用户名: 密码: 验证码:
杠柳适应黄土丘陵干旱环境的生理生态策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱胁迫是全球范围内影响植物生存、生长和分布的最重要环境因子。黄土丘陵区是典型的干旱半干旱地区,由于生态环境的脆弱性和长期人类活动的干扰以及过度利用,导致水土流失加剧,植被覆盖率低。严重阻碍了区域社会经济的快速协调发展与黄河下游的安全。开展黄土丘陵区生态恢复研究是解决这些问题的关键。水分亏缺是制约黄土丘陵植被恢复与重建的关键因子,在全球暖干化的背景下,干旱胁迫可能会更加严重,并使该区的生态环境更加恶化。因此,深入研究黄土丘陵区乡土植物对干旱环境的响应机制和生理生态适应策略,具有非常重要的理论和实践意义。
     本文以黄土丘陵区广泛分布的乡土灌木杠柳(Periploca sepium Bunge)为研究对象,采用野外生态学试验和人工控制试验相结合的方法,系统地研究了杠柳的对不同水分条件或不同干旱处理方式的响应,探讨了杠柳的抗旱能力,揭示了杠柳适应干旱环境的繁殖策略、种子萌发策略、形态解剖策略、各器官相互协调的整体抗旱性策略和极端干旱条件下的生存策略。主要研究结论如下:
     (1)在土壤水分成为植物生长的主要限制因素的黄土丘陵区,阳坡杠柳的营养生长和生殖生长却显著优于阴坡生长的杠柳,杠柳为阳性喜光植物;阳坡单株杠柳平均产19对蓇葖果,为阴坡的9倍;且阳坡杠柳所产蓇葖果明显大于阴坡,前者单个蓇葖果含种子66±7.25粒,后者含种子45±8.09粒;阳坡杠柳单株种子产量最高可达9900粒,平均约为2376粒。而阴坡单株杠柳种子平均产量仅为180粒。
     (2)杠柳种子萌发对光不敏感;从4℃到40℃的恒温条件下以及从10/4℃到40/35℃的变温条件下杠柳种子均能很好萌发;杠柳种子萌发喜温,在30 - 40℃下的萌发速度显著高于低温条件下的萌发速度;变温可加速杠柳的种子萌发;杠柳种子萌发可忍耐中度PEG渗透胁迫(-0.6 MPa),在渗透胁迫中未萌发的种子仍然保持着生活力且在胁迫解除后萌发更快;短期吸水再回干不影响杠柳种子生活力,而且回干后的种子再次吸水时的萌发速度明显加快;当吸水种子回干时,萌发进程中止,但回干种子保持着萌发过程中的生理进展;渗透胁迫的主要影响是延长了杠柳种子萌发的第二阶段;杠柳种子在水分亏缺下萌发率的降低或萌发的停止,以及只在适宜水分下的快速大量萌发是杠柳适应黄土丘陵干旱环境的两个特殊的生存策略,能够保障种子在足够多的水分下大量快速萌发。
     (3)夏季持续干旱6 d后杠柳光合速率降低的主要原因是气孔关闭,光合机构并未受到不可逆的伤害;复水后杠柳光合速率显著高于对照,表现出明显的补偿效应。杠柳各器官O_2~(·-)产生速率和MDA含量均表现为老叶>成熟叶片>幼叶>新茎>细根;杠柳各器官的O_2~(·-)产生速率均表现为在干旱条件下升高,但幼叶、新茎和细根的MDA含量在干旱下反而是降低的;SOD、CAT和POD 3种保护酶对不同器官抗氧化能力的贡献不同,其中细根中3种保护酶活性对土壤水分敏感,均为水分亏缺则活性升高,复水则活性降低。杠柳的溶质积累具有器官特异性特征,同时表现在所参与的溶质的种类和各溶质的变化幅度上。在反复干旱条件下,源器官(成熟叶片和老叶)相对稳定,而溶质积累对库(幼叶、新茎和细根)器官更加重要。优先保护和保留幼嫩的生命力旺盛的组织、较强的旱后修复和补偿能力、茎和根的储藏性作用以及各器官间的相互协调配合是杠柳适应干湿交替低水多变环境的重要机制和策略。
     (4)陕北黄土丘陵区杠柳的叶片为狭长形,而地处暖温带半湿润气候区的杨凌杠柳的叶片呈阔卵圆形;前者叶面积极显著小于后者,但前者的叶片数和分枝数显著大于后者;与杨凌杠柳相比,黄土丘陵杠柳叶比重大,叶片组织结构疏松度小,上、下表皮角质层加厚,上表皮角质层尤其发达,叶表面气孔小但密度大,且这些差异均达显著性水平。与陕北杠柳相比,杨凌杠柳的总结实量、单株蓇葖果对数、蓇葖果长和直径、以及果生物量占总生物量百分比等结实特征指标均显著减小,且其对水分亏缺敏感,在中度干旱下的结实量很少,严重干旱下无种子产生。
     (5)当停止浇水使土壤水分降至设定水平的过程中,杠柳的生长速率和耗水量急骤降低,但当恒定胁迫持续一段时间后,3种恒定土壤水分条件下的杠柳叶片的黎明前叶水势、相对含水量、MDA含量和3种保护酶活性随胁迫时间延长均无显著性变化。杠柳在35%FC条件下的MDA含量一直显著低于80%FC。说明杠柳在恒定干旱胁迫下能够主动调整生长生理状态适应新的水分条件,并最终变胁迫为“非胁迫”。
     (6)当土壤水分含量降至7.07%(干旱15 d),4.65%(干旱27 d),3.09%(干旱42 d)时杠柳的成活率分别为100%、90%和30%,且复水后新生枝条的生长速率远大于适宜水分处理。持续干旱处理杠柳的MDA含量在干旱18 d(土壤含水量为6.35%)时急剧升高,此时,除个别从根部萌发的幼嫩枝条外所有叶片均死亡,一触即可脱落。极端干旱下,杠柳叶片加速衰老死亡、以休眠芽形式进入相对休眠状态,降低代谢,缓慢利用有限的水分和养分资源。复水后根系和茎复苏长出新芽并补偿生长,这是杠柳在极端干旱下的落叶相对休眠-复水后复苏型生存策略。
     (7)杠柳根皮又称香加皮,为《中华人民共和国药典》收录药材。水分条件匮乏的阳坡杠柳根皮中4-甲氧基水杨醛含量显著高于水分条件相对优越的阴坡杠柳。黄土丘陵区杠柳根皮4-甲氧基水杨醛在整个生育期的含量均大于0.35%,达到并超出《中华人民共和国药典》规定水平0.2%,这表明杠柳可作为一种药用植物在陕北黄土丘陵区大面积种植,且适合种植在水分条件最差的阳坡。此外,杠柳的叶、根皮和茎皮的多种杀虫活性成分具有重要的生态防御性作用。
     综上所述,杠柳是一种集避旱和耐旱机制于一体而适应于干旱生境的典型旱生药用植物,且具有适应黄土丘陵干旱环境的特殊种子萌发策略以确保种群的自我更新。将杠柳作为一种耐旱药用植物在黄土丘陵区水分条件最差的阳坡大面积种植可确保存活率、保存率和生长率,同时兼顾生态与经济效益。
Drought is the most important factor limiting plant establishment, growth and distribution in many regions of the world. The Loess hilly region is a typical semi-arid and arid region in northwest China. The harsh environments and long-term anthropogenic disturbance had resulted in severe soil erosion and water loss, vegetation degradation and fragile ecosystems. These conditions seriously impede the fast and coordinated social, economic development and the safety of the lower Yellow river. Therefore, it is the key to solve these problems that carrying out ecological restoration and reconstruction in the Loess hilly region. Water deficit is an important limiting factor for the ecological restoration in this region. Moreover, due to the global climate change, an increased frequency and severity of drought stress might occur at a regional scale in the Loess hilly region, which will worsen the ecological environment. The selection of appropriate plant species for vegetation restoration is an important issue at present and in the future. The research on responses of native species to water deficit conditions and their eco-physiological adaptation strategies to drought environment in the Loess hilly regions could provide insights into the improvement of the vegetation restoration, and therefore, are of great theoretical and practical significance.
