用户名: 密码: 验证码:
原壳小球藻中玉米黄质环氧化酶基因的克隆和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类胡萝卜素(carotenoids)是存在于生物体(包括植物、光合及非光合细菌、藻类和真菌)内的一类天然色素的总称,具有重要的生理功能,如抗氧化、抵御癌症、黄斑眼病、心血管疾病等。利用微藻生产类胡萝卜素是近几年来研究的热点,原壳小球藻中叶黄素含量较高,作为极具潜力的叶黄素源而备受关注。通过对原壳小球藻类胡萝卜素代谢途径的改造来提高它的合成量具有一定的工业化应用前景。
     本研究以原壳小球藻为实验材料,围绕其生物量的快速测定方法、植物激素对其生长的影响、以及玉米黄质环氧化酶(ZEP)基因cDNA的克隆以及生物信息学分析展开研究和讨论,为进一步揭示小球藻的生长条件、测定方法及其类胡萝卜素合成的分子代谢机制奠定基础。主要的研究内容及结果如下:
     1、为了满足后期工业化生产中藻细胞干重测量的精准要求,对小球藻的细胞密度与吸光值、干重与吸光值之间的线性关系进行了分析,得到一条根据光密度值获得原壳小球藻干重的便捷方法。
     2、通过不同植物激素处理原壳小球藻,找到了加快小球藻生长速率的方法。研究发现,0.5mg/L吲哚丁酸(IBA)的处理效果较佳,而脱落酸(ABA)对小球藻的生长促进作用不明显。
     3、根据NCBI数据库中zep基因的保守序列设计简并引物,利用PCR扩增获得了zep基因的核心片段,其长度为972 bp,将此片段的核苷酸序列与衣藻(Chlamydomonas reinhardtii)的zep基因序列相比,其同源性可达77%。这表明,所扩增的片段为zep基因的保守序列。采用cDNA末端快速扩增技术(RACE)获得了zep基因的cDNA全长序列,其长度为2616 bp。在NCBI上进行Blast比对,发现该序列与衣藻有80%的相似性。该序列包含一个完整的开放阅读框(ORF),长度为1680 bp,编码559个氨基酸。利用各种生物信息软件对ZEP蛋白的相关信息进行了分析。zep基因的分子进化树显示,在藻类中小球藻与衣藻的亲缘关系较近。
     4、为研究zep基因在逆境下以及在脱落酸(ABA)合成中的作用,本实验用不同浓度的盐及ABA处理原壳小球藻,通过荧光定量PCR方法检测zep基因表达量的变化,结果发现,在盐处理下,zep基因的表达量明显上调,而在ABA处理下该基因下调,由此分析发现了zep基因在逆境响应中具有抵御作用以及zep基因在ABA合成途径中具有关键作用。
Carotenoids are a category of natural pigment, which exist in many organisms, such as plants, photosynthetic or non-photosynthetic bacteria, alga and fungi. They have important physiological function of anti-oxidation, prevention of cancer, macular eye disease and cardiovascular disease. Chlorella has aroused great attention due to its high cellular carotenoids content, especially Chlorella protothecoides. It can produce a large amount of lutein, which is a potential resource for lutein production. It will be a commercial application prospect to enhance carotenoids biosynthesis and production with C. protothecoides by transforming the carotenoids biosynthesis pathway.
     Using the green alga, C. protothecoides CS-41, this research was focused on the development methods of biomass determination, stimulation effect on algal growth with plant phytohormone; cloning and analysis of zeaxanthin epoxidase gene. The main research contents and results are as follows:
     1. For the sake of satisfying the requirements for the precise determination of cell dry weight for industrial application purpose, a good linear relationship between the absorbance and microscopic counting/ dry weight was established, providing a convenient method of biomass determination by optical density measurement.
     2. The growth rate of C. protothecoides CS-41 was increased through the treatments with phytohormones of appropriate concentration. 0.5mg/L IBA was the most effective. On the contrary, ABA treatment had little effect on the growth.
     3. The degenerate primer sets were designed with the conservative sequence of zep gene found in NCBI database and a core fragments of 972 bp was obtained. RACE (rapid-amplification of cDNA ends) essay and RT-PCR were used to isolate the full-length cDNA of zep from C. protothecoides CS-41. A cDNA of 2616 bp was cloned with an open reading frame of 1680 bp, which encoded a putative ZEP from C. protothecoides CS-41. The phylogenetic tree established with MEGE 4.1 software revealed that the genetic relationship between C. protothecoides CS-41 and Chlamydomonas reinhardtii is close.
