用户名: 密码: 验证码:
面向振动采收的果树枝干三维重建方法及其动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究对象是山核桃树(Carya cathayensis Sarg.),由于山核桃的营养价值高,随着生活水平的不断提高,人们对山核桃消费的需求持续增长。但山核桃树生长在陡峭的山坡,树高普遍超过8m,因此人工采摘山核桃具有很高的危险性。机械式振动采摘山核桃是一种行之有效的方法,它不仅能提高果实的采摘效率,减轻劳动强度,更重要的是能保证果农的人身安全。衡量果实采摘机械工作性能的重要依据是果实的采摘率。但由于果树种植环境、果实品种和果树个体的差异,对提升果实采摘机械的性能增添了难度,同时也限制了果实采摘机械在生产上的应用和发展。
     解决上述问题的有效办法就是采用自适应采摘方式。本文围绕果树个体结构描述和果树动力学分析,研究了基于立体视觉的果树振动力学参数辨识的相关理论和方法。首先研究了果树枝干的结构参数和材料特性,然后应用立体视觉技术从两幅图像中重建果树的三维枝干,最后把重建的枝干模型应用到动力学仿真,再结合动力学试验获得果树个体的动力学特性。本文的主要研究内容和成果如下:
     1)手工测量山核桃树枝干的几何参数,得到截面长/短轴的比例约为1.06,无结点枝干的直径和长度之间呈负线性关系,因此可以把山核桃树枝干认为是直径随长度线性变化的圆形截面梁。用悬臂梁振动试验测量用于动力学分析的山核桃树枝干的弹性模量Ev,比较发现通过测量应力波的传播速度估计弹性模量Ev的方法是不可行的。
     2)提出一种基于扫描线的动态跟踪技术提取图像中复杂背景下果树枝干轮廓的方法。扫描线的动态跟踪分为启发式的扫描线搜索和基于梯度二阶导数过零点的扫描线端点的更新。应用“蛇形带状”(Ribbon snake)技术精细化轮廓,获得更加光顺、准确的枝干双轮廓,进而提取枝干区域。根据细化得到的枝干骨架,提出用图论中的二叉树结构描述果树枝干的拓扑结构。基于枝干边缘的连续性和宽度的一致性分别修复分叉点和交叉点附近区域的枝干骨架线。
     3)提出一种改进的空间点三维重建的几何方法。应用该方法,以最小化反投影误差为目标,分两步快速优化基于本质矩阵估计的相机外参数。结合极线约束、拓扑结构和形状匹配技术实现双视图中枝干骨架线的对应。首先用动态规划技术搜索同名骨架线上的对应点对,然后用共轭梯度法精细化。
     4)以曲线为基元重建枝干的三维骨架线,提出评价空间曲线三维重建性能的2个重要指标:重建曲线的反投影误差和重建曲线的光顺性。根据这两个指标提出一种基于曲率无穷范数约束的空间曲线的三维重建方法。将该方法成功地应用于模拟曲线、圆柱相贯线和枝干骨架线,从而验证了方法的可行性。模拟曲线的重建结果显示提出的曲线重建方法的重建误差约为三角测量法的1/7,表明该方法明显优于三角测量法。分析发现重建误差随着噪声水平的提高而缓慢增大,但并不明显依赖于最大曲率阈值κmax,表明方法具有较强的自适应性和一定的抗干扰能力。圆柱相贯线的重建实例显示重建的曲线在XY平面投影的相对误差仅为2.89%,表明提出的曲线三维重建方法具有比较高的精度。应用植物学的营养管道输送模型,用线性方程参数化枝干的半径。最后以两棵不同山核桃树为对象实现其枝干的三维重建,重建的枝干在视觉上非常接近真实的果树。重建的枝干半径同手工测量值之间的相对误差小于4%,表明重建的山核桃树枝干具有较高的精度。
     5)应用拉格朗日方程,建立基于物理杆的果树枝干的动力学模型。分析带2分枝和带3分枝果树的动态响应,结果发现分枝运动和树干运动之间存在一定的独立性,系统第1阶共振频率随着分枝的增加而减小。以三维梁为单元,在欧拉-伯努利(Euler-Bernoulli)梁理论的基础上建立果树枝干的有限元动力学模型,并应用ANSYS软件进行果树枝干的模态分析和谐响应分析。分析结果显示不同分枝的运动存在明显差异,因此很难找到一种简单的振动方式使所有的分枝都能有效地振动起来。在谐响应分析的基础上,进一步分析发现只要激振方向垂直于枝干,其它两个方向对加速度响应的影响都比较小。提出一种用多方向组合力的激振方式,它能同时激发大多数分枝有效地振动,因此能获得比单一激振力更好的振动效果。模拟分析果树枝干半径的精度对动力学特性的影响,结果发现模型精度的相对误差小于5%对固有频率影响很小,对加速度响应的影响也有限,进而验证了重建模型的精度满足动力学分析的需要。
     6)分别对室内局部枝干和田间活立木进行试验,获得分枝上不同测试点的加速度响应,并与仿真的结果进行比较。结果表明用本文提出的方法进行果树的动力学仿真能获得比较准确的固有频率,并确定用于振动采摘的最佳激振频率范围。
The object of this paper is the Chinese hickory tree. With the improvement of living standard,the demand for consumption of Chinese hickory nut (Carya cathayensis Sarg.) is also growingdue to its high nutrition. However, the Chinese hickory tree with over8-meters height alwaysgrows in hilly environment, which make it high dangerous to pick fruits by hands. Vibratoryharvesting may improve picking efficiency, reduce labor intensity and prevent fruit grower fromhurting. Therefore, it is the most appropriate and efficient way to harvest Chinese hickory fruits.The evaluation of performance of picking fruit machinery is removal percentage. However,differences in growth condition and variety of individual of tree will increase difficulties inimproving performance of picking fruit machinery, and also restrict its application.
     The effective way to solve the above problem is to use an adaptive way of picking. Thispaper focuses on the access to geometrical model and dynamic analysis of individual fruit tree,and studies some new theories and methods about identification of vibratory mechanicalparameters based on stereo vision. Firstly, the geometry parameters and material properties offruit tree were measured; secondly, using stereo vision technology,3D trunk model of wasreconstructed from two images; finally, the dynamic characteristics of individual fruit tree couldbe obtained by combining experiments and simulations. The main contents and achievements areas follows:
     1) The ratio between long axis and short axis in the cross-section of Chinese hickory treewas measured about1.06. Therefore, the cross-section can be approximately considered as acircle. Experimental data shows there is a minus linear relationship between the diameter andlength of the branches without node. The modulus of elasticity of trunk used for dynamicanalysis was measured by cantilever vibration experiments. It is not feasible to estimate themodulus of elasticity by measuring the propagation velocity of stress wave in trunk.
     2) This paper proposed a method for extracting two contours of trunk under complicatedbackground based on dynamic tracking of scanning line. The dynamic tracking of scanning linewas composed of two steps: heuristically searching of scanning line and updating of end-pointsbased on second derivative gradient zero-crossing point. The―Ribbon snake‖technique wasemployed to refine extracted two contours of trunk synchronously. Resultantly, two refined contours became much more smooth and higher accurate. After thinning image, skeletons oftrunks were obtained, and data structure with binary tree in graph theory was used to describe thetopology of whole tree. Based on the consistency and continuity of trunk, skeleton curves nearthe bifurcation points and intersection points were repaired.
     3) An improved method for3D reconstruction with geometrics was proposed. On this basis,the camera extrinsic parameters which were initialized by essential matrix were optimized withtwo fast steps by minimizing the reprojection error. Under the constraints of epipolar andtopology, combining shape matching, all skeletons of trunks in one image could find theircorrespondences in another one. Point correspondences in a pair of corresponding skeletons werefound by dynamic programming firstly, and refined by conjugate gradient method.
     4)3D Curve was used as a primitive to reconstruct skeleton of trunk. Two importantindicators: the reprojection errors and the fairing of curve were put forward to evaluate theperformance of reconstructed3D curve. An objective function based on these two indicators wasestablished and improved further. Thus, a method for reconstructing3D space curve under theL-infinity norm of curvatures was proposed. The proposed method was verified to be feasible bysuccessfully applying to reconstruct synthetic space curve, cylindrical intersection curve andskeletons of trunk. The results of synthetic curve reconstruction show that reconstruction errorsgenerated by the proposed method is1/7less than that of triangulation method, which indicatethe proposed method is superior to the triangulation method based on point correspondence. Theproposed method has strong self-adaptability and anti-noise capability, because the effect ofreconstruction does not obviously depends on the maximum curvature threshold κmax. Thereconstruction of cylindrical intersection curve shows that the relative error of projection curvein the XY plane is only2.89%, which indicates that this method has high accuracy and is suitableto be applied in agriculture. Take into consideration of the pipe model of botany, radiuses oftrunks were parameterized as linear equation. Two different Chinese hickory trees werereconstructed by the proposed method, and both reconstructed trees were very similar to theactual one in the visual. Comparisons of estimated radiuses of trunk between3D reconstructionand measurement by hand were made, and their relative derivations are less than4%. Insummary, the Chinese hickory tree can be successfully reconstructed by the proposed methodwith high accuracy.