     In this paper, Periploca sepium Bunge which is a native species and widespread in the Loess hilly region was chosen as experimental material to study the eco-physiological adaptation strategies of native species to local drought environment. Using the method of field investigation and manual control experiments, we systematically investigated the responses of Periploca sepium plants to different water conditions or drought patterns. The drought-resistance of Periploca sepium was analyzed and discussed. The adaptive strategies including reproductive strategy, seed germination strategy, morphology and anatomy strategy, the whole-plant strategy by coordination of all organs and the survival strategy under extreme drought condition were revealed. The main results were as follows:
     (1) As a heliophilous plant, the vegetative growth and reproductive growth of Periploca sepium plants in sunny slope were significantly better than that in shady slope, although the soil moisture is a major limiting factor of plant growth in the Loess hilly region. The average seed production of single Periploca sepium plant in sunny slope was 19 pairs of follicles, which was 8 times higher than that in shady slope. Moreover, the follicles produced by Periploca sepium plant in sunny slope were significantly larger than that in shady slope. The single former follicle contained about 66±7.25 seeds, while the later one contained 45±8.09 seeds. The single sunny slope plant could produce seeds as many as 9900, and the average production (seed number) was 2376, while the shady slope plants produced only 180 seeds on average.
     (2) Seed germination of Periploca sepium was not influenced by light. Seeds germinated at a wide range of temperatures (constant temperature: from 4 to 40℃; alternating temperature with 5℃difference: from 10/4 to 40/35℃; alternating temperature with 10℃difference: from 15/4 to 40/30℃). Seed germination of Periploca sepium was thermophilic, and the germination rate at 30-40℃was much higher than that at lower temperatures. The alternating temperature regimes accelerated the germination rate. Seed germination of Periploca sepium could tolerate moderate PEG osmotic stress (-0.6 MPa). The ungerminated seeds in osmotic stressed condition remained viable and germinated more rapidly when the stress was relieved. Hydration-dehydration pretreatment did not affect seed viability, and the pre-treated seeds germinated much faster when re-watered. The germination process ceased when hydrated seeds re-dried, however, the physiological advancement during hydration was maintained. Osmotic stress prolonged the second phase of seed germination to make sure slow but sufficient hydration and to accumulate enough energy. The low or none germination under water deficit conditions and the larger and more rapid germination when seeds are provided with enough water is two strategies for seedling establishment of Periploca sepium in drought-prone regions. Rapid germination occurs only after a major rainfall event or prolonged rainy weather. In this case the emerged seedling has access to sufficient water to enhance its chances to survive and to complete its life cycle.
     (3) Stomata closure was the main factor limiting Periploca sepium photosynthesis when plants were with-held water for 6 d during summer, and the photosynthetic apparatus did not show any irreversible damage. The photosynthesis rate of re-watered plants was significantly higher than that of control plants, showing a significant compensation effect. The production rates of superoxide anion radical (O_2~(·-)) and malondialdehyde (MDA) contents in all organs were expressed as: old leaves> mature leaves> young leaves > new stems> fine roots. The MDA contents in young leaves, new stems and fine roots declined, although their production rates of O_2~(·-) increased under drought conditions. SOD、CAT and POD contributed differently to the antioxidant capacity. These three enzyme activities in fine roots were all sensitive to soil moisture, increasing under water deficit conditions and declining when re-watered. The solute accumulation of Periploca sepium plants showed an organ-specific characteristic, which were reflected both in magnitude and in the type of solutes involved. The source organs (mature and old leaves) were stable under repeated stress conditions, and the accumulation of compatible solutes was important mainly for sink organs (young leaves, new stems and fine roots) with increasing drought cycles. The preferential protection of young tissues from the oxidative stress induced by water deficit conditions, the strong repair and compensation capacity during rehydration, the storage role of stem and root, and the cooperation of all organs are the important adaptive mechanisms and strategies of Periploca sepium to the drying and wetting conditions in drought-prone regions.
     (4) The leaves of Periploca sepium plants in the Loess hilly regions were elongated, while plants in Yangling where is of warm sub-humid monsoon climate had ovaideleaves. Moreover, the former leaf area was significantly smaller than the later, but the leaf number was exactly reversed. Compared with plants in Yangling region, the Periploca sepium plants in the Loess hilly region showed greater leaf specific gravity, smaller leaf tissue structure loose ratio, thicker upper and lower cutin layers, smaller but more stomata, and these differences were statistically significant. Compared with plants in the Loess hilly region, the Periploca sepium plants in Yangling region showed significantly smaller seed production, number of follicles per plant, average length and diameter of follicles and the ratio of fruit biomass to total biomass, and these index of Yangling plants were more sensitive to soil moisture, for example, its seed production was low under moderate drought condition and no seeds were produced under severe drought condition.
     (5) The growth rate and water consumption of Periploca sepium plants decreased abruptly when water was with-held. However, after a period of constant stress, the predawn leaf water potential, relative water content, MDA content and activities of 3 antioxidant enzymes showed none significant changes with the stress time under all 3 constant drought conditions. The MDA content in plants under 35%FC soil water condition was significantly lower than that under 80%FC soil water condition all the time. These results indicate that Periploca sepium is able to adjust its growth and physiological state to the new soil water condition under constant drought stress, and its adaptive strategy is achieving new stable state and turning the stress to“non-stress”.
     (6) The survival rates of Periploca sepium were 100%, 90% and 30% when soil water content dropped to 7.07% (water with-held for 15 d), 4.65% (water with-held for 27 d) and 3.09% (water with-held for 42 d), respectively. The leaf MDA content in plant increased sharply when naturally drought for 18 d (with soil moisture content of 6.35%), and until then, all leaves were senescent and dead, except leaves of individual young shoots sprouting directly from roots. Under extreme drought conditions, Periploca sepium accelerated its leaf senescence in order to slow down the metabolism and the use of limited water and nutrient resources. At the same time, lots of dormant buds generated and the whole plant became relatively dormant. In this way, Periploca sepium could live through the extreme drought condition. The dormant buds sprouted rapidly when plants were re-watered and showed obvious compensatory growth. These results suggest the survival strategy of Periploca sepium by defoliating leaves and entering relative dormant state under drought and recovering quickly when re-watered.
