用户名: 密码: 验证码:
部分榆属种质资源亲缘关系及白榆辐射诱变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
榆树为榆科(Ulmaceae)榆属(Ulmus L.)植物的总称。在我国平原、盐碱地及沙荒地一直是用材林、防护林的重要树种。在园林绿化中可作为行道树、绿篱和庭院树种,如金叶榆和垂枝榆以其叶色鲜艳,树形优美等特点广泛应用于园林绿化中。全世界共有榆属资源30余种,我国有25种6个变种。目前,榆属植物的分布面积和种质资源正在逐年减少,原本属于榆树植被类型的丘陵地和沙地遭到严重的滥垦、过渡放牧等人为破坏。因此如何避免榆属植物资源进一步被破坏,更好的保护中国榆属植物,培育适合园林绿化的榆树新品种具有十分重要的意义。
     本研究通过对我国黑龙江省、山东省、浙江省及气候较干旱的甘肃省分布的榆属植物资源进行调查、整理、分析和评价,采用形态学标记和(?)ISSR分子标记对我国榆属资源亲缘关系进行研究,同时应用60Co-γ对白榆种子进行辐射研究,通过形态学观察,生理,分子生物学检测,以期获得观赏性状优良、抗性强的植株,为榆属植物资源的保护,育种和园林应用奠定基础。主要结果如下:
     1)此次调查共搜集我国70%的榆属植物,属于3组2系。搜集资源包括黑龙江省全部榆属资源,其中包括2个特有品种;山东省、浙江省、甘肃省的榆属野生种和栽培变种。采用层次分析法对榆属资源进行评价,园林应用范围中白榆、新疆大叶榆、旱榆、黄榆、榔榆、金叶榆和垂枝榆等为优良材料;经济应用中白榆、新疆大叶榆、春榆、太行榆、美国榆、多脉榆等为优良材料;抗干旱,耐盐碱的优良品种为圆冠榆、脱皮榆、旱榆。果实产油量大的品种为旱榆、黄榆、脱皮榆。抗虫性较好的品种为裂叶榆、太行榆和天优,其中裂叶榆叶部不感虫害,但易感天牛,在天牛可控区可作为优良树种;太行榆不仅生长季节幼叶颜色优美且不感病虫害,可作为优良城市绿化树种。
     2)对来源于黑龙江省和山东省的榆属资源进行形态学性状分类,选择28个表型性状作为分类信息进行编码,其中二元性状10个,有序多态性状10个,数值性状8个。Q聚类结果表明榆属栽培变种和半同胞家系聚为一组;榆属种间大部分聚类结果和传统分类吻合但白榆分类和传统不符。R型聚类结果表明各性状之间相对独立,28个形态学性状对品种的演化具有较独立的意义。主成分分析表明前5个主成分的累计贡献率达71.02%,果部性状和部分叶部性状是榆属的分类的主要性状.