     4. With the aim of exploring the functions of zep gene under the stress-environments and the function in ABA biosynthesis, fluorescence quantitative PCR was performed to detect the expression of zep gene under NaCl and ABA treatments. The results revealed that zep gene expression was up-regulated under salt stress treatment,which clarified that zep gene played an important role in stress response. Under ABA treatment, zep gene was down-regulated, which revealed that zep gene took part in ABA biosynthesis and had an important function.
引文
[1]. Carvalho A P, Meireles L A, Malcata F X. Microalgal reactors: a review of enclosed system designs and performances[J]. Biotechnology Progress, 2006, 22(6): 1490-1506.
    [2]. Chisti Y. Biodiesel from microalgae beats bioethanol[J]. Trends in Biotechnology, 2008, 26(3): 126-131.
    [3]. Chen F, Johns M R. A strategy for high cell density culture of heterotrophic microalgae with inhibitory substrates [J]. Journal of Applied Phycology, 1995, 7(1): 43-46.
    [4]. Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions[J]. Biotechnology Letters, 2009, 31(7): 1043-1049.
    [5]. Afkar E, Ababna H, Fathi A A. Toxicological response of the green alga Chlorella vulgaris to some heavy metals[J]. American Journal of Environmental Sciences, 2010, 6(3): 230-237.
    [6]. Gonzalez L E, Bashan Y. Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense[J]. Applied Environmental Microbiology, 2000, 66(4): 1527-1531.
    [7].左明,王长海.微量元素对转植酸酶基因小球藻生长的影响[J].烟台大学学报(自然科学与工程版), 2010, 23(2): 116-122.
    [8].袁天昆宣熊智,金敏,等. 2种培养液对小球藻生长的影响[J].安徽农业科学, 2010, 38(16): 8475.
    [9].师文静,黎元生.初始营养条件对小球藻生长影响的研究[J].精细与专用化学品, 2010, 18(6): 32-35.
    [10].严航贞,张安平,林春. 96孔板法用于除草剂高通量筛选的研究[J].浙江工业大学学报, 2009, 37(2): 119-122.
    [11].吕富,林伟峰,石祥根. NAA对小球藻生长及叶绿素和蛋白质含量的影响[J].盐城工学院学报, 2006, 19(2): 42-45.
    [12]. Yin H C. Effect of auxin on Chlorella vulgaris[J]. Botany, 1937, 23(3):174-176.
    [13]. Pratt R. Influence of auxin on growth of Chlorella vulgaris.[J]. American Journal of Botany, 1938, 25(7):498-501.
    [14]. Bajguz A, Czerpak R. Effect of brassinosteroids on growth and proton extrusion in the alga Chlorella vulgaris Beijerinck (Chlorophyceae)[J]. Journal of Plant Growth Regulation, 1996, 15(3):153-156.
    [15]. Piotrowska A, Czerpak R, Pietryczuk A, et al. The effect of indomethacin on the growth and metabolism of green alga Chlorella vulgaris Beijerinck[J]. Journal of Plant Growth Regulation, 2008, 55(2): 125-136.
    [16]. Grotbeck L,Vance B D. Endogenous levels of indole-3-acetic acid in synchronous cultures of chlorella pyrenoidosa[J]. Journal of Phycology, 1972, 8(3): 272-275.
    [17]. Merchant RE, Andre C A. A review of recent clinical trials of the nutritional supplementChlorella pyrenoidosa in the treatment of fibromyalgia, hypertensionand ulcerative colitis[J]. Alternative therapies in health and medicine, 2001, 7(3): 79-91.
    [18]. Sano T, Tanaka Y. Effect of dried, powdered Chlorella vulgaris on experimental atherosclerosis and alimentary hypercholesterolemia in cholesterol-fed rabbits[J]. Artery, 1987, 14(2): 76-84.
    [19]. Konishi F, Tanaka K, Himeno K, et al. Antitumor effect induced by a hot water extract of Chlorella vulgaris (CE): resistance to Meth-A tumor growth mediated by CE-induced polymorphonuclear leukocytes[J]. Cancer Immunol Immunother, 1985, 19(2): 73-78.
    [20].胡开辉,汪世华.小球藻的研究开发进展[J].武汉工业学院学报, 2005, 24(3): 27-30.