     (7) The root bark of Periploca sepium, also known as cortex periolocae, is a traditional Chinese medicinal material. In our experiment, the content of 4-metho- xysalicylaldehyde in root bark of Periploca sepium plants in sunny slope were significantly higher than that in shady slope where the soil moisture condition is much better. The 4-methoxysalicylaldehyde content in Periploca sepium plants growing in the Loess hilly region were higher than 0.35% during the whole growth period, while the standard content is only 0.2%. These results indicate that Periploca sepium is suitable for large scale planting in the Loess hilly region, especially in the sunny slope. In addition, the variety of insecticidal active ingredients in leaves, roor bark and stem bark of Periploca sepium plants can play important roles in ecological defense.
     In summary, as a typical xerophilic mecicinal plant, Periploca sepium have both drought avoidant and tolerant mechanisms to adapt to dry environments. And, this species shows some special seed germination strategies to drought condition, which make sure the self renewal of populations. Both ecological benefit and economical benefit could be considered if Periploca sepium were planted on a large scale in the sunny slope where the soil moisture condition is the worst.
引文
[1]高学田,郑粉莉.陕北黄土高原生态环境建设与可持续发展[J].水土保持研究, 2004, 11(4): 47-49.
    [2]傅坤俊.黄土高原植物志第一卷[M].北京:科学出版社, 2000.
    [3]任宪威.树木学[M].北京:中国林业出版社, 1997, 448-449.
    [4]中国药典委员会.中华人民共和国药典[M].北京:化学工业出版社, 2005, 181.
    [5]史清华,马养民,秦虎强.杠柳根皮化学成分生物活性的研究[J].西南林学院学报, 2008, 28(2): 38-41.
    [6]李? ,张继文,杨华等.杠柳杀虫活性成分的研究[J].西北农业学报, 2006, 15(5): 90-94.
    [7] C.A. Jaleel, P. Manivannan, A. Kishorekumar, et al. Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit[J]. Colloids and Surfaces B-Biointerfaces, 2007, 59: 150-157.
    [8]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学, 1998, 34(2): 77-89.
    [9] M.M. Chaves, J.S. Pereira, J. Maroco, et al. How plants cope with water stress in the field. Photosynthesis and growth [J]. Annals of Botany, 2002, 89: 907-916.
    [10] P.E. Verslues, M. Agarwal, S. Katiyar-Agarwal, et al. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status [J]. Plant Journal, 2006, 46: 1092-1092.
    [11] R. Wassmann, S.V.K. Jagadish, S. Heuer, et al. Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies [J]. Advances in Agronomy, 2009, 101: 59-122.
    [12] P.D. Coley. Possible effects of climate change on plant/herbivore interactions in moist tropical forests [J]. Climatic Change, 1998, 39: 455-472.
    [13] M. Seki, T. Umezawa, K. Urano, et al. Regulatory metabolic networks in drought stress responses [J]. Current Opinion in Plant Biology, 2007, 10: 296-302.
    [14] E.A. Bacelar, D.L. Santos, J.M. Moutinho-Pereira, et al. Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage [J]. Plant Science, 2006, 170: 596-605.
    [15] B. Dichio, C. Xiloyannis, A. Sofo, et al. Osmotic regulation in leaves and roots of olive treesduring a water deficit and rewatering [J]. Tree Physiology, 2006, 26: 179-185.
    [16] H.B. Shao, L.Y. Chu, C.A. Jaleel, et al. Water-deficit stress-induced anatomical changes in higher plants [J]. Comptes Rendus Biologies, 2008, 331: 215-225.
    [17] A.G. de Soyza, K.T. Killingbeck, W.G. Whitford. Plant water relations and photosynthesis during and after drought in a Chihuahuan desert arroyo [J]. Journal of Arid Environments, 2004, 59: 27-39.
    [18] V. Shulaev, D. Cortes, G. Miller, et al. Metabolomics for plant stress response [J]. Physiologia Plantarum, 2008, 132: 199-208.
    [19]黎燕琼,刘兴良,郑绍伟等.岷江上游干旱河谷四种灌木的抗旱生理动态变化,生态学报, 2007, 27(3): 870-878.
    [20]李贵全,张海燕,季兰等.不同大豆品种抗旱性综合评价[J].应用生态学报, 2006, 17(12): 2408-2412.
    [21]王勋陵,马骥.从旱生植物叶结构探讨其生态适应的多样性[J].生态学报, 1999, 19(6): 787-792.
    [22] A. Fahn. Structural and functional properties of trichomes of xeromorphic leaves [J]. Annals of Botany, 1986, 57: 631-637.
    [23]黄振英,吴鸿,胡正海. 30种新疆沙生植物的结构及其对沙漠环境的适应[J].植物生态学报, 1997, 21(6): 521-530.
    [24]赵翠仙,黄子琛.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报, 1981, 23(4): 278-283+347-348.
    [25] O.B. Lyshede. Xeromorphic features of three stem assimilants in relation to their ecology [J]. Botanical Journal of the Linnean Society, 1979, 78: 85-98.
    [26]黄振英,吴鸿,胡正海.新疆10种沙生植物旱生结构的解剖学研究[J].西北植物学报, 1995, 15(6): 56-61.
    [27]崔秀萍,刘果厚,张瑞麟.浑善达克沙地不同生境下黄柳叶片解剖结构的比较[J].生态学报, 2006, 26(6): 1842-1847.
    [28] A.M. Bosabalidis, G. Kofidis. Comparative effects of drought stress on leaf anatomy of two olive cultivars [J]. Plant Science, 2002, 163: 375-379.
    [29]李芳兰,包维楷,刘俊华等.岷江上游干旱河谷海拔梯度上白刺花叶片生态解剖特征研究[J].应用生态学报, 2006, 17(1): 5-10.
    [30]廖建雄,王根轩.植物的气孔振荡及其应用前景[J].植物生理学通讯, 2000, 36(3): 272-276.
    [31]李芳兰,包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报, 2005, 22(增刊): 118-127.
    [32]曲桂敏,李兴国,赵飞等.水分胁迫对苹果叶片和新根显微结构的影响[J].园艺学报, 1999, 3: 147-151.
    [33]郑盛华,严昌荣.水分胁迫对玉米苗期生理和形态特性的影响[J].生态学报, 2006, 26(4): 1138-1143.
    [34]李轩然,刘琪璟,蔡哲等.千烟洲针叶林的比叶面积及叶面积指数[J].植物生态学报, 2007, 31(1): 93-101.
    [35] H. Poorter, R. De Jong. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity [J]. New Phytologist, 1999, 143: 163-176.
    [36] E. Garnier, B. Shipley, C. Roumet, et al. A standardized protocol for the determination of specific leaf area and leaf dry matter content [J]. Functional Ecology, 2001, 15: 688-695.
    [37] P.J. Wilson, K. Thompson, J.G. Hodgson. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies [J]. New Phytologist, 1999, 143: 155-162.
    [38]倪郁,李唯.作物抗旱机制及其指标的研究进展与现状[J].甘肃农业大学学报, 2001, 36(1): 14-22.
    [39]王育红,姚宇卿,吕军杰.花生抗旱性与生理生态指标关系的研究[J].杂粮作物, 2002, 22(3): 147-149.
    [40]何维明.不同生境中沙地柏根面积分布特征[J].林业科学, 2000, 36(5): 17-21.
