用户名: 密码: 验证码:
草坪草抗旱生理及相关基因的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱胁迫可造成植物在形态、生理、蛋白及基因表达等水平上的变化,是限制植物生长的主要环境因子之一。研究植物抗旱机理以及植物对干旱的适应和调节机制,对选育高效抗旱新品种,解决当前水资源短缺和生态环境恶化具有重要意义。本文首先以狗牙根为材料,对8个狗牙根基因型进行了抗旱性能评价与筛选;并以所筛选出的抗旱性差异较大的两个狗牙根品种-Tifway(抗旱)和C299(不抗旱),探讨了草坪草对干旱胁迫的光合生理反应;论文还以两个抗旱差异较大的草地早熟禾品种-Midnight(抗旱)和Brilliant(不抗旱)为材料,探讨对干旱胁迫的光合生理反应、干旱胁迫后复水过程中CTKs和KCl对草地早熟禾叶片气孔开度及光合作用的影响,并以草地早熟禾抗旱型品种为材料,通过SSH技术构建了干旱胁迫下草地早熟禾叶片消减cDNA文库,经阳性克隆测序、同源性比对、功能分类及RT-PCR分析,获得了大量与抗旱相关的候选基因片段。主要研究内容及结果如下:
     1.不同基因型狗牙根抗旱性能的生理评价
     SDS-PAGE分析表明,在轻度(6 d)到中度(10 d)干旱胁迫下,8个基因型的狗牙根叶片可溶性蛋白没有明显的变化。重度干旱胁迫(14 d)造成狗牙根叶片中可溶性蛋白降解,其中以C299和Tifeagle降解最为严重。免疫印迹检测发现,正常浇水下狗牙根叶片没有脱水素蛋白的表达。干旱胁迫6 d时,只有一条24 kDa分子量的脱水素在C299中表达。干旱胁迫第10 d时诱导表达了6条不同分子量的脱水素蛋白,其中14-、19-和24 kDa分子量的脱水素蛋白在8个狗牙根基因型中均表达,但是在C299、Tifeagle和Tifdwarf中的表达量均高于其它5个狗牙根基因型。31 kDa分子量的脱水素蛋白只在Tifway和H19中表达,其它6个基因型均没有表达。40 kDa分子量的脱水素蛋白在8个狗牙根基因型中均有表达,但是在Tifway、H19和H10中的表达量均高于其它5个基因型。以草坪外观质量(TQ)、叶片相对含水量(RWC)、相对电导率(EL)并结合可溶性蛋白图谱的变化与脱水素蛋白的表达为指标,综合评价了试验中8个狗牙根型的抗旱性能,可将试验中8个狗牙根基因型抗旱性大小排序为:(Tifway、H19)>(H10、Kan 1、Sportbermuda、Tifdwarf)>(Tifeagle、C299)。
     2.不同抗旱性狗牙根品种离体叶片失水率及其脱水素蛋白表达的差异
     抗旱品种Tifway和水分敏感品种C299叶片离体失水速度不同,Tifway的离体叶片失水率(RWL)显著低于C299。脱水至同一失水量如10%、30%、50%和65%,Tifway则需要更长的时间。叶片失水诱导了不同分子量脱水素蛋白的表达,74 kDa分子量的脱水素蛋白在不同失水量和在两个狗牙根基因型中表达量没有显著差异;14-、19-和24 kDa分子量的脱水素蛋白其表达从失水10%到65%,均随着脱水量的增加而增加,在同一失水量下,其在C299中的表达量高于Tifway。31 kDa分子量的脱水素蛋白只在Tifway中表达而不在C299中表达,且其表达量随着失水量的增加而增加。从失水量10%到65%,40 kDa分子量的脱水素蛋白其表达量随着脱水量的增加而增加,在同一失水量下,其在Tifway中的表达量显著高于C299。
     3.干旱胁迫下不同抗旱性狗牙根品种的光合生理差异
     在轻度水分胁迫下(6 d),PSII活性在C299和Tifway中均没有下降;当干旱胁迫到10 d和14 d时,C299和Tifway的Fv/Fm显著下降,且C299显著低于Tifway;干旱胁迫下光合作用显著降低,其中C299下降更快,在干旱胁迫第6、10和14 d时Tifway的Pn和gs显著高于C299。
     Tifway的Rubisco活性和活化率从干旱胁迫第14 d才开始下降,而C299则从干旱胁迫第10 d就开始降低。此外,SDS-PAGE蛋白图谱也显示,与光合作用相关的主要蛋白如Rubisco大亚基(49 kDa)和磷酸丙酮酸二激酶(PPDK, 98 kDa)从干旱胁迫第14 d开始在C299叶片中急剧降解,而在Tifway中没有降解。
     4.干旱胁迫及复水对草地早熟禾光合生理特性的影响
     在短期或轻度水分胁迫条件下(5 d),草地早熟禾叶片的Fv/Fm和其它的光合组分(Rubisco活性及活化率、Pnmax、CE、Vcmax、Jmax)均没有下降或有小幅降低,而Pn则伴随着gs、Tr和gm的下降而降低,并且Brilliant比Midnight下降速度快。在中度(10 d)到重度(15 d)干旱胁迫下,Rubisco活性及活化率、CE、Fv/Fm、Vcmax、Jmax等均显著下降,并且Brilliant比Midnight下降更剧烈。干旱胁迫解除后,草地早熟禾抗旱品种Midnight叶片的光合参数如Vcmax、Jmax、CE、Pnmax中均恢复到或接近对照水平,但在不抗旱品种Brilliant中均显著低于对照水平,而gs及Pn在两个品种中均未能恢复到对照水平。
     5.干旱胁迫后复水CTKs和KCl对草地早熟禾叶片气孔开度及光合作用的影响
     离体叶片脱水后复水,10μM的6-benzylaminopurine(6-BA)和50 mM的KCl溶液对诱导草地早熟禾离体叶片的气孔再开放效果最佳。草地早熟禾叶片气体交换值(Pn、gs、Tr)及气孔开度均随着土壤含水量和叶片相对含水量的下降而降低。干旱胁迫后复水,经6-BA或KCl处理过的植株其叶片气孔开度及气体交换值(Pn、gs、Tr)均显著高于未处理叶片。干旱胁迫及复水条件下,叶片气体交换值(Pn、gs、Tr)与叶片气孔孔径呈极显著线性相关。
     6.干旱胁迫下草地早熟禾叶片差异表达基因的分离
     利用SSH技术构建了干旱10 d草地早熟禾叶片消减cDNA文库。通过测序后筛选,得到了503条高质量的EST序列。序列组装拼接后分别得到了387个Uni-ESTs,其中contigs 239条和singlets 148条。通过同源性比对,获得了156条与已知功能基因同源或相似的Uni-ESTs,147条与未知功能基因同源或相似的Uni-ESTs,84条未找到同源性。经功能注释和分类后,获得了大量水分胁迫应答基因,这些基因的功能包括代谢、光合、转录、信号传导、细胞防御、细胞结构生长与分裂、运输及其它等。RT-PCR分析表明APX、MDHAR、PhGPX随干旱胁迫程度的加大而表达量上升,而RubS表达量则降低,进一步验证了消减文库的可靠性。