     3)建立了榆属植物ISSR-PCR最佳反应体系;从93条ISSR引物中筛选出11条扩增条带清晰、多态性好的引物。11条引物共扩增出97条条带,其中多态性条带86条,占总扩增带数的88.66%;遗传相似系数分布在0.5490-0.9216之间,平均为0.7353。其中白榆半同胞家系白榆068、白榆0061遗传相似系数最大为0.9216;白榆34、古6遗传相似系数最小为0.6863。由ISSR聚类可知,榆属种间分类和传统分类相同;栽培变种红叶榆同其它各品种亲缘关系较远,单独聚为一类,钻天榆和榆组榆系亲缘关系较近,金叶榆同榔榆遗传相似性较高;半同胞家系和白榆聚为一组,且同各栽培变种垂枝榆、大叶垂榆、龙爪榆遗传关系紧密。由主坐标分析表明榆属资源分为三大组,组Ⅰ中栽培变种与白榆半同胞家系聚在一起;组Ⅱ中传统分类的榆属睫毛榆组中的美国榆和新疆大叶榆聚类,榆组榆系中的黄榆,裂叶榆聚类,并且睫毛榆组、榔榆组与榆组榆系的亲缘关系较近;组Ⅲ中传统分类榆组黑榆系中的东北黑榆、春榆、圆冠榆聚类。
     4)白榆种子60Co-γ射线辐射最佳半致死剂量为50Gy。60Co-γ辐射在幼苗生长前期起抑制作用,随着剂量的增加抑制作用增强。在生长过程中,小剂量的辐射抑制作用减轻,在苗高、鲜重等方面还具有促进作用(30-70Gy);根系的生长量与辐射剂量成负相关,辐射能够抑制根系纵向伸长(顶端优势)促进侧根及须根的发育,扩大根系的分散度及营养面积。在30-90Gy范围内,能够促进地上部分生长;30-100Gy不同照射组别中均产生具有实用价值的观赏性状突变体。不同剂量的辐射,对榆树物候期具有一定的影响;对于展叶期30Gy-50Gy的辐射剂量对植株展叶有所促进,高于50Gy时展叶受抑制;辐射剂量为30Gy时皮孔形状为椭圆形,辐射剂量大于30Gy时皮孔恢复近圆形。
     5)低辐射剂量可以使白榆柱头膨大,对柱头的发育有刺激作用,而高辐射剂量则使柱头发育不良,对发育有阻碍作用;随着辐射剂量的增加花粉极轴与赤道轴比例呈递减的趋势;未经过辐射的白榆花粉外壁纹饰为细拟网状,随着辐射剂量的增加花粉外壁纹饰逐渐变的稀疏,小颗粒大小及疏密情况逐渐减小。不同辐射剂量对白榆叶片超微结构有一定影响,70Gy-100Gy叶片超微结构改变明显,叶绿体肿胀,双层膜消失,类囊体融合;线粒体双层膜消失,出现空泡变性,嵴断裂;核膜消失。
     6)叶绿素含量同辐射与辐射剂量之间呈负相关性;叶绿素a/b在70Gy处出现了一个跳变,叶色上表现为黄白色;在辐射剂量为100Gy叶绿素a/b的值和对照有明显差距,差异极显著,表现在叶色上为叶色变红色;SOD、POD酶活性随着辐射剂量的增加先升高后降低;CAT活性在30Gy剂量处升高到活性峰值后下降,50到100Gy稳步小幅上升。
Elm is the general name of genus Ulmus L. It is one of the most important tree species which used as timberland and shelter forest in plains, saline-alkali soil and barren lands in China. There are thirty genus Ulmus species in the world and twenty-five species and six variants in China. Ulmus plants distribution area and Elm germplasm resources are decreasing every year. Originally hilly groud and sandy which belonged to Ulmus are serious of artificial destruction such as estrepement, overgrazing. It is significance to avoid Ulmus plant resources being further damaged, better protected of elm species in China and breeding new cultivars for landscaping.
     This study investigate the distribution of Ulmus in Heilongjiang, Shandong, Zhejiang and climate drier's Gansu province. The genus Ulmus are investigated, collected, analyzed and evaluated. Secondly morphological markers and ISSR molecular markers are used to study the genetic relationships among all Ulmus. Finally in order to obtain excellent ornamental characteristics and resistant plants, U. pumila seeds are radiated by60Co-γ. This research will lay a foundation of Ulmus breeding and landscape application. The main results are as follows:
     1)70%percent of Ulmus plants were collected and investigated which belonged to three sections and two series. It was included all Ulmus germaplasm resources in Heilongjiang among others there was two endemic species. Ulmus species and cultivars which distributed in Shandong, Zhejiang and Gansu province were also collected and investigated. Analsis hierarchy process(AHP) was used to evaluate Ulmus germaplasm. U.pumila L.、U.laevis Pall.、U.glaucescens Franch.、U. macrocarpa planch.、U. parvifolia Jacq.、U. pumila L. cv."jinye "and U.pumila L. cv."tenue" were excellent materials in landscape applications. U.pumila L.、U.laevis Pall.、U.propinqua Koidz.、 U. taihangshan-ensis S.Y Wang、U.americana L.、U.castaneifolia Hemsl.were excellent materials in economic applications. U.densa Litv.、U.lamellosa T.wang were excellent materials resistance to drought and salinity. U.glaucescens Franch., U. macrocarpa planch., U.lamellosa T.wang were excellent materials in fruit oil production. U.laciniata Schneid.、U. taihangshan-ensis S.Y Wang and 'TY' were high resistance to insects. Among them leaves of U.laciniata Schneid. had less pests except for Alternatus, so it was a good tree species in Alternatus controllable area.'TH' was not only had beautiful leaf color but also had less pests, so it was an excellent materials in landscaping.