    [41] O. Lahlou, J.F. Ledent. Root mass and depth, stolons and roots formed on stolons in four cultivars of potato under water stress [J]. European Journal of Agronnomy, 2005, 22: 159-173.
    [42] R. Khanna-Chopra, D.S. Selote. Antioxidant response of wheat roots to drought acclimation [J]. Protoplasma, 2010, 245: 153-163.
    [43]曹扬,赵忠,渠美等.刺槐根系对深层土壤水分的影响[J].应用生态学报, 2006, 17(5): 765-768.
    [44]李鲁华,李世清,翟军海等.小麦根系与土壤水分胁迫关系的研究进展[J].西北植物学报, 2001, 21(1): 1-7.
    [45]刘胜群,宋凤斌.不同耐旱性玉米根系解剖结构比较研究[J].干旱地区农业研究, 2007, 25(2): 86-91.
    [46]欧巧明,倪建福,马瑞君.春小麦根系木质部导管与其抗旱性的关系[J].麦类作物学报, 2005,25(3): 27-31.
    [47]杨建伟,梁宗锁,韩蕊莲.黄土高原常用造林树种水分利用特征[J].生态学报, 2006, 26(2): 558-565.
    [48] R. Somasundaram, P. Manivannan, C.A. Jaleel, et al. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress [J]. Colloids and Surfaces B-Biointerfaces, 2007, 59: 141-149.
    [49] J. Stave, G. Oba, A.B. Eriksen, et al. Seedling growth of Acacia tortilis and Faidherbia albida in response to simulated groundwater tables [J]. Forest Ecology and Management, 2005, 212: 367-375.
    [50]薛利红,曹卫星,罗卫红等.光谱植被指数与水稻叶面积指数相关性的研究[J].植物生态学报, 2004, 28(1): 47-52.
    [51] J. Calvo-Alvarado, D. Arias, A. Dohrenbusch. Calibration of LAI-2000 to estimate leaf area index (LAI) and assessment of its relationship with stand productivity in six native and introduced tree species in Costa Rica [J]. Forest Ecology and Management, 2007, 247: 185-193.
    [52] F.M. Li, B.C. Xu, P. Gichuki, et al. Aboveground biomass production and soil water dynamics of four leguminous forages in semiarid region, northwest China [J]. South African Journal of Botany, 2006, 72: 507-516.
    [53] H.B. Shao, Z.S. Liang, H.W. Yang, et al. Investigation on water consumption characteristics and water use efficiency of poplar under soil water deficits on the Loess Plateau [J]. Colloids and Surfaces B-Biointerfaces, 2006, 53: 23-28.
    [54]徐炳成,山仑,李凤民.苜蓿与沙打旺苗期生长和水分利用对土壤水分变化的反应[J].应用生态学报, 2005, 16(12): 2328-2332.
    [55] F. Asch, M. Dingkuhn, A. Sow, et al. Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice [J]. Field Crops Research, 2005, 93: 223-236.
    [56] T.C. Hsiao, L.K. Xu. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport [J]. Journal of Experimental Botany, 2000, 51: 1595-1616.
    [57]韦莉莉,张小全,侯振宏等.杉木苗木光合作用及其产物分配对水分胁迫的响应[J].植物生态学报, 2005, 29(3): 294-302.
    [58] E. Khurana, J.S. Singh. Germination and seedling growth of five tree species from tropical dry forest in relation to water stress: impact of seed size [J]. Journal of Tropical Ecology, 2004, 20: 385-396.
    [59]杨建伟,梁宗锁,韩蕊莲.不同土壤水分状况对刺槐的生长及水分利用特征的影响[J].林业科学, 2004, 40(5): 93-98.
    [60]杨建伟,梁宗锁,韩蕊莲等.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报, 2004, 28(5): 630-636.
    [61] P.A. Cipriotti, P. Flombaum, O.E. Sala, et al. Does drought control emergence and survival of grass seedlings in semi-arid rangelands? An example with a patagonian species [J]. Journal of Arid Environments, 2008, 72: 162-174.
    [62]朱教君,康宏樟,李智辉等.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响[J].生态学报, 2005, 25(10): 2527-2533.
    [63]安永平,强爱玲,张媛媛等.渗透胁迫下水稻种子萌发特性及抗旱性鉴定指标研究[J].植物遗传资源学报, 2006, 7(4): 421-426.
    [64]赵红梅,郭程瑾,段巍巍等.小麦品种抗旱性评价指标研究[J].植物遗传资源学报, 2007, 8(1): 76-81.
    [65]孙群,梁宗锁,杨建伟等.干旱对苗木萌芽期水分状况、ABA含量及萌芽特性的影响[J].植物生态学报, 2002, 26(5): 634-638.
    [66] N. Mayek-Perez, R. Garcia-Espinosa, C. Lopez-Castaneda, et al. Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress [J]. Physiological and Molecular Plant Pathology, 2002, 60: 185-195.
    [67]斯琴巴特尔,秀敏.荒漠植物蒙古扁桃水分生理特征[J].植物生态学报, 2007, 31(3): 484-489.
    [68]王磊,张彤,丁圣彦.干旱和复水对大豆光合生理生态特性的影响[J].生态学报, 2006, 26(7): 2073-2078.
    [69] A. Naor. Relations between leaf and stem water potentials and stomatal conductance in three field-grown woody species [J]. Journal of Horticultural Science and Biotechnology, 1998, 73: 431-436.
    [70]史胜青,袁玉欣,杨敏生等.水分胁迫对4种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响[J].林业科学, 2004, 40(1): 168-173.
    [71]徐秀梅,杨万仁,刘东宁.干旱区20个紫花苜蓿品种抗旱性研究[J].种子, 2004, 23(11): 21-24.
    [72] A.R. Reddy, K.V. Chaitanya, M. Vivekanandan. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants [J]. Journal of Plant Physiology, 2004,161: 1189-1202.
    [73] B.M. Cregg, J.W. Zhang. Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress [J]. Forest Ecology and Management, 2001, 154: 131-139.
    [74] J. Galmes, A. Abadia, H. Medrano, et al. Photosynthesis and photoprotection responses to water stress in the wild-extinct plant Lysimachia minoricensis [J]. Environmental and Experimental Botany, 2007, 60: 308-317.
    [75]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯, 1995, 31: 293-297.
    [76]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报, 1999, 16(4): 444-448.
    [77]赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J].应用生态学报, 2005, 16(7): 1261-1264.
    [78] J.M. Morgan. Osmoregulation and water stress in higher plants [J]. Annual Review of Plant Physiology, 1984, 35: 299-319.
    [79] A. Patakas, N. Nikolaou, E. Zioziou, et al. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines [J]. Plant Science, 2002, 163: 361-367.
    [80] A. Iannucci, M. Russo, L. Arena, et al. Water deficit effects on osmotic adjustment and solute accumulation in leaves of annual clovers [J]. European Journal of Agronomy, 2002, 16: 111-122.
    [81] N. Verbruggen, C. Hermans. Proline accumulation in plants: a review [J]. Amino Acids, 2008, 35: 753-759.
    [82] A.J. Delauney, D.P.S. Verma. Proline biosynthesis and osmoregulation in plants [J]. Plant Journal, 1993, 4: 215-223.