     5) On the basis of Lagrangian equation, a dynamics model of tree with physics-based linkwas built. Two models with two branches and three branches were solved. Results show that theeffect of nonlinear coupling in the dynamics model is to increase a branch modal, the motionbetween branches and the trunk is somewhat independent, and the first-order resonancefrequency of tree decreases with increasing branches. Further, the dynamics of fruit tree wasmodeled by3D beam with Euler-Bernoulli beam theory. Finite element software (ANSYS) wasutilized to do modal analysis and harmonic analysis of a whole fruit tree. Both two results showthat the movements under vibration are obvious different between different branches. Thus, it isdifficult to find a simple vibratory way in which all branches can be moved effectively. On thebasis of harmonic analysis, further analysis showed that as long as the excitation directionperpendicular to the tangent of branch, the influence of rest two directions on accelerationresponse is small. It was found that the combined excitation with multiple directions is superiorto a single excitation, because it can stimulate most of branches in movement. The influence ofgeometry model within5%relative error of radius is small on natural frequencies, and is limitedon acceleration response. Thus, the accuracy of reconstructed3D tree model is sufficient fordynamic analysis.
     6) Acceleration responses of test points in different branches could be obtained by twoexperiments both on partial branches indoor and on living tree in the field respectively, and werecompared with which calculated by dynamic simulation. Result shows that the dynamicsimulation by the proposed method can obtain a more accurate natural frequency of fruit tree,and determine the optimal rang of excitation frequency for harvesting.
引文
[1]方锐根.临安市山核桃产业发展的现状和思考[J].杭州农业与科技,2013(3):12-14.
    [2]费喜敏,汤勇,徐秀英,等.农户层面的山区特色林业可持续发展能力分析——以浙江临安山核桃为例[J].林业经济问题,2009,29(03):218-222.
    [3] Sarig, Y. Mechanized fruit harvesting-Site Specific Solutions[C]//Information andTechnology for Sustainable Fruit and Vegetable Production FRUTIC05, Montpellier, France,2005:237-247.
    [4]陈度,杜小强,王书茂,等.振动式果品采摘技术机理分析及研究进展[J].农业工程学报,2011,27(08):195-200.
    [5] Mateev L, Kostadinov G. Probabilistic model of fruit removal during vibratory Morelloharvesting[J]. Biosystems Engineering,2004,87(4):425-435.
    [6] Whitney J, Wheaton T. Shakers affect Florida orange fruit yields and harvesting efficiency[J].Applied Engineering in Agriculture,1987,3(1):20-24.
    [7] Erdo an D, Güner M, Dursun E, et al. Mechanical harvesting of apricots[J]. BiosystemsEngineering,2003,85(1):19-28.
    [8] Polat R, Gezer I, Guner M, et al. Mechanical harvesting of pistachio nuts[J]. Journal of FoodEngineering,2007,79(4):1131-1135.
    [9] Safdari A, Ghassemzadeh H, Abdollahpour S, et al. Design, construction and evaluation of aportable limb shaker for almond tree[J]. Australian Journal of Agricultural Engineering,2010,1(5):179-183.
    [10] Castro-García S, Blanco-Roldán G, Gil-Ribes J. Vibrational and operational parameters inmechanical cone harvesting of stone pine (Pinus pinea L.)[J]. Biosystems Engineering,2012,112(4):352-358.
    [11] Castro-García S, Blanco-Roldán G, Gil-Ribes J. Frequency response of Pinus Pinea L. forselective cone harvesting by vibration[J]. Trees,2011,25(5):801-808.
    [12] Parameswarakumar M, Gupta C P. Design parameters for vibratory mango harvestingsystem[J]. Transactions of the ASAE,1991,34(1):14-20.
    [13] Sessiz A, zcan M T. Olive removal with pneumatic branch shaker and abscissionchemical[J]. Journal of Food Engineering,2006,76(2):148-153.