Drought is one of the major abiotic factors limiting plant growth, which induces various changes at the morphologic, physiological, genomic and proteomic levels during adaptation to drought stress in plants. To studying the mechanisms for drought resistance and the adaptation and regulatory mechanisms to drought in plants is crucial for selecting and breeding drought-tolerant cultivars, which could be an important solution to the water shortage and the deterioration of the ecological environment.
     Drought tolerance of eight bermudagrass genotypes were evaluated in this study, and then two types of turfgrass, which genotypes differing in drought tolerance, warm-season turfgrass‘Tifway’(drought-tolerant),‘C299’(drought-sensitive), and cool-season turfgrass‘Midnight’(drought-tolerant),‘Brilliant’(drought-sensitive) were used to investigate photosynthetic response to drought stress. The effects of foliar application of CTKs and KCl on stomatal aperture and photosynthesis after re-watering were examined in Kentucky bluegrass drought-sensitive cultivars. Finally, a subtracted cDNA library was constructed using the approaches of suppression subtractive hybridization (SSH) in leaves of Kentucky bluegrass. A large number of candidate genes which related to drought tolerance were obtained after colony sequencing, BlastX, functional classification and RT-PCR analysis. The main contents and results of this study are as follows:
     1. Evaluation of drought tolerance in different genotypes of bermudagrass
     SDS-PAGE analysis demonstrated that no obvious changes in soluble protein profiles occurred in eight bermudagrass genotypes under mild to moderate drought stress. Severe drought stress led to degradation in soluble proteins in eight bermudagrass genotypes, with more significant degradation in‘C299’and‘Tifeagle’than the other genotypes. No dehydrin polypepides was detected in fully hydrated leaves of well-watered plants. Immunoblot analysis with anti-dehydrin polyclonal antibodies detected one dehydrin polypeptide (24 kDa) in‘C299’but not in other cultivars at 6 d of drought. At 10 d of drought stress, six dehydrin polypeptides of 74, 40, 31, 24, 19, and 14 kDa were detected in eight genotypes. The 74-, 19-, and 14-kDa polypeptides accumulated in all genotypes, and no genotypic differences were observed in the level of expression. The 40-kDa polypeptides had lower expression level in‘C299’,‘Tifdwarf’, and‘Tifeagle’. The31-kDa dehydrin polypeptide was detected only in‘H19’and‘Tifway’, but was not expressed in the other six genotypes. The 24-kDa polypeptides expressed in all genotypes, but the intensity in‘Tifdwarf’,‘Tifeagle’, and‘C299’were higher than in the other genotypes. The drought-resistance of eight bermudagrass genotypes were evaluated base on the TQ, RWC, EL, changes of soluble proteins, and the levels of dehydrin expression, the order were as follows: (‘Tifway’,‘H19’) > (‘H10’,‘Kan 1’,‘Sportbermuda’,‘Tifdwarf’) > (‘Tifeagle’,‘