    [83]蒋明义,郭绍川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J].植物生理学报, 1997, 23(4): 347-352.
    [84]张宏一,朱志华.植物干旱诱导蛋白研究进展[J].植物遗传资源学报, 2004, 5(3): 268-270.
    [85]刘娥娥,汪沛洪,郭振飞.植物的干旱诱导蛋白[J].植物生理学通讯, 2001, 37(2): 155-160.
    [86] A. Sakamoto, N. Murata. The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants [J]. Plant Physiology, 2001, 125: 180-188.
    [87] J.P. Martinez, S. Lutts, A. Schanck, et al. Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L? [J]. Journal of Plant Physiology, 2004, 161: 1041-1051.
    [88]李永华,王玮,杨兴洪等.干旱胁迫下不同抗旱性小麦BADH表达及甜菜碱含量的变化[J].作物学报, 2005, 31(4): 425-430.
    [89] A.L. Luo, J.Y. Liu, D.Q. Ma, et al. Relationship between drought resistance and betaine aldehyde dehydrogenase in the shoots of different genotypic wheat and sorghum [J]. Acta Botanica Sinica, 2001, 43: 108-110.
    [90] A.A.C. Alves, T.L. Setter. Abscisic acid accumulation and osmotic adjustment in cassava under water deficit [J]. Environmental and Experimental Botany, 2004, 51: 259-271.
    [91]魏永胜,梁宗锁.钾与提高作物抗旱性的关系[J].植物生理学通讯, 2001, 37(6): 576-580.
    [92]王霞,侯平,尹林克等.水分胁迫对柽柳植物可溶性物质的影响[J].干旱区研究, 1999, 16(2): 6-11.
    [93] I. Yordanov, V. Velikova, T. Tsonev. Plant responses to drought, acclimation, and stress tolerance [J]. Photosynthetica, 2000, 38: 171-186.
    [94] N. Smirnoff. Plant resistance to environmental stress [J]. Current Opinion in Biotechnology, 1998, 9: 214-219.
    [95]胡景江,顾振瑜,文建雷等.水分胁迫对元宝枫膜脂过氧化作用的影响[J].西北林学院学报, 1999, 14(2): 7-11.
    [96]李霞,阎秀峰,于涛.水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响[J].应用生态学报, 2005, 16(12): 2353-2356.
    [97] A. Shalata, M. Tal. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii [J]. Physiologia Plantarum, 1998, 104: 169-174.
    [98] H.B. Shao, Z.S. Liang, M.A. Shao, et al. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling [J]. Colloids and Surfaces B-Biointerfaces, 2005, 42: 107-113.
    [99] R. Mittler. Oxidative stress, antioxidants and stress tolerance [J]. Trends in Plant Science, 2002, 7: 405-410.
    [100] A.D.D. Neto, J.T. Prisco, J. Eneas, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes [J]. Environmental and Experimental Botany, 2006, 56: 87-94.
    [101] R. Mittler, S. Vanderauwera, M. Gollery, et al. Reactive oxygen gene network of plants [J]. Trends in Plant Science, 2004, 9: 490-498.
    [102]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯, 1996, 32(2): 144-150.
    [103] Y.D. Liu, G.H. Wang, K. Chen, et al. The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp against UV-B radiation and the effects of exogenous antioxidants [J]. Ecotoxicology and Environmental Safety, 2008, 69: 150-157.
    [104]蒋明义,杨文英,徐江等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报, 1994, 36(4): 289-295.
    [105]米海莉,许兴,李树华等.水分胁迫对牛心朴子、甘草叶片色素、可溶性糖、淀粉含量及碳氮比的影响[J].西北植物学报, 2004, 24(10): 1816-1821.
    [106]秦景,贺康宁,谭国栋等. NaCl胁迫对沙棘和银水牛果幼苗生长及光合特性的影响[J].应用生态学报, 2009, 20(4): 791-797.
    [107]何军,许兴,李树华等.水分胁迫对牛心朴子叶片光合色素及叶绿素荧光的影响[J].西北植物学报, 2004, 24(9): 1594-1598.
    [108]李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报, 2006, 26(2): 266-275.
    [109]王娟,李德全,谷令坤.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应[J].西北植物学报, 2002, 22(2): 77-82.
    [110]齐健,宋凤斌,刘胜群.苗期玉米根叶对干旱胁迫的生理响应[J].生态环境, 2006, 15(6): 1264-1268.
    [111]谢寅峰,沈惠娟,罗爱珍等.南方7个造林树种幼苗抗旱生理指标的比较[J].南京林业大学学报, 1999, 23(4): 13-16.
    [112]宋娟丽,姚军,吴发启.黄土高原21种造林树种的苗木根系活力与土壤含水量关系的研究[J].西北植物学报, 2003, 23(10): 1688-1694.
    [113] M.P. Benavides, M.D. Groppa. Polyamines and abiotic stress: Recent advances [J]. Amino Acids, 2008, 34: 35-45.
    [114] H. Nayyar, S. Chander. Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea [J]. Journal of Agronomy and Crop Science, 2004, 190: 355-365.
    [115]张林刚,邓西平.小麦抗旱性生理生化研究进展[J].干旱地区农业研究, 2000, 18(3): 87-92.
    [116]谢寅峰,沈惠娟.水分胁迫下3种针叶树幼苗抗旱性与硝酸还原酶和超氧化物歧化酶活性的关系[J].浙江林学院学报, 2000, 17(1): 24-27.
    [117]张正斌,徐萍,贾继增.作物抗旱节水生理遗传研究展望[J].中国农业科技导报, 2000, 5: 20-23.
    [118] J.M. Lilley, M.M. Ludlow, S.R. McCouch, et al. Locating QTL for osmotic adjustment anddehydration tolerance in rice [J]. Journal of Experimental Botany, 1996, 47: 1427-1436.
    [119] I.T. Prasil, P. Prasilova, P. Marik. Comparative study of direct and indirect evaluations of frost tolerance in barley [J]. Field Crops Research, 2007, 102: 1-8.
    [120]杨敏生,裴保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析[J].林业科学, 2002, 38(2): 36-42.
    [121]庄丽,陈亚宁,陈明等.模糊隶属法在塔里木河荒漠植物抗旱性评价中的应用[J].干旱区地理, 2005, 28(3): 367-372.
    [122]张卫华,张方秋,张守攻等.大叶相思抗旱性生理指标主成分分析[J].浙江林业科技, 2005, 25(6): 15-19.
    [123]王青宁,唐静,衣学慧.基于多元统计评价毛白杨无性系的抗旱性[J].西北林学院学报, 2005, 20(4): 21-26.
    [124]朱春云,赵越,刘霞.锦鸡儿等旱生树种抗旱生理的研究[J].干旱区研究, 1996, 13(1): 59-63.
    [125]柴宝峰,李洪建,王孟本.晋西黄土丘陵区若干树种水分生理及抗旱性量化研究[J].植物研究, 2000, 20(1): 79-85.
    [126] S.G. Mundree, B. Baker, S. Mowla, et al. Physiological and molecular insights into drought tolerance [J]. African Journal of Biotechnology, 2002, 1: 28-38.
    [127]安玉艳,梁宗锁,郝文芳.杠柳幼苗对不同强度干旱胁迫的生长与生理响应[J].生态学报, 2011, 31(3): 716-725.