    [14] Mateev L M, Kostadinov G D. Probabilistic Model of Fruit Removal during VibratoryMorello Harvesting[J]. Biosystems Engineering,2004,87(4):425-435.
    [15]王业成,袁威,陈海涛,等.便携式小浆果采摘器[J].农业机械学报,2011,42(S1):181-183+180.
    [16]汤智辉,孟祥金,沈从举,等.机械振动式林果采摘机的设计与试验研究[J].农机化研究,2010(08):65-69.
    [17]沈瑞珍,张晓文.银杏侧枝振动落果的试验研究[J].林业科学,1997,33(2):81-87.
    [18]杨红英,坎杂,王丽红,等.矮化密植红枣采摘装置的设计[J].农机化研究,2012(06):77-80.
    [19]周兵,何晶.模拟手枸杞采摘机设计[J].农业工程学报,2010,26(S1):13-17.
    [20] Upadhyaya S K, Rand R H, Cooke J R. Dynamics of fruit tree trunk impact[J]. Transactionsof the ASAE,1981,24(4):846-855.
    [21] Láng, Z. A one degree of freedom damped fruit tree model[J]. Transactions of the ASABE,2008,51(3):823-829.
    [22]翁凌云,许林云. Y型果树动力学模型假设与分析[J].农机化研究,2013(04):19-24.
    [23]李志鹏.蓝莓采摘机采摘策略及轨迹规划研究:[博士学位论文][D].哈尔滨:东北林业大学,2011.
    [24]王琳.云杉风倒动力学模型的建立与分析:[硕士学位论文][D].哈尔滨:哈尔滨工业大学,2006.
    [25] Yung, C., RB Fridley. Simulation of vibration of whole tree systems using finite elements[J].Transactions of the ASAE,1975,18(3):475-481.
    [26] Yang, Y B, Yang Y T, Su H H. Behavior of the tree branches, trunk, and root anchorage bynonlinear finite element analysis[J]. Advances in Structural Engineering,2005,8(1):1-14.
    [27] Castro-García S, Blanco-Roldán G, Gil-Ribes J, et al. Dynamic analysis of olive trees inintensive orchards under forced vibration[J]. Trees-Structure and Function,2008,22(6):795-802.
    [28] Du X Q, Chen D, Zhang Q, et al. Dynamic responses of sweet cherry trees under vibratoryexcitations[J]. Biosystems Engineering,2012,111(3):305-314.
    [29] Alipour J, Motlagh AM, Didar AR. Effect of shaker attachment height on vibration of olivetree[C]//Proceedings of the International Conference of AgriculturalEngineering, CIGR-2008, Iguassu Falls, Brazil,2008.
    [30] Alipour J, Motlagh AM, Didar AR. Developing a general finite element model for vibratorysimulation of whole tree system[C].//International Conference on Agricultural Engineering-AgEng2010, Clermont-Ferrand, France,2010.
    [31] Tang, X Y, Ren J R, Liu C, et al. Simulation of vibration harvesting mechanism forwolfberry[C]//American Society of Agricultural and Biological Engineers AnnualInternational Meeting-ASABE2011, Louisville, KY, USA,2011.
    [32] Bentaher H, Haddar M, Fakhfakh T, et al. Finite elements modeling of olive tree mechanicalharvesting using different shakers[J]. Trees,2013,27(6):1537-1545.
    [33] El-Awady MN, Genaidy M, Rashowan M., et al. Modeling and simulating of olive-treeharvesting mechanism[J]. Farm Machinery And Power,2008,25(3):712-722.
    [34] Savary, S, Ehsani R, Schueller JK, et al. Simulation study of citrus tree canopy motionduring harvesting using a canopy shaker[J]. Transactions of the ASAE,2010,53(5):1373-1381.
    [35] Rodriguez M, Langre E D, Moulia B. A scaling law for the effects of architecture andallometry on tree vibration modes suggests a biological tuning to modalcompartmentalization[J]. American Journal of Botany,2008,95(12):1523-1537.
    [36] Rodriguez M, Ploquin S, Moulia B, et al. The Multimodal Dynamics of a Walnut Tree:Experiments and Models[J]. Journal of Applied Mechanics,2012,79(4):044505-1-5.
    [37] Sellier D, Fourcaud T, Lac P. A finite element model for investigating effects of aerialarchitecture on tree oscillations[J]. Tree Physiology,2006,26(6):799-806.