    [21]. Fradique M, Batista A P, Nunes M C, et al. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation[J]. Journal of the Science of Food and Agriculture, 2010, 90(10): 1656-1664.
    [22]. Berendschot T T, Goldbohm R A, Klopping W A, et al. Influence of lutein supplementation on macular pigment, assessed with two objective techniques[J]. Investigative Ophthalmology and Visual Science, 2000, 41(11): 3322-3326.
    [23]. Shi X M, Jiang Y, Chen F. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture[J]. Biotechnology Progress, 2002, 18(4): 723-727.
    [24]. Sandmann G. Carotenoid biosynthesis and biotechnological application[J]. Archives of Biochemistry and Biophysics, 2001, 385(1): 4-12.
    [25]. Johnson E A, Schroeder W A. Microbial carotenoids[J]. Advances in Biochemical Engineering/Biotechnology, 1996, 53: 119-178.
    [26]. Nishinoa H, Tokuda H, Murakoshia M, et al. Cancer prevention by natural carotenoids[J]. BioFactors, 2000, 13(1-4): 89-94.
    [27]. Mares-Perlman J A, Fisher A I, Klein R,et al. Lutein and zeaxanthin in the diet and serum and their relation to agerelated maculopathy in the third national health and nutrition examination survey[J]. American Journal of Epidemiology, 2001, 153(5): 424-432.
    [28]. Voutilainen S, Nurmi T, Mursu J, et al. Carotenoids and cardiovascular health[J]. The American Journal of Clinical Nutrition, 2006, 83(6):1265-1271.
    [29]. Peto R, Doll R, Buckley, J D, et al. Can dietary beta-carotene materially reduce human cancer rates[J]. Nature, 1981, 290: 201–208.
    [30]. Naguib Y M. Antioxidant activities of astaxanthin and related carotenoids[J]. Journal of Agricultural and Food Chemistry, 2000, 48(4): 1150-1154.
    [31]. Takaichi S. Carotenoids in algae: distributions, biosyntheses and functions[J]. Marine Drugs, 2011, 9(6): 1101-1118.
    [32]. Del Campo J A, Rodriguez H, Moreno J, et al. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta)[J]. Applied Microbiology and Biotechnology, 2004, 64(6): 848-854.
    [33]. Wu Z, Chen G, Chong S, et al. Ultraviolet-B radiation improves astaxanthin accumulation ingreen microalga Haematococcus pluvialis[J]. Biotechnology Letters, 2010, 32(12): 1911-1914.
    [34]. Zhong Y J, Huang J C, Liu J. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis[J]. Journal of Experimental Botany,2011,1-11.
    [35]. Yoshida K, Igarashi E, Mukai M, et al. Induction of tolerance to oxidative stress in the green alga Chlamydomonas reinhardtii by abscisic acid[J]. Plant, Cell and Environment, 2003, 26(3): 451-457.
    [36]. Cowan A K, Rose P D. Abscisic Acid Metabolism in Salt-Stressed Cells of Dunaliella salina: Possible interrelationship with beta-carotene accumulation[J]. Plant Physiology, 1991, 97(2): 798-803.
    [37].万小荣,李玲.高等植物脱落酸生物合成途径及其酶调控[J].植物学通报, 2004, 21(3): 352-359.
    [38]. Yoshida K, Igarashi E, Wakatsuki E, et al. Mitigation of osmotic and salt stresses by abscisic acid through reduction of stress-derived oxidative damage in Chlamydomonas reinhardtii[J]. Plant Science, 2004, 167(6): 1335-1341.
    [39]. Kobayashi M, Hirai N, Kurimura Y, et al. Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis[J]. Plant Growth Regulation, 1997, 22(2): 79–85.
    [40]. Marin E, Nussaume L, Quesada A, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana[J]. The EMBO Journal, 1996, 15(10): 2331-2342.
    [41]. Niyogi K K. Photoprotection revisited: Genetic and Molecular Approaches[J]. Plant Physiology and Plant Molecular Biology, 1999, 50(1): 333-359.
    [42]. Thayer S S. Leaf xanthophyll content and composition in sun and shade determined by HPLC[J]. Photosynthesis Research, 1990, 23(3): 331-343.
    [43]. Demmig-Adams B, Adams W W. Antioxidants in photosynthesis and human nutrition[J]. Science, 2002, 298(5601): 2149-2153.
    [44]. Xiong L, Ishitani M, Lee H, et al. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress and osmotic stress-responsive gene expression[J]. Plant Cell, 2001, 13(9): 2063-2083.