     2) Ulmus species and varieties which collected from Heilongjiang and Shandong province were classified based on morphological traits. Twenty-eight morphological characteristics were encoded as classified information which including ten qualitative binary characters, ten qualitative polymorphic characters and eight quantitative characters. Q cluster showed that Ulmus varieties and half-sib families were in the same group. The results of cluster were similar to the traditional classification except siberian elm. The independence of each character was presented by R cluster. Twenty-eight morphological characteristics had independent significance in the evolution of Ulmus. The principal component analysis showed that first five principal components accumulative contributor ratio amounted to71.02%, and some representative characters which could be used in classification, such as fruit characters and leaf characters.
     3) The optimal ISSR-PCR reaction system were built.11ISSR primers which had clear bands and polymorphisms were select from93primers.97bands were produced after using11ISSR primers,86bands were polymorphic(88.66%). The range of genetic similarity coefficient was from0.5490to0.9216. The genetic similarity coefficient of siberian elm068and siberian elm061were the biggest (0.9216). The genetic similarity coefficient of siberian elm34and G6were the smallest (0.6863). The result of ISSR clustering was similar to the traditional classification in Ulmus. U. pumila L. cv.sp was far away from other cultivars. The genetic relationships of U. pumila L. cv.'Pyramidalis' and genus Ulmus were relatively close. The Genetic similarity coefficient of U. pumila L. cv.'jinye' and U. parvifolia Jacq was relatively high. Half-sib families and U.pumila were clustered in the same group. U.pumila L was close to U.pumila L. cv.'tenue', U.laevis Pall, U. pumila L. cv.'pendula'. Ulmus species were divided into three sections. Cultivar varieties and U.pumila L. were in the same clustering. U.americana L.and U.laevis Pall were belonged to the same clustering in section Ⅱ. The relationship of U. macrocarpa planch, U.laciniata Schneid and U. parvifolia Jacq was relatively close. U.davidiana Planch. U.propinqua Koidz and U.densa Litv were belonged to the same clustering in section III.
     4) The optimal60Co-γ lethal dose of U.pumila seeds was50Gy.60Co-γ had negative effection on young plant growing, the more dose, the more damage. Low dose(30-70Gy) had positive effection on plant height and plant fresh weight.60Co-γ increase growing of Lateral root, but inhibit main roots. Radiation between30-90Gy was helpful to the growth of plants. Radiation between30-100Gy could produce mutation on ornamental traits.60Co-γ can also effect phenophase of Ulmus, Radiation between30-50Gy was useful to leaves growth. leaves were inhibited when radiation was over50Gy. Lenticel shape was ellipse when radiation was30Gy and Lenticel shape became almost round when radiation was over30Gy.
     5) Low radiation dose can enlarge the stigma of white elm, which has stimulatory effect to the development of stigma. While high radiation dose made the development dysplasia, acted inhibition effect to the development of stigma. The ratio of pollen axis and equator was decrease following the increase of preirradiation dosage. The ornamentation of pollen exine were fine quasi reticular with no radiation, the reticular became sparse and the size of small particles became smaller and spare following the increase of radiation dosage. There were some effects on leaf ultrastructure of elm under radiation with different dose, the changes to leaf ultrastructure was obviously at radiation dose of70to100Gy. The structure of chloroplast became intumesced, double-layer membrane disappeared and thylakoid fused; the double-layer membrane of mitochondria was disappear and occurred vacuolar degeneration and cristae fragmentation; the nuclear membrane was also disappeared.