    [128]王海珍,梁宗锁,韩蕊莲等.不同土壤水分条件下黄土高原乡土树种耗水规律研究[J].西北农林科技大学学报(自然科学版), 2005, 33(6): 57-63.
    [129] H.H. Bruun, J.F. Scheepens, T. Tyler. An allozyme study of sexual and vegetative regeneration in Hieracium pilosella [J]. Canadian Journal of Botany, 2007, 85: 10-15.
    [130]张玉芬,张大勇.克隆植物的无性与有性繁殖对策[J].植物生态学报, 2006, 30(1): 174-183.
    [131] T.-N. Le, S.J. Mcqueen-Mason. Desiccation-tolerant plants in dry environments [J]. Reviews in Environmental Science and Biotechnology, 2006, 5: 269-279.
    [132]蒋高明.植物生理生态学[M].北京:高等教育出版社, 2004.
    [133] T.T. Kozlowski, S.G. Pallardy. Acclimation and adaptive responses of woody plants to environmental stresses [J]. Botanical Review, 2002, 68: 270-334.
    [134] F.A. Hoekstra, E.A. Golovina, J. Buitink. Mechanisms of plant desiccation tolerance [J]. Trends in Plant Science, 2001, 6: 431-438.
    [135] E.A. Bray. Plant responses to water deficit [J]. Trends in Plant Science, 1997, 2: 48-54.
    [136] H. Lambers, F.S.C.Ⅲ, T.L. Pons.植物生理生态学[M].浙江:浙江大学出版社, 2003.
    [137]胡云,燕玲,李红. 14种荒漠植物茎的解剖结构特征分析[J].干旱区资源与环境, 2006, 20(1): 202-208.
    [138]李正理,李荣敖.我国甘肃九种旱生植物同化枝的解剖观察[J].植物学报, 1981, 23(3): 181-186.
    [139] A. Fahn, Y. Shchori. The organization of the secondary conducting tissues in some species of the Chenopodiaceae [J]. Phytomorphology, 1967, 17: 147-154.
    [140]李军超,陈一鹗,康博文等.宁夏盐池县草原常见植物同化枝解剖结构观察[J].西北植物学报, 1989, 19(3): 191-196+210.
    [141] M. Slot, L. Poorter. Diversity of tropical tree seedling responses to drought [J]. Biotropica, 2007, 39: 683-690.
    [142]王继和,吴春荣,张盹明等.甘肃荒漠区濒危植物绵刺生理生态学特性的研究[J].中国沙漠, 2000, 20(4): 397-403.
    [143] A. Kadioglu, R. Terzi. A dehydration avoidance mechanism: Leaf rolling [J]. Botanical Review, 2007, 73: 290-302.
    [144] J.E. Corlett, H.G. Jones, A. Massacci, et al. Water-deficit, leaf rolling and susceptibility to photoinhibition in-field grown sorghum [J]. Physiologia Plantarum, 1994, 92: 423-430.
    [145]武高林,杜国祯.植物种子大小与幼苗生长策略研究进展[J].应用生态学报, 2008, 19(1): 191-197.
    [146] R.E. Sharp, H.J. Bohnert, G.K. Springer, et al. Root growth maintenance during water deficits: physiology to functional genomics [J]. Journal of Experimental Botany, 2003, 54: 20-20.
    [147] F.M. Padilla, J.D. Miranda, F.I. Pugnaire. Early root growth plasticity in seedlings of three Mediterranean woody species [J]. Plant and Soil, 2007, 296: 103-113.
    [148]方炎明,张晓平,王中生.鹅掌楸生殖生态研究:生殖分配与生活史对策[J].南京林业大学学报(自然科学版), 2004, 28(3): 71-74.
    [149]云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展[J].西北植物学报, 2006, 26(3): 641-648.
    [150]牛书丽,蒋高明,李永庚. C3与C4植物的环境调控[J].生态学报, 2004, 24(2): 308-314.
    [151]龚春梅.干旱地区水分梯度下植物光合碳同化途径适应性变化机制研究[D].兰州大学, 2007.
    [152] A. Polle. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts bymetabolic modeling. Computer simulations as a step towards flux analysis [J]. Plant Physiology, 2001, 126: 445-462.
    [153] S. Neill, R. Desikan, J. Hancock. Hydrogen peroxide signalling [J]. Current Opinion in Plant Biology, 2002, 5: 388-395.
    [154] A.C. Cazale, M.A. Rouet-Mayer, H. Barbier-Brygoo, et al. Oxidative burst and hypoosmotic stress in tobacco cell suspensions [J]. Plant Physiology, 1998,116: 659-669.
    [155] H.J. Park, Y. Miura, K. Kawakita, et al. Physiological mechanisms of a sub-systemic oxidative burst triggered by elicitor-induced local oxidative burst in potato tuber slices [J]. Plant and Cell Physiology, 1998, 39: 1218-1225.
    [156] J.F. Dat, R. Pellinen, T. Beeckman, et al. Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco [J]. Plant Journal, 2003, 33: 621-632.
    [157] L. Rizhsky, H.J. Liang, R. Mittler. The water-water cycle is essential for chloroplast protection in the absence of stress [J]. Journal of Biological Chemistry, 2003, 278: 38921-38925.
    [158] D. Bartels, R. Sunkar. Drought and salt tolerance in plants [J]. Critical Reviews in Plant Sciences, 2005, 24: 23-58.
    [159] M.L. Nuccio, D. Rhodes, S.D. McNeil, et al. Metabolic engineering of plants for osmotic stress resistance [J]. Current Opinion in Plant Biology, 1999, 2: 128-134.
    [160]王惠民.《神农本草经》中五加皮考释[J].中药材, 1999, 21: 43-45.
    [161]田俊生,李天祥,刘虹等. HPLC法测定不同产地香加皮中杠柳毒苷的含量[J].中药材, 2006, 29(8): 799-800.
    [162]刘虹,杨虹,郭俊华等.杠柳不同部位的杠柳毒苷含量[J].中药材, 2006, 29(7): 656-657.
    [163]王磊,殷志琦,张雷红等.杠柳根皮化学成分研究[J].中国中药杂志, 2007, 33(13): 1300-1302.
    [164]史清华,马养民,秦虎强.杠柳根皮化学成分及杀虫活性的初步研究[J].西北农业学报, 2005, 14(6): 141-144.
    [165]陈玲,马养民,史清华等.杠柳叶的化学成分及其粗提物杀虫活性研究[J].西北林学院学报, 2007, 22(2): 142-145.
    [166]庞立铁,周玉清,荣建东.寒区野生固沙植物杠柳的生态价值及栽培技术[J].水土保持科技情报, 2003, 3: 45-46.
    [167]李师翁,刘立品.子午岭森林与灌丛植被的主要类型及特征的研究[J].西北植物学报, 2004, 24(2): 275-280.
    [168]杨朝瀚,王艳云,周泽福等.黄土丘陵区杠柳叶片气体交换过程对土壤水分的响应[J].林业科学研究, 2006, 19(2): 231-234.
    [169] T. Bamba, T. Sando, A. Miyabashira, et al. Periploca sepium Bunge as a model plant for rubber biosynthesis study [J]. Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 2007, 62: 579-582.