    [45]. Niyogi K K, Grossman A R, Bj?rkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion[J]. Plant Cell, 1998, 10: 1121–1134.
    [46]. Thompson A J, Jackson A C, Parker R A, et al. Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid[J]. Plant Molecular Biology, 2000, 42(6): 833-45.
    [47]. Agrawal G K, Yamazaki M, Kobayashi M, et al. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion.Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene[J]. Plant Physiology, 2001, 12(5): 1248–1257.
    [48]. Park H Y, Seok H Y, Park B K, et al. Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress[J]. Biochemical and Biophysical Research Communications, 2008, 375(1): 80-85.
    [49]. Chen F. High cell density culture of microalgae in heterotrophic growth[J]. Trends Biotechnology, 1996, 14(11): 421-426.
    [50]. Dominguez-Bocanegra A R, Legarreta I G, Jeronimo F M, et al. Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis[J]. Bioresource Technology, 2004, 92(2): 209-214.
    [51]. Shi X M, Chen F, Yuan J P. Heterotrophic production of lutein by selected Chlorella strains[J]. Journal of Applied Phycology, 1997, 9(5): 445-450.
    [52]. Sansawa H, Endo H. Production of intracellular phytochemicals in Chlorella under heterotrophic conditions[J]. Journal of Bioscience and Bioengineering, 2004, 98(6): 437-444.
    [53]. Kobayashi M, Kakizono T, Nagai S. Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetatemedia[J]. Journal of Fermentation and Bioengineering, 1991, 71(5): 867-873.
    [54]. Kobayashi M, Kakizono T, Nagai S. Enhanced Carotenoid Biosynthesis by Oxidative Stress in Acetate-Induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis[J]. Applied Environment Microbiology, 1993, 59(3): 867-873.
    [55]. Zaslavskaia L A. Trophic Conversion of an Obligate Photoautotrophic Organism Through Metabolic Engineering[J]. Science, 2001, 292(5524): 2073-2075.
    [56]. Cordero B F, Couso I, Leon R, et al. Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis[J]. Applied microbiology and biotechnology, 2011, 91(2): 341-351.
    [57]. Misawa N, Shimada H. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts[J]. Journal of Biotechnology, 1997, 59(3): 169-181.
    [58]. Liu J, Zhong Y, Sun Z, et al. One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin[J]. Planta, 2010, 232(1): 61-67.
    [59]. Bramley P M. Inhibition of carotenoid biosynthesis[J]. Carotenoids in Photosynthesis, 1993, 127-159.
    [60]. Shi X M, Chen F, Yuan J P, et al. Heterotrophic production of lutein by selected Chlorella strains[J]. Journal of Applied Phycology, 1997, 9(5): 445-450.
    [61].何萍,杨启银,陈育如.光合细菌与小球藻复合处理豆制品废水[J].无锡轻工大学学报, 2001, 20(6): 578-579.
    [62].陶永华,殷明,伍俊荣,等.高效原油降解小球藻株用于油污废水净化的实验研究[J].海军医学杂志, 2006, 27(2): 32-34.
    [63].黄美玲,何庆,黄建荣,等.小球藻生物量的快速测定技术研究[J].河北渔业, 2010, 196: 1-3.
    [64].董正臻,董振芳,丁德文.快速测定藻类生物量的方法探讨[J].海洋科学, 2004, 28(11): 1-2.
    [65].吕旭阳,张雯,杨阳,等.分光光度法测定小球藻数量的方法研究[J].安徽农业科学, 2009, 37(23): 11104-11105.
    [66]. Hosono H, Uemura I, Takumi T, et al. Effects of culture temperature shift and light-dark time cycle on the cellular sugar accumulation of Chlorella pyrenoidosa[J]. Bioprocess and Biosystems Engineering, 1997, 16(4): 193-197.
    [67]. Takaichi S. Characterization of carotenes in a combination of a C(18) HPLC column with isocratic elution and absorption spectra with a photodiode-array detector[J]. Photosynthesis Research, 2000, 65(1): 93-99.
    [68].刘学铭,余若黔,梁世中.分批异养培养小球藻光密度值与干重的关系[J].微生物学通报, 1999, 5: 339-341.
    [69].刘世名,陈靠山,梁世中. (+)ABA及Anti-ABBP PAbs对小球藻异养生长的影响[J].农业生物技术学报, 2003, 11(2): 212-213.