    [38] Moore, J R. Mechanical behavior of coniferous trees subjected to wind loading[PhDdissertation][D]. Corvallis, USA: Oregon State University College of Forestry,2002.
    [39] Moore J R, Douglas A. Maguire. Natural sway frequencies and damping ratios of trees:influence of crown structure[J]. Trees-Structure and Function,2005,19(4):363-373.
    [40] Moore J R, Maguire D A. Simulating the dynamic behavior of Douglas-fir trees underapplied loads by the finite element method[J]. Tree Physiology,2008,28(1):75-83.
    [41]孟宪宇.测树学[M].北京:中国林业出版社,2006.
    [42] Teng C H. On the Study of Creating a Realistic Three-Dimensional Tree Model fromUncalibrated Image Sequence[PhD dissertation][D]. Taibei: National Tsing Hua University,2005.
    [43] Teng C H, Chen Y S, Hsu W H. Constructing a3D trunk model from two images[J].Graphical Models,2007,69(1):33-56.
    [44] Teng C H, Chen Y S. Image-based tree modeling from a few images with very narrowviewing range[J]. The Visual Computer,2009,25(4):297-307.
    [45] Tan P, Zeng G, Wang J D, et al. Image-based tree modeling[J]. ACMTransactions on Graphics,2007,26(3):87.
    [46] Ma W, Wang Y, Zha H, et al. Modeling of Tree Branches by Bayesian Network StructureInference[C]//the5th International Symposium3D Data Processing, Visualization andTransmission (3DPVT), Paris, France,2010.
    [47] Pan Z, Hu W, Guo X, et al. An efficient image-based3D reconstruction algorithm forplants[J]. Lecture Notes in Computer Science,2004(3044):751-760.
    [48] Huang H, Mayer H. Extraction of3d unfoliaged trees from image sequences via agenerative statistical approach[J]. Pattern Recognition,2007:385-394.
    [49]刘彦宏,王洪斌,杜威,等.基于图像的树类物体的三维重建[J].计算机学报,2002,25(09):930-935.
    [50]唐勇,陈涛,吕梦雅.基于匹配效率和计算精度提升的双目三维树干重建算法改进[J].燕山大学学报,2009,33(1):33-37.
    [51]严涛,吴恩华.基于多幅图象的树木造型方法[J].系统仿真学报,2000,12(05):565-571.
    [52]阚江明.基于计算机视觉的活立木三维重建方法[博士学位论文][D].北京:北京林业大学,2008.
    [53]王剑.果树枝干三维重建关键技术研究[博士学位论文][D].北京:中国农业科学院,2009.
    [54]王雪峰,张青,张超.基于立体视觉的郁闭林分主要测树因子的重建[J].东北林业大学学报,2006,34(04):24-30.
    [55] Sinoquet H, Rivet P, Godin C. Assessment of the three-dimensional architecture of walnuttrees using digitising[J]. Silva Fennica,1997,31(3):265-273.
    [56] Sinoquet H, Rivet P. Measurement and visualization of the architecture of an adult treebased on a three-dimensional digitising device[J]. Trees,1997,11(5):265-270.
    [57] Pfeifer N, Gorte B, Winterhalder D. Automatic reconstruction of single trees from terrestriallaser scanner data[C]//Proceedings of20th ISPRS Congress, Istanbul, Turkey,2004:114-119.
    [58] Xu H, Gossett N, Chen B. Knowledge and heuristic-based modeling of laser-scannedtrees[J]. ACM Transactions on Graphics (TOG),2007,26(4):19.
    [59] Cheng Z L, Zhang X P, Chen B Q. Simple reconstruction of tree branches from a singlerange image[J]. Journal of Computer Science and Technology,2007,22(6):846-858.
    [60] Livny Y, Yan F, Olson M, et al. Automatic reconstruction of tree skeletal structures frompoint clouds[J]. ACM Transactions on Graphics (TOG),2010,29(6):151.
    [61]陈卓,马洪超,邬建伟.基于机载LiDAR数据的三维树木建模方法[J].计算机工程,2012,38(4):1-3.
    [62]中国科学院自动化研究所.树木点云数据基于分割和自动生长的三维模型重建方法:CN101887596[P].2010.
    [63]代明睿,张晓鹏,李红军.基于高噪声深度图像的树木模型重建[J].中国体视学与图像分析,2010,15(02):109-114.