     6) There were negative correlation between chlorophyll content and radiation, radiation dose; the value of chlorophyll a/b has a jump at70Gy and showed on leaves with yellow-white colour; when the radiation dose was100Gy, there were extremely significant difference of chlorophyll a/b between treatments and control and showed on leaves with red colour; the activities of SOD and POD increased at first and then decreased following the increase of radiation dose. The activities of CAT has the top value at the peak with radiation dose of30Gy and then decrease, there were a steadily and slightly rises at radiation dose50to100Gy.
引文
[1]陈焕镛,黄成就.中国植物志(第22卷)[M].科学出版社,1998,265-281.
    [2]续九如,邹受益.榆属树种遗传改良研究现状及思考[J].北京林业大学学报,2000,22(006):95-99.
    [3]王永康,田建保,王永勤,等.枣树品种品系的AFLP分析[J].果树学报,2007,24(2):146-150.
    [4]成海钟.园林植物栽培养护[M].高等教育出版社,2002.
    [5]周以良,董世林,聂绍荃.黑龙江树木志[M].黑龙江科学技术出版社,1986.
    [6]伍海芳,赵越.白榆种源变异及其稳定性的研究[J].青海农林科技,1990,(3):24-29.
    [7]朱忠保.林木防污净化效益的研究[J].林业科学,1983,2:201-805.
    [8]张畅,姜卫兵,韩健.论榆树及其在园林绿化中的应用[J].中国农学通报,2010,26(10):202-206.
    [9]林瑞温,陈建业.榆根繁殖盆景速成[J].中国花卉盆景,2002,(012):40-41.
    [10]邱芳,伏健民,金德敏,等.遗传多样性的分子检测[J].生物多样性,1998,6(2):143-150.
    [11]Sutton, D.. A new section of Linaria (Scrophulariaceae:Antirrhineae)[J]. Botanical Journal of the Linnean Society,1980,81(3):169-184.
    [12]傅立国.中国榆属的研究[J].东北林学院学报,1980,3:1-40.
    [13]Backlund, A.K. Bremer. To be or not to be. Principles of classification and monotypic plant families[J]. Taxon,1998,47(2):391-400.
    [14]李法曾,张学杰.中国榆科植物系统分类研究综述[J].武汉植物学研究,2000,18(5):412-416.
    [15]任宪威,孙大立.中国榆科植物果实种子形态及聚类分析的研究[J].河北林果研究,1997,12(3):197-202.
    [16]王书欣,朱延林.白榆无性系主要经济性状的遗传分析[J].河南林业料技,1995,47(1):29-30.
    [17]张昭洁,郑亦津.山东榆科植物叶表皮结构的比较[J].山东大学学报(理学版),1990,3.
    [18]孙同兴.9种榆科植物叶表皮结构特征研究[J].亚热带植物科学,2009,37(4):1-8.
    [19]李贺敏,张江涛,高致明,等.中国榆属12种2变种木材解剖学研究[J].河南林业科技,2007,27(3):1-3.
    [20]辛益群,张玉龙.中国榆属花粉形态研究及其分类意义[J].植物学报:英文版,1993,35(002):91-95.
    [21]王洪新,胡志昂.植物的繁育系统遗传结构和遗传多样性保护[J].生物多样性,1996,4(2):92-96.
    [22]钱迎倩,马克平,中国科学院,等.生物多样性研究的原理方法[M].中国科学技 术出版社,1994.
    [23]刘纯鑫,刘天颐,黄少伟,等.林木遗传育种学[J].安徽农业科学,2010,(031):17982-17983.
    [24]庞广昌,姜冬梅.群体遗传多样性和数据分析[J].林业科学,1995,31(6):543-550.
    [25]彭焱松,陈丽,李建强.中国栎属植物的数量分类研究[J].武汉植物学研究,2007,25(2):149-157.