    [70]. Yoshida K, Igarashi E, Mukai M, et al. Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid[J]. Plant, Cell and Environment, 2003, 26(3): 451-457.
    [71]. Patricia B P, Manuel R C. Carotenoid biotechnology in plants for nutritionally improved foods [J].Physiologia Plantarum, 2006, 126: 369–381.
    [72].吕富,林伟峰,石祥根. NAA对小球藻生长及叶绿素和蛋白质含量的影响[J].盐城工学院学报(自然科学版), 2006, 19(6): 42-45.
    [73].王素琴,闫海,张宾.不同氮源形态和植物激素对小球藻USTB01生长及叶黄素含量的效应[J].北京科技大学学报, 2005, 23(12): 37-40.
    [74]. Barbier-BrygooH. Tranking auxin receptors using functional approaches[J]. Critical Reviews in Plant Sciences, 1995, 14(1): 1-25.
    [75].孟春晓,高政权,王依涛,等.赤霉素对盐藻生物量与物质积累的影响[J].江苏农业科学, 2010, (5): 345-347.
    [76]. Vance B D. Phytohormone effects on cell division in Chlorella pyrenoidosa Chick[J]. Journal of Plant Growth Regultion, 1987, 5(3): 169-173.
    [77].赵艳霞,郑维发,魏江春.脱落酸对盐藻sz-05药理活性成分积累的影响[J].解放军药学学报, 2007, 23(1): 13-16.
    [78]. TietzA R, KohlerR, KasprikW. Further investigations on the occurrence and the effects of abscisic acid in algae[J]. Biochemie und Physiologie der Pflanzen, 1989, 184(3-4): 259-266.
    [79]. Huang C Y. Regulation of ionic fluxes and protein release from Anabaena HA101 by exogenous abscisic acid[J]. Botanical Bulletin Academia Sinica, 1991, 32: 265-270.
    [80]. Lange B M, Ghassemian M. Genome organization inArabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism[J]. Plant Molecular Biology, 2003, 51(6): 925-948.
    [81]. Burbidge A, Grieve T, Terry C, et al. Structure and expression of a cDNA encoding zeaxanthinepoxidase[J]. Journal of Experimental Botany, 1997, 48(314): 1749-1750.
    [82]. Bouvier F, Harlingue A, Hugueney P, et al. Xanthophyll biosynthesis. Cloning, expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum)[J]. Journal of Biology Chemistry, 1996, 271(46): 28861-28867.
    [83]. Agrawal G K, Yamazaki M, Kobayashi M, et al. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene[J]. Plant Physiology, 2001, 125(3): 1248-1257.
    [84]. Sambrook J R, David.W R.分子克隆实验指南(第三版)[M].科学出版社:北京, 2002.
    [85]. Pelah D, Sintov A, Cohen E. The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity[J]. World Journal of Microbiology and Biotechnology, 2004, 20(5): 483-486.
    [86]. North H M, Frey A, Boutin J P, et al. Analysis of xanthophyll cycle gene expression during the adaptation of Arabidopsis[J]. Plant Science, 2005, 169(1): 115-124.
    [87].全先庆,张渝洁,杨家森,等.高等植物脱落酸的代谢及调节机制[J].安徽农业科学, 2006, 34(13): 2966 - 2968.
    [88]. Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Plant Physiology and Plant Molecular Biology, 2000, 51(1): 463-499.
    [89]. Kakizono T, Kobayashi M, Nagai S. Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis[J]. Journal of Fermentation Bioengineering, 1992, 74(6): 403–405.
    [90]. Steinbrenner J, Linden H. Regulation of Two Carotenoid Biosynthesis Genes Coding for Phytoene Synthase and Carotenoid Hydroxylase during Stress-Induced Astaxanthin[J]. Plant Physiologists, 2001, 125(2): 810-817.
    [91]. Guan L M, Zhao J, Scadalios J G. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response[J]. Plant, 2000, 22: 87–95.
    [92]. Li M X, Karen S, Zhu J K. Cell Signaling during Cold, Drought, and Salt Stress[J]. The Plant Cell, 2002, 14: 165-183.
    [93]. Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants[J]. Trends in Plant Science, 2002, 7(1): 41-48.
    [94]. Zhu S Q, Chen M W, Ji B H, et al. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris)[J]. Journal of Experimental Botany, 2011, 62(13): 4617-4625.
    [95]. Xiong L. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis[J]. Journal of Biological Chemistry, 2002, 277(10): 8588-8596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700