    [64] Adhikari, B., M. Karkee.3D Reconstruction of Apple Trees for Mechanical Pruning[C]//The2011ASABE Annual International Meeting, Louisville, USA,2011.
    [65] Rosell P, Ramon J, Sanz R, Llorens J, et al. A tractor-mounted scanning LIDAR for thenon-destructive measurement of vegetative volume and surface area of tree-row plantations:A comparison with conventional destructive measurements[J]. Biosystems Engineering,2009,102(2):128-134.
    [66] Nielsen M, Slaughter D, Gliever C. Vision-based3D Peach Tree Reconstruction forAutomated Blossom Thinning[J]. IEEE Transactions on Industrial Informatics,2012,8(1):188-196.
    [67]蔡健荣,孙海波,李永平,等.基于双目立体视觉的果树三维信息获取与重构[J].农业机械学报,2012,43(03):152-156.
    [68] Shinozaki K, Yoda K, Hozumi K, et al. A quantitative analysis of plant form-the pipe modeltheory: I. Basic Analyses[J].日本生態学会誌,1964,14(3):97-105.
    [69] Shinozaki K, Yoda K, Hozumi K, et al. A quantitative analysis of plant form-the pipe modeltheory: II. Further evidence of the theory and its application in forest ecology[J].日本生態学会誌,1964,14(4):133-139.
    [70] McMahon T A, Kronauer R E. Tree structures: deducing the principle of mechanicaldesign[J]. Journal of Theoretical Biology,1976,59(2):443-466.
    [71]屈洪春.虚拟植物智能生理引擎及关键技术研究[博士学位论文][D].重庆:重庆大学,2009.
    [72] Brancheriau L, Bailleres H, Guitard D. Comparison between modulus of elasticity valuescalculated using3and4point bending tests on wooden samples[J]. Wood Science andTechnology,2002,36(5):367-383.
    [73]张厚江,申世杰,崔英颖,等.振动方式测定木材弹性模量[J].北京林业大学学报,2005,27(06):91-94.
    [74] Brancheriau L, Bailleres H. Natural vibration analysis of clear wooden beams: a theoreticalreview[J]. Wood Science and Technology,2002,36(4):347-365.
    [75]张厚江,郭志仁, John F Hunt,等.薄板类木质材料弹性模量的动态测定[J].北京林业大学学报,2010,32(02):149-152.
    [76]王莉娟.无损检测方法评估人工林杨树木材性质的研究:[硕士学位论文][D].北京:北京林业大学,2005.
    [77] Liang, S Q, Fu F. Comparative study on three dynamic modulus of elasticity and staticmodulus of elasticity for Lodgepole pine lumber [J]. Journal of Forestry Research,2007,18(04):309-312+331.
    [78]齐永峰,徐华东,王立海.四种方法测木质材料动弹性模量的对比研究[J].森林工程,2011,27(01):19-22.
    [79] Harris, C M, Piersol A G. Harris′shock and vibration handbook[M].5thed. New York:McGraw-Hill,2002.
    [80] Ross R J, Brashaw B K, Punches J, et al. Diameter effect on stress-wave evaluation ofmodulus of elasticity of logs[J]. Wood and Fiber Science,2004,36(3):368-377.
    [81] Chui Y H. Simultaneous evaluation of bending and shear moduli of wood and the influenceof knots on these parameters[J]. Wood Science and Technology,1991,25(2):125-134.
    [82] Olsson A, K llsner B. Shear modulus of structural timber evaluated by means of dynamicexcitation and FE analysis[J]. Materials and Structures,2013:1-9.
    [83]高珊.环境温度对美国红松活立木及原木声波传播及力学特性的影响:[博士学位论文][D].哈尔滨:东北林业大学,2012.
    [84] Cannell M G, Morgan J. Young's modulus of sections of living branches and tree trunks[J].Tree Physiology,1987,3(4):355-364.
    [85] Silvaa D, Lahrb F, Borges O F, et al. Influence of wood moisture content on the modulus ofelasticity in compression parallel to the grain[J]. Materials Research,2012,15(2):300-304.
    [86]彭樟林,姚立健.山核桃采摘技术与装备研究现状[J].湖北农业科学,2013,52(14):3229-3232+3240.
    [87] Belongie S, Carson C, Greenspan H, et al. Color-and texture-based image segmentationusing EM and its application to content-based image retrieval[C]//In6th InternationalConference on Computer Vision,1998:675-682.