    [26]马常耕,王有才.日本落叶松插穗生根力的变异和选择效应[J].林业科学,1994,30(002):97-103.
    [27]邢世岩,倪国祥,张运吉,等.银杏叶数量性状的遗传分析[J].林业科学,2000,1:1.
    [28]赵冰,雒新艳,张启翔.蜡梅品种的数量分类研究[J].园艺学报,2007,34(4):947-954.
    [29]赵冰,张启翔.中国蜡梅种质资源核心种质的初步构建[J].北京林业大学学报,2007,29(1):16-21.
    [30]闫双喜,赵勇.中国黄杨属植物数量分类的研究[J].生物数学学报,2002,17(003):380-383.
    [31]任旭琴.利用RAPD分子标记对红皮云杉种源遗传多样性的研究[J].东北林业大学,2001,2001205201:41245.
    [32]Lindstrom, O.M.M.A. Dirr. Cold hardiness of six cultivars of Chinese elm[J]. HortScience,1991,26(3):290-292.
    [33]李丹,彭少麟.马尾松地理种源遗传变异规律研究的综述与分析[J].应用生态学报,2000,11(2):293-296.
    [34]Hsu, T.F.E. Arrighi. Distribution of constitutive heterochromatin in mammalian chromosomes[J]. Chromosoma,1971,34(3):243-253.
    [35]Gill, B.S.G. Kimber. Giemsa C-banding and the evolution of wheat[J]. Proceedings of the National Academy of Sciences,1974,71(10):4086.
    [36]黄发新,张新叶,黄闰泉,等.林木遗传图谱中的遗传标记[J].湖北林业科技,2000,(4):15-18.
    [37]康向阳,张生.白榆染色体核型分析[J].吉林林学院学报,1996,12(001):30-32.
    [38]张赞平,黎中宝.黑榆系4种榆树的核型研究[J].河南科学,1996,4.
    [39]黎中宝,张赞平.榆系4种榆树的核型分析[J].河南农业大学学报,1997,31(002):137-140.
    [40]蒋有绪,刘世荣.关于区域生物多样性保护研究的若干问题[J].8,1993,4:289-298.
    [41]姜静,杨传平.利用RAPD标记技术对白桦种源遗传变异的分析及种源区划[J].木本植物研究,2001,21(1):126-130.
    [42]Yasodha,R., M. Kathirvel, R. Sumathi, et al. Genetic analyses of casuarinas using ISSR and FISSR markers[J]. Genetica,2004,122(2):161-172.
    [43]祁建民,周东新,吴为人,等.RAPD和ISSR标记检测黄麻属遗传多样性的比较研究[J].中国农业科学,2004,37(12):2006-2011.
    [44]Prevost, A.M. Wilkinson. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars[J]. TAG Theoretical and Applied Genetics,1999,98(1): 107-112.
    [45]Kumar Mondal, T.. Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter-simple sequence repeat polymerase chain reaction[J]. Euphytica,2002, 128(3):307-315.
    [46]Vijayan, K.S. Chatterjee. ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs[J]. Euphytica,2003,131(1):53-63.
    [47]Nkongolo, K.K., P. MichaelT. Demers. Application of ISSR, RAPD, and cytological markers to the certification of Picea mariana, P. glauca, and P. engelmannii trees, and their putative hybrids[J]. Genome,2005,48(2):302-311.
    [48]Koller, B., A. Lehmann, J. McDermott, et al. Identification of apple cultivars using RAPD markers[J]. TAG Theoretical and Applied Genetics,1993,85(6):901-904.
    [49]Wang, X., Y. HanD. Hong. PCR-RFLP analysis of the chloroplast gene trnK in the Pinaceae, with special reference to the systematic position of Cathaya[J]. Israel J. P1. Sci, 1998,46(4):265-271.
    [50]昭日格.应用RAPD技术进行白榆种群遗传多样性研究[D].内蒙古农业大学硕士论文,2011.
    [51]刘果厚,贾宝丽.浑善达克沙地榆遗传多样性的研究[J].干旱区资源与环境,2003,17(005):123-128.