    [170] B.E. Michel, M.R. Kaufmann. The osmotic potential of polyethylene glycol 6000 [J]. Plant Physiology, 1973, 51: 914-916.
    [171]高俊凤.植物生理实验技术[M].西安:世界图书出版社, 2000.
    [172] Z.B. Zhu, Z.S. Liang, R.L. Han. Saikosaponin accumulation and antioxidative protection in drought-stressed Bupleurum chinense DC. plants [J]. Environmental and Experimental Botany, 2009, 66: 326-333.
    [173] L.S. Bates. Rapid determination of free proline for water-stress studies [J]. Plant and Soil, 1973, 39: 205-207.
    [174] E.W. Yemm, E.C. Cocking. The determination of amino-acids with ninhydrin [J]. The Analyst, 1955, 80: 209-214.
    [175] E.W. Yemm, A.J. Willis. The estimation of carbohydrates in plant extracts by anthrone [J]. Biochemistry, 1954, 57: 508-514.
    [176] M. Osaki, T. Shinana, T. Tadano. Redistribution of carbon and nitrogen compounds form the shoot to the harvesting organs during maturation in field crops [J]. Soil Science and Plant Nutrition, 1991, 37: 117-128.
    [177]武春华,陈云明,王国梁.黄土丘陵区典型群落特征及其与环境因子的关系[J].水土保持学报, 2008, 22(3): 64-69.
    [178]平晓燕,周广胜,孙敬松.植物光合产物分配及其影响因子研究进展[J].植物生态学报, 2010, 34(1): 100-111.
    [179] W. Li, Q.J. Wang, S.P. Wei, et al. Soil desiccation for Loess soils on natural and regrown areas [J]. Forest Ecology and Management, 2008, 255: 2467-2477.
    [180]谭勇,梁宗锁,董娟娥等.水分胁迫对菘蓝生长发育和有效成分积累的影响[J].中国中药杂志, 2008, 33(1): 19-22.
    [181] D. Teketay. Germination ecology of twelve indigenous and eight exotic multipurpose leguminous species from Ethiopia [J]. Forest Ecology and Management, 1996, 80: 209-223.
    [182]苌伟,吴建国,刘艳红.荒漠木本植物种子萌发研究进展[J].应用生态学报, 2007, 18(2):436-444.
    [183] B. Gul, D.J. Weber. Effect of salinity, light, and temperature on germination in Allenrolfea occidentalis [J]. Canadian Journal of Botany, 1999, 77: 240-246.
    [184] A. El-Keblawy, A. Al-Rawai. Effects of salinity, temperature and light on germination of invasive Prosopis juliflora (Sw.) DC [J]. Journal of Arid Environments, 2005, 61: 555-565.
    [185] K.P. McLaren, M.A. McDonald. The effects of moisture and shade on seed germination and seedling survival in a tropical dry forest in Jamaica [J]. Forest Ecology and Management, 2003, 183: 61-75.
    [186] B.S. Chauhan, D.E. Johnson. Seed germination and seedling emergence of giant sensitiveplant (Mimosa invisa) [J]. Weed Science, 2008, 56: 244-248.
    [187] V.K. Nandula, T.W. Eubank, D.H. Poston, et al. Factors affecting germination of horseweed (Conyza canadensis) [J]. Weed Science, 2006, 54: 898-902.
    [188] N. Rao, L.Y. Dong, J. Li, et al. Influence of environmental factors on seed germination and seedling emergence of American sloughgrass (Beckmannia syzigachne) [J]. Weed Science, 2008, 56: 529-533.
    [189] K. Ronnenberg, K. Wesche, M. Pietsch, et al. Seed germination of five mountain steppe species of Central Asia [J]. Journal of Arid Environments, 2007, 71: 404-410.
    [190] A. Sy, M. Grouzis, P. Danthu. Seed germination of seven Sahelian legume species [J]. Journal of Arid Environments, 2001, 49: 875-882.
    [191] K. Thompson, J.P. Grime, G. Mason. Seed germination in response to diurnal fluctuations of temperature [J]. Nature, 1977, 267: 147-149.
    [192]K. Tobe, L.P. Zhang, K. Omasa. Seed germination and seedling emergence of three annuals growing on desert sand dunes in China [J]. Annals of Botany, 2005, 95: 649-659.
    [193]黄文达,王彦荣,胡小文.三种荒漠植物种子萌发的水热响应[J].草业学报, 2009, 18(3): 171-177.
    [194] X. Garcia, T. Hong, R.H. Ellis. Seed dormancy and germination of Ficus lundellii and tropical forest restoration [J]. Tree Physiology, 2005, 26: 81-85.
    [195] A.A. Powell, L.J. Yule, H.C. Jing, et al. The influence of aerated hydration seed treatment on seed longevity as assessed by the viability equations [J]. Journal of Experimental Botany, 2000, 51: 2031-2043.
    [196] R. Adams. Germination of Callitris seeds in relation to temperature, water stress, priming, andhydration-dehydration cycles [J]. Journal of Arid Environments, 1999, 43: 437-448.
    [197] Z.L. Wang, G. Wang, X.M. Liu. Germination strategy of the temperate sandy desert annual chenopod Agriophyllum squarrosum [J]. Journal of Arid Environments, 1998, 40: 69-76.
    [198] Y.J. Zeng, Y.R. Wang, J.M. Zhang. Is reduced seed germination due to water limitation a special survival strategy used by xerophytes in arid dunes? [J]. Journal of Arid Environments, 2010, 74: 508-511.
    [199] K. Tobe, L.P. Zhang, G.Y.Y. Qiu, et al. Characteristics of seed germination in five non-halophytic Chinese desert shrub species [J]. Journal of Arid Environments, 2001, 47: 191-201.
    [200] K. Ghassemi-Golezani, A.A. Aliloo, M. Valizadeh, et al. Effects of Hydro and Osmo-Priming on Seed Germination and Field Emergence of Lentil (Lens culinaris Medik.) [J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2008, 36: 29-33.
    [201] M. Sidari, C. Mallamaci, A. Muscolo. Drought, salinity and heat differently affect seed germination of Pinus pinea [J]. Journal of Forest Research, 2008, 13: 326-330.
    [202] T.W. Hegarty. Seed activation and seed germination under moisture stress [J]. New Phytologist, 1977, 78: 349-359.
    [203] K.J. Bradford. A water relations analysis of seed germination Rates [J]. Plant Physiology, 1990, 94: 840-849.
    [204] A. Ahmadi, A.S. Mardeh, K. Poustini, et al. Influence of osmo and hydropriming on seed germination and seedling growth in wheat (Triticum aestivum L.) cultivars under different moisture and temperature conditions [J]. Pakistan Journal of Biological Sciences, 2007, 10: 4043-4049.
    [205] M.D. Kaya, G. Okcu, M. Atak, et al. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.) [J]. European Journal of Agronomy, 2006, 24: 291-295.
    [206] A. Moradi, O. Younesi. Effects of osmo- and hydro-priming on seed parameters of grain sorghum (Sorghum bicolor L.) [J]. Australian Journal of Basic and Applied Sciences, 2009, 3: 1696-1700.
    [207] X.W. Fan, F.M. Li, L. Song, et al. Defense strategy of old and modern spring wheat varieties during soil drying [J]. Physiologia Plantarum, 2009, 136: 310-323.