    [88]王士勇.基于GMM和IFS的单幅图像树木建模方法研究:[硕士学位论文][D].秦皇岛:燕山大学,2010.
    [89] Sun R, Jia J, Li H, et al. Image-based lightweight tree modeling[C]//Proceedings of the8thInternational Conference on Virtual Reality Continuum and its Applications in Industry,New York, USA: ACM Press,2009:17-122.
    [90] Teng C H, Chen Y S, Hsu W H. An approach to extracting trunk from an image[J]. IEICETransactions on Information and Systems,2006,89(4):1596-1600.
    [91] Lu S, Eiho S. Automatic detection of the coronary arterial contours with sub-branches froman X-ray angiogram[C]//IEEE Proceedings of the Computers in Cardiology,1993:575-578.
    [92] Lecornu L, Roux C, Jacq J J. Extraction of vessel contours in angiograms by simultaneoustracking of the two edges[C]//IEEE Conference Engineering in Medicine and BiologySociety,1994(1):678-679.
    [93] Sun Y. Automated identification of vessel contours in coronary arteriograms by an adaptivetracking algorithm[J]. IEEE Transactions on Medical Imaging,1989,8(1):78-88.
    [94] Zhou L, Rzeszotarski M S, Singerman L J, et al. The detection and quantification ofretinopathy using digital angiograms[J]. IEEE Transactions on Medical Imaging,1994,13(4):619-626.
    [95] Wu C Y, He L Y, Du X Q, et al.3D reconstruction of Chinese hickory tree for dynamicsanalysis[J]. Biosystems Engineering,2014,119(0):69-79.
    [96] Zack G W, Rogers W E, Latt S A. Automatic measurement of sister chromatid exchangefrequency[J]. Journal of Histochemistry&Cytochemistry,1977,25(7):741-753.
    [97] Blum M, Floyd R W, Pratt V, et al. Time bounds for selection[J]. Journal of Computer andSystem Sciences,1973,7(4):448-461.
    [98] Marr D, Hildreth E. Theory of edge detection[C]//Proceedings of the Royal Society ofLondon. Series B. Biological Sciences,1980,207(1167):187-217.
    [99] Laptev I, Mayer H, Lindeberg T, et al. Automatic extraction of roads from aerial imagesbased on scale space and snakes[J]. Machine Vision and Applications,2000,12(1):23-31.
    [100] Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models[J]. International Journalof Computer Vision,1988,1(4):321-331.
    [101] Fua P, Leclerc Y G. Model driven edge detection[J]. Machine Vision and Applications,1990,3(1):45-56.
    [102] Gruen A, Li H. Road extraction from aerial and satellite images by dynamicprogramming[J]. ISPRS Journal of Photogrammetry and Remote Sensing,1995,50(4):11-20.
    [103]梅园,孙怀江,夏德深.一种基于改进后模板的图像快速细化算法[J].中国图象图形学报,2006,11(09):1306-1311.
    [104] Felzenszwalb P F, Huttenlocher D P. Distance Transforms of Sampled Functions[J].Theory of Computing,2012,8(1):415-428.
    [105] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting withapplications to image analysis and automated cartography[J]. Communications of the ACM,1981,24(6):381-395.
    [106] Itonaga W, Matsuda I, Yoneyama N, et al. Automatic extraction of road networks frommap images[J]. Electronics and Communications in Japan (Part II: Electronics),2003,86(4):62-72.
    [107] Zhang Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions onPattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
    [108] Hartley R, Zisserman A. Multiple view geometry in computer vision[M],2rd.Cambridge:Cambridge Univ Press,2003.
    [109] Hartley R. In defense of the eight-point algorithm[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,1997,19(6):580-593.
    [110]吴福朝.计算机视觉中数学方法[M].北京:科学技术出版社,2008.
    [111] Bay H, Andreas E, Tinne T, et al. Speeded-up robust features (SURF)[J]. Computer Visionand Image Understanding,2008,110(3):346-359.
    [112] Rosten E, Porter R, Drummond T. Faster and better: A machine learning approach tocorner detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(1):105-119.
    [113] Shakhna-rovich G T Darrell P I. Nearest-neighbor methods in learning and vision[J]. IEEETransactions on Neural Networks,2008,19(2):377.
    [114] Triggs B, Philip F M, Hartley R, et al. Bundle adjustment—a modern synthesis[C]//InVision algorithms: theory and practice. Berlin, German: Springer,2000:298-372.