    [52]李方祯,宛涛,伊卫东,等.锡盟沙地榆(Ulmus pumila L. var. sabulosa)遗传多样性的RAPD研究[J].中国农业科技导报,2008,10(3):71-76.
    [53]Beismann, H., J. Barker, A. Karp, et al. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient[J]. Molecular Ecology,1997, 6(10):989-993.
    [54]Cervera, M., J. Gusmao, M. Steenackers, et al. Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus[J]. TAG Theoretical and Applied Genetics,1996,93(5):733-737.
    [55]尹佟明,孙晔.美洲黑杨无性系AFLP指纹分析[J].植物学报:英文版,1998,40(008):778-780.
    [56]杨成超,王胜东,杨志岩,等.利用AFLP标记研究银白杨×白榆的亲子关系[J].北京林业大学学报,2007,29(002):7-12.
    [57]Sanchez, N., J. Grau, J. Manzanera, et al. RAPD markers for the identification of Populus species[J]. Silvae genetica,1998,47(2):67-70.
    [58]Townsend, A., S. BentzG. Johnson. Variation in response of selected American elm clones to Ophiostoma ulmi [J]. Journal of Environmental Horticulture,1995,13:126-126.
    [59]Townsend, A.L. Douglass. Evaluation of elm clones for tolerance to Dutch elm disease[J]. Journal of Arboriculture,2004,:179-184.
    [60]Bob, C.F., B. RedmondD. Karnosky. On the nature of intra-and interspecific incompatibility in Ulmus[J]. American journal of botany,1986,100(7):465-474.
    [61]Boratynska, K.. Chorology of the family Ulmaceae (sensu Stricto)[J]. Arbor. Kornickie, 1989,34:3-29.
    [62]Machon, N., M. Lefranc, I. Bilger, et al. Isoenzymes as an aid to clarify the taxonomy of French elms[J]. Heredity,1995,74(1):39-47.
    [63]Kamalay, J.D. Carey. Application of RAPD-PCR markers for identification and genetic analysis of American elm (Ulmus americana L.) selections[J]. Journal of Environmental Horticulture,1995,13.
    [64]Benet, H., R. Guries, S. Boury, et al. Identification of RAPD markers linked to a black leaf spot resistance gene in Chinese elm[J]. TAG Theoretical and Applied Genetics, 1995,90(7):1068-1073.
    [65]Kapaun, J.A.Z.M. Cheng. Plant regeneration from leaf tissues of Siberian elm[J]. HortScience,1997,32(2):301-303.
    [66]Lineberger, R.D., M. Sticklen, P. Pijut, et al. Use of protoplast, cell, and shoot tip culture in an elm germplasm improvement program[J]. Acta Horticulturae,1990, (280): 247-253.
    [67]田志和,董健.白榆种源和种源内家系综合选择及早期选择的研究[J].辽宁林业科技,1990,(2):3-5.
    [68]马常耕,田志和.白榆种源试验中选择年龄的探索[J].林业科学,1991,27(002):111-116.
    [69]田志和,董健.白榆种源地理变异的研究[J].沈阳农业大学学报,1993,24(004):372-377.
    [70]朴顺伊.白榆种源的试验研究[J].林业科技,1991,16(3):5-8.
    [71]王思恭,杜长坪,张葳,等.白榆优良种源和家系配合选择[J].陕西林业科技,1991,3.
    [72]顾万春,刘德安,田玉林.白榆种源与家系的选种研究[J].全国林木遗传育种第五次学术报告会论文汇编,1986,234-240.
    [73]卫海荣,张庆连.白榆无性和有性繁殖方法的遗传增益研究[J].林业科技通讯,1990,(001):13-14.
    [74]李庆贱,陈志强,时瑞亭,等.白榆家系苗期耐盐碱研究[J].北京林业大学学报,2010,(5):74-81.
    [75]王静华,侯建生,刘桂林,等.两种不同种源地白榆的组织培养与叶片再生研究[J].中国农学通报,2009,25(05):110-115.