    [208] M. Babita, M. Maheswari, L.M. Rao, et al. Osmotic adjustment, drought tolerance and yield in castor (Ricinus communis L.) hybrids [J]. Environmental and Experimental Botany, 2010, 69: 243-249.
    [209] M. Sanchez-Diaz, C. Tapia, M.C. Antolin. Abscisic acid and drought response of Canarian laurelforest tree species growing under controlled conditions [J]. Environmental and Experimental Botany, 2008, 64: 155-161.
    [210] A. Kameli, D.M. Losel. Contribution of Carbohydrates and Other Solutes to Osmotic Adjustment in Wheat Leaves under Water-Stress [J]. Journal of Plant Physiology, 1995, 145: 363-366.
    [211] M. Abrahamsen, T.M. Sudia. Studies on the soluble carbohydrates and carhohydrate precursors in germinating soybean seed [J]. American Journal of Botany, 1966, 53: 108-114.
    [212] A. Soltani, A. Gholipoor, E. Zeinali. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity [J]. Environmental and Experimental Botany, 2006, 55: 195-200.
    [213] A.M. Ismail, E.S. Ella, G.V. Vergara, et al. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa) [J]. Annals of Botany, 2009, 103: 197-209.
    [214] R. Mattioli, P. Costantino, M. Torovato. Proline accumulation in plants: Not only stress [J]. Plant Signaling and Behavior, 2009, 4: 1016-1018.
    [215] C. Pinheiro, J.A. Passarinho, C.P. Ricardo. Effect of drought and rewatering on the metabolism of Lupinus albus organs [J]. Journal of Plant Physiology, 2004, 161: 1203-1210.
    [216] U. Roessner, J.H. Patterson, M.G. Forbes, et al. An investigation of boron toxicity in barley using metabolomics [J]. Plant Physiology, 2006, 142: 1087-1101.
    [217] J.Y. Li, Effects of repeated cycles of dehydation-rehydation on gas exchange and water use efficiency in jack pine and black spruce seedlings [J]. Journal of Beijing Forestry University (English Ed.), 1996, 5: 73-87.
    [218]李清芳,马成仓,尚启亮.干旱胁迫下硅对玉米光合作用和保护酶的影响[J].应用生态学报, 2007, 18(3): 531-536.
    [219]邹春静,韩士杰,徐文铎等.沙地云杉生态型对干旱胁迫的生理生态响应[J].应用生态学报, 2003, 14(9): 1446-1450.
    [220]邓馨,胡志昂,王洪新等.脱水和复水对复苏植物牛耳草离体叶片光合作用的影响[J].植物学报, 2000, 42(3): 321-323.
    [221] S.G. Saraswathi, K. Paliwal. Diurnal and seasonal trends in photosynthetic performance of Dalbergia sissoo Roxb. and Hardwickia binata Roxb. from a semi-arid ecosystem [J]. Photosynthetica, 2008, 46: 248-254.
    [222] G.D. Farquhar, T.D. Sharkey. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology, 1982, 33: 317-345.
    [223] G. Montanaro, B. Dichio, C. Xiloyannis. Shade mitigates photoinhibition and enhances water use efficiency in kiwifruit under drought [J]. Photosynthetica, 2009, 47: 363-371.
    [224] T.H. Kim, B.R. Lee, L.S. Li, et al. Water deficit-induced oxidative stress and the activation of antioxidant enzymes in white clover leaves [J]. Biological Plantarum, 2009, 53: 505-510.
    [225] J. Teixeira, S. Pereira. High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation [J]. Environmental and Experimental Botany, 2007, 60: 121-126.
    [226] B. Efeoglu, Y. Ekmekci, N. Cicek. Physiological responses of three maize cultivars to drought stress and recovery [J]. South African Journal of Botany, 2009, 75: 34-42.
    [227] P. Manivannan, C.A. Jaleel, R. Somasundaram, et al. Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching [J]. Comptes Rendus Biologies, 2008, 331: 418-425.
    [228] W. Claussen. Proline as a measure of stress in tomato plants [J]. Plant Science, 2005, 168: 241-248.
    [229] P.D. Hare, W.A. Cress. Metabolic implications of stress-induced proline accumulation in plants [J]. Plant Growth Regulation, 1997, 21: 79-102.
    [230] G. Mack, C.M. Hoffmann. Organ-specific adaptation to low precipitation in solute content of sugar beet (Beta vulgaris L.) [J]. European Journal of Agronomy, 2006, 25: 270-279.
    [231] P.K. Hepler. Calcium: A central regulator of plant growth and development [J]. Plant Cell, 2005, 17: 2142-2155.
    [232] P.K. Helper, R.O. Wayne. Calcium and plant development [J]. Annual Review of Plant Physiology, 1985, 36: 397-439.
    [233] P. Castro-Diez, J.P. Puyravaud, J.H.C. Cornelissen. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types [J]. Oecologia, 2000, 124: 476-486.
    [234]周智彬,李培军.我国旱生植物的形态解剖学研究[J].干旱区研究, 2002, 19(2): 35-40.
    [235] I.J. Ekanayake, R. Ortiz, D.R. Vuylsteke. Leaf stomatal conductance and stomatal morphology of Musa germplasm [J]. Euphytica, 1998, 99: 221-229.
    [236] J. Schaller, P.J. Paschold. Stomata-characteristics and responses to soil drought indicating a cultivar specific drought stress susceptibility in Asparagus [J]. European Journal of Horticultural Science, 2009, 74: 145-151.
    [237] G. Zhou, Z. Xu. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass [J]. Journal of Experimental Botany, 2008, 59: 3317-3325.
    [238] M. Farooq, A. Wahid, D.J. Lee, et al. Advances in Drought Resistance of Rice [J]. Critical Reviews in Plant Sciences, 2009, 28: 199-217.
    [239] H.G. Jones, J.E. Corlett. Current topics in drought physiology [J]. Journal of Agricultural Science, 1992, 119: 291-296.
    [240] A.G. West. Climate change, drought and biodiversity: An ecophysiological perspective [J]. South African Journal of Botany, 2009, 75: 390-390.
    [241] D. Inze, A. Skirycz. More from less: plant growth under limited water [J]. Current Opinion in Biotechnology, 2010, 21: 197-203.
    [242] S. Munne-Bosch, L. Alegre. Die and let live: leaf senescence contributes to plant survival under drought stress [J]. Functional Plant Biology, 2004, 31: 203-216.
    [243] K. Ono, Y. Nishi, A. Watanabe, et al. Possible mechanisms of adaptive leaf senescence [J]. Plant Biology, 2001, 3: 234-243.
    [244]刘玉冰,张腾国,李新荣等.红砂(Reaumuria soongorica)忍耐极度干旱的保护机制:叶片脱落和茎中蔗糖累积[J].中国科学C辑:生命科学, 2006, 36(4): 328-333.
    [245] M.T. Tyree, G. Vargas, B.M.J. Engelbrecht, et al. Drought until death do us part: a case study of the desiccation-tolerance of a tropical moist forest seedling-tree, Licania platypus (Hemsl.) Fritsch [J]. Journal of Experimental Botany, 2002, 53: 2239-2247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700