    [115] Kauppinen H, Tapio S, Matti P. An experimental comparison of autoregressive andFourier-based descriptors in2D shape classification[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence,1995,17(2):201-207.
    [116] Flusser J, Tomas S. Pattern recognition by affine moment invariants[J]. PatternRecognition,1993,26(1):167-174.
    [117] Cui M, Femiani J, Hu J, et al. Curve matching for open2D curves[J]. Pattern recognitionletters,2009,30(1):1-10.
    [118] Zheng J D, Zhang L Y, Du X Y, et al.3D curve structure reconstruction from a sparse setof unordered images[J]. Computers in Industry,2009,60(2):126-134.
    [119] Gilbert J C, Jorge N. Global convergence properties of conjugate gradient methods foroptimization[J]. SIAM Journal on optimization,1992,2(1):21-42.
    [120]司绍华,马颂德.基于二次曲线的立体视觉[J].自动化学报,1993,19(04):420-427.
    [121] Sukavanam N, Balasubramanian R, Sanjeev K. Error estimation in reconstruction ofquadratic curves in3D space[J]. International Journal of Computer Mathematics,2007,84(1):121-132.
    [122]肖轶军,丁明跃,彭嘉雄.基于B样条的空间自由曲线三维重建[J].自动化学报,2000,26(04):572-576.
    [123]郁道银,黄家祥,陈晓冬,等.基于B样条的冠状动脉树骨架三维重建方法[J].工程图学学报,2005(02):95-100.
    [124] Xiao, Y J, Li Y F. Optimized stereo reconstruction of free-form space curves based on anonuniform rational B-spline model[J]. Journal of the Optical Society of America[J],2005,22(9):1746-1762.
    [125] Martinsson H, Francois G, Adrien B, et al. Reconstruction of3d curves for qualitycontrol[C]//In Image Analysis. Berlin, German: Springer,2007:760-769.
    [126] Cai Y, Su Z X, Li Z L, et al. Two-view curve reconstruction based on the snake model[J].Journal of Computational and Applied Mathematics,2011,236(5):631-639.
    [127] Berthilsson R, Kalle, Anders H. Reconstruction of General Curves, Using Factorizationand Bundle Adjustment[J]. International journal of computer vision,2001,41(3):171-182.
    [128] Mai F, Hung Y S. Three-dimensional curve reconstruction from multiple images[J].Computer Vision, IET,2012,6(4):273-284.
    [129]周果清,王庆.基于minmaxKKT条件的三维重构方法[J].自动化学报,2012,38(09):1439-1444.
    [130] Kahl F, Hartley R. Multiple-View Geometry Under the L_infty Norm[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2008,30(9):1603-1617.
    [131] Delgado-Gonzalo R, Philippe T, Chandra S S, et al. Snakes with an ellipse-reproducingproperty[J]. IEEE Transactions on Image Processing,2012,21(3):1258-1271.
    [132] Dupuy L X, Thierry F, Patrick L, et al. A generic3D finite element model of treeanchorage integrating soil mechanics and real root system architecture[J]. American Journalof Botany,2007,94(9):1506-1514.
    [133] Jonsson M, Foetzki A, Kalberer M, et al. Root-soil rotation stiffness of Norway sprucegrowing on subalpine forested slopes[J]. Plant and Soil,2006,285(1):267-277.
    [134] Theckes B, Langre E, Boutillon X. Damping by branching: a bioinspiration from trees[J].Bioinspiration&Biomimetics,2011,6(4):046010(p1-11).
    [135] Murphy K D, Rudnicki M. A physics-based link model for tree vibrations[J]. AmericanJournal of Botany,2012,99(12):1918-1929.
    [136]龚曙光,谢桂兰,黄云清. ANSYS参数化编程与命令手册[M].北京:机械工业出版社,2009.
    [137] Spatz H C, Brüchert F, Pfisterer J. Multiple resonance damping or how do trees escapedangerously large oscillations?[J]. American Journal of Botany,2007,94(10):1603-1611.
    [138] Milne R. Dynamics of swaying of Picea sitchensis[J]. Tree Physiology,1991,9(3):383-399.
    [139] Gardiner B A. Mathematical modelling of the static and dynamic characteristics ofplantation trees[J]. Mathematical Modelling of Forest Ecosystems. Sauerl nder,Frankfurt/Main,1992:40-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700