    [76]张丽丽.不同白榆无性系耐盐性差异比较[D].河北农业大学硕士论文,2009
    [77]蔡玉成,马国弊,工政琦.不同地理种源白榆的某些生理特性[J].宁夏农林科技,1990,2:20-23.
    [78]冯显速,马国彬,宋玉霞.白榆不同地理种源过氧化物酶同工酶的比较研究[J].宁 夏农林科技,1990,1:24-26.
    [79]沈德绪.果树育种学[M].上海科学技术出版社,1986.
    [80]姜静,姜莹,杨传平,等.白桦航天诱变育种研究初报[J].核农学报,2006,20(1):27-31.
    [81]聂莉莉,刘仲齐,张越,等.椿树辐射诱变育种初报[J].核农学报,2009,23(4):577-580.
    [82]李志能,刘国锋,包满珠.悬铃木种子60Co-γ辐照及其苗期生物学性状调查[J].核农学报,2006,20(4):299-302.
    [83]王孜昌,王宏艳.60Co-γ辐射杉木后代生长量变异研究[J].种子,2000,(006):74-76.
    [84]林惠斌,董凤祥.毛白杨花粉和种子的辐射效应的研究[J].北京林业大学学报,1988,10(1):83-86.
    [85]康向阳,朱之悌,林惠斌.白杨不同倍性花粉的辐射敏感性及其应用[J].遗传学报,2000,27(1):78-82.
    [86]沈伟桥,傅俊杰.松花粉辐射灭菌效应的研究[J].浙江农业大学学报,1997,23(003):351-354.
    [87]傅俊杰,沈伟桥.食用明胶辐照杀菌工艺研究[J].辐射研究与辐射工艺学报,2001,19(001):16-20.
    [88]朱延林,田野,张江涛,等.榆属种质资源收集及其抗榆毛胸萤叶甲和天牛的研究[J].中国植物学会植物园分会第十五次学术讨论会,2000.
    [89]王芙蓉,姚伟强.我省林木种质资源普查工作基本完成并取得重要成果[J].河北林业,2010,(001):6-6.
    [90]杨胜涛,尹小康,孙元发.五常市野生裂叶榆资源的调查分析[J].价值工程,2010,29(003):73-73.
    [91]韩大勇,白云鹏,赵玉晶,等.松嫩草原沙地蒙古黄榆群落结构研究[J].东北师大学报(自然科学版),2008,40(3):107-111.
    [92]朱海涛,陈黎,涂自良,等.DPS数据处理系统在药学研究数据处理中的应用[J].医药导报,2006,3(6):3.
    [93]李志能,苑波,陈波.中国生物工程[M].暨南大学出版社,2006.
    [94]黄贯,虹方刚.系统工程方法与应用[M].暨南大学出版社,2006.
    [95]赵冰,张启翔.蜡梅种质资源遗传多样性的ISSR分析[J].植物研究,2008,28(3):315-320.
    [96]赵冰.蜡梅种质资源遗传多样性与核心种质构建的研究[D].北京林业大学博士论文,2007.
    [97]陈仲芳,张霖,尚富德.利用层次分析法综合评价湖北省部分桂花品种[J].园艺学报,2004,31(006):825-828.
    [98]王清萍,张志国,贺坤.高型有髯鸢尾品种综合评价[J].北方园艺,2006,(6):109-111.
    [99]封培波,胡永红,张启翔,等.上海露地宿根花卉景观价值的综合评价[J].北京林 业大学学报,2004,25(6):84-87.
    [100]刘美,赵桂琴,刘欢,等.早熟禾ISSR反应体系的优化[J].中国草地学报,2009,(005):107-111.
    [101]Jackson, J.A., M.A. QuattromaniK.M. Lowderman, Error detecting method and apparatus for computer memory having multi-bit output memory circuits[J].1994, Google Patents..
    [102]王琳清.我国植物诱变育种进展剖析[J].核农学通报,1992,13(006):282-295.
    [103]王丹,任少雄,苏军,等.核技术在观赏植物诱变育种上的应用[J].核农学报,2004,18(6):443-447.
