrylarnide ge
    l electrophoresis for the separation ofproteins in the range from 1 to 100 Kda.Anal Biochem,1987,166
    :368-379
    169.Schindler C,Reith P,Lichtenthaler HK.Differential levels of carotenoids
    and decrease of zeaxanthin cycle performance during leaf development in a green and all aurea variety of to
    bacco.J PlantPhysiol,1994,i43:500-507
    170.Schreiber U,Schlina LL,Bilger W.Continuous recording of photochemical:A
    n
    
    non-photochemical quenching with a new type of modulation fluorometer,Photosyn Res,1 986,1 0
    :5 1~62
    171.Shikanai T,Munekage Y,Shimizu K,Endo T,Hashimotot.Identification and c
    haracterization of Arabidopsis mutants with reduced quenching of chlorophyll fluorescence.Plant
    Cell Physiol,1 999,40: 1134-1 142
    172.Siefermann D.Carotenoids in photosynthesis I.Location in photosynthetic m
    embrane and ligt—harvesting function.Biochim Biophys Acta,1 985,8 1 1:352—355
    173.Siefermann D,Yamamoto HY.Properties of NADPH and oxygen—dependent zeaxan
    thin epoxidation in isolated chloroplasts:A transmembrane model for the violaxanthin cycle.Ar
    chbiochem Biophys, 1975.171:70-77
    174.Siefermann D,Yamamoto HY.Light—induced de-epoxition of vioxanthin in let
    tuce chlroplasts III, Biochim BiophysAeta,1974,357:144~150
    175.Skillman JB,Winter K.High photosynthetic capacity in a shade—tolerant cr
    assulacean acid metabolism plant.Plant Physiology,1997,1 13,441-450.
    176.Steffen KL,Palata JP.Growth and development temperature influences level
    of tolerance to high stress,Plant Physiol,1989,91:1559—1563
    177.Stirbet A,Govindjee,Strasser BJ,Strasser RJ.Chlorophyll fluorescence in
     higher plants:modelling and numerical simulation.Journal ofTheoreticalBiology,1998,193:131-151.
    178.Sujak A,Gabrielska J,Grudzinski W,Bore R,Mazurek P,Gruszecki WI.Lutei n and zeaxanthin as protectorsof lipid membranes against oxidative damage:the structural aspects
    .Arch Biochem Biophys, 1999,371:301-307
    179.Tardy F,Havaux M.Thylakoid membrane fluidity and thermostability during t
    he operation of the xanthophyll cycle in higher-plant chloroplasts.Biochim BiophysActa,1997,1330
    :179-193
    180.Terashima I,Funayama S,Sonoike K.The site of photoinhibition in leaves o
    f Cucumis sativus L.at low temperatures is photosystem I,not photosystem II.Planta,1 994,1 93:30
    0-306
    181.Thayer SS,Bjo-Rkman O.Leaf xanthophyll content and composition in sun and
     shade determined by HPLC.Photosynthesis,1990,23:33 1-343
    182.Thayer SS,Bj6rkman O.Carotenoid distribution and de-epoxidation in thylak
    oid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize.Photosynth Res,1992,33:213-225
    183.Tjus SE,Muller BL,Scheller HV.Photosystem I is an early target of photoi
    nhibition in barley illuminated at chilling temperatures.Plant Physiol,1998,1 16:755-764
    184.Valentini R,Epron D,De Angelis P,Matteucci G,Dreyer E.In situ estimatio
    n of net C02 assimilation, photosynthetic electron flow and photorespiration in turkey oak(Q.Cerris L
    .)leaves:diurnal cycles under different levels of Water supply.Plant,Cell And Environment,1995,18:
    631-640.
    185.Valladares F,Pearcy RW.Interactions between water stress,sun-shade accli
    mation,heat tolerance and photoinhibition in the sclerophyll heteromeles arbutifolia.Plant,Cell An
    d Environment, 1997,20, 25-36.
    186.Van Kooten O,Snell J.The use of chlorophyll fluorescence nomenclature in
    plant stress physiology. Photosynthesis Research,1 990,25,147-150.
    187.Verhoeven AS,Adams WW III,Demmig-Adams B.Close relationship between the
    state of the xanthophyll cycle pigments and photosystem II efficiency during recovery from
    winter
    
    stress.Physiol Plant,1996,96:567-576
    188.Verhoeven AS,Bugos RC,Yamamoto HY.Suppression of zeaxanthin formation in
     transgenic tobacco leads to increased susceptibility to stress-induced photoinhibition.Photosyn
    Res,200 1,67:4 1-50
    189.Waiters RG,Honon P.The use of light pulses to investigate the relaxation
    in the dark of chlorophyll fluororesence quenching in barley leaves,Current Research In Photosynth,1990
    ,5(1):631~634
    190.Waiters RG,Horton P.Resolution of components of non-photochemical chlorop
    hyll fluorescence quenching in barley leaves.Photosynthesis Research,1991,27,121-133.
    191.Waiters RG,Ruban AV,Horton P.Higher plant light-harvesting complexes LHC
    II a and LHCII C are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation.Eur
     J Biochem,1 994,226: 1063-1069
    192.Xu DQ,&Shen YG.Light stress:Photoinhibition of photosynthesis in plants
    under natural conditions, 1999193.Yamamoto HY.Xanthophyll cycles.Methods Enzymol,1 985,110:303-312
    194.Yamamoto HY,Biochemistry of the violaxanthin cycle in high plants,Pure Ap
    pl Chem,1 979,5 1: 639~640
    195.Yamamoto HY,Chichester CO,Dark incorporation of 18O7 into antheraxanthin
    by bean leaves, Biochim Biophys Acta,1965,109:303~305
    196.Yamamoto HY,Kamite L.The effects of dithiothreitol on violaxanthin de-epo
    xidmion and absorbance changes in the 500rim region.Biochim Biophys Acta,1 972,267:538-543
    197.Yamamoto HY,Kamite L,Wang Y-Y.An ascorbate-induced absorbance change in
    chloroplasts from violaxanthin de-epoxidation.Plant Physiol,1 972,49:224-228
    198.Yamamoto,H.Y,Nakayama,T.O.M,Chichester CO.Studies on the light and
    dark intercOnVersjOns Of leaf xanthophylls,Arch.Biochem.1 962,97:1 68-173
    199.Zhu J,Gomez SM,Mawson BT,Jin X,Zeiger E.The coleoptile chloroplast:di
    stinct distribution of xanthophyll cycle pigments,and enrichment in photosystem II.Photosynth Res,
    1997,51:137-147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700