    [104]金守鸣.中国花卉突变育种研究进展[J].中国核科技报告,1994.
    [105]庄东红,宋娟娟.木槿属植物染色体倍性与花粉粒,叶片气孔器性状的关系[J].热带亚热带植物学报,2005,13(1):49-52.
    [106]李润唐,张映南,田大伦.柑橘类植物叶片的气孔研究[J].果树学报,2004,21(005):419-424.
    [107]郭从俭,张新胜.气孔性状对楸树生长及早期选择的影响[J].河南农业大学学报,1996,30(001):65-71.
    [108]吴丁,卢金梅,王红.中国梅花草属(梅花草科)一些种类的订正[J].云南植物研究,2008,30(6):657-661.
    [109]张宋智,王军辉,负慧玲,等.幼龄楸树生长,生理和形态性状的遗传变异[J].东北林业大学学报,2011,39(10):4-8.
    [110]杜传莉,黄国勤.棉花主要抗旱鉴定指标研究进展[J].中国农学通报,2011,27(9):17-20.
    [111]刘新民,赵哈林,赵爱芬.科尔沁沙地风沙环境与植被[M].科学出版社,1996.
    [112]邱永福,田志宏,杨晓松.冷季型草坪草基因组DNA的提取方法比较[J].长江大学学报:自然科学版,2005,2(2):28-30.
    [113]乔玉山,中国李RAPD, ISSR和SSR反应体系的建立及其品种资源遗传多样性分析[D].2003,南京农业大学博士学位论文.
    [114]谢明权,李国清.现代寄生虫学[M].广东科技出版社,2003.
    [115]许耀奎,顾光炜,农业科学,等.作物诱变育种[M].海科学技术出版社,1985.
    [116]徐冠仁.植物诱变育种学[M].中国农业出版社,1996.
    [117]周小梅,赵运林,蒋建雄,等.几种冷季型草坪草辐射敏感性及其辐射育种半致死剂量的确定[J].湘潭师范学院学报:自然科学版,2005,27(1):75-78.
    [118]Datta, S., D. ChakrabartyA. Mandal. Gamma ray-induced genetic manipulations in flower colour and shape in Dendranthema grandiflorum and their management through tissue culture[J]. Plant breeding,2001,120(1):91-92.
    [119]李秀芬,张德顺,吴福兰,等.60Co-γ辐照对木槿种子发芽及幼苗生长的影响[J].核农学报,2009,23(3):450-453.
    [120]王瑞静,王瑞文,沈宝仙.60Co-γ射线对杨树种子的辐射效应[J].核农学报,2009, 23(5):762-765.
    [121]陈宗瑜,强继业.60Co-γ射线辐照处理对一串红,紫罗兰种子发芽率及幼苗的影响[J].种子,2004,(010):7-9.
    [122]傅雪琳,张志胜,何平,等.60Co-γ射线辐照对墨兰根状茎生长和分化的效应研究[J].核农学报,2000,14(6):333-336.
    [123]傅巧娟,毛丽香,赵杭苹,等.60Co-γ辐射处理对三色堇开花期和花朵性状的影响[J].浙江农业学报,2008,20(4):300-303.
    [124]强继业,陈宗瑜,郭世昌.60Co-γ射线处理花卉后M2代生理特性变化对小气候要素的响应[J].核农学报,2004,2:107-109.
    [125]王欢欢,郭春景,张兴,等.辐射八宝景天ISSR遗传多样性分析[J].北方园艺,2010,(009):149-151.
    [126]刘彦中,吴道慧,王忠跃,等.60Co-γ射线辐射对长寿花某些生理指标的影响[J].安徽农业科学,2007,34(20):5205-5205.
    [127]范华,董宽虎.NaCl胁迫对盐生植物碱蒿超微结构的影响[J].草地学报,2011,19(3):482-486.
    [128]魏和平,利容千.淹水对玉米叶片细胞超微结构的影响[J].植物学报,2000,42(8):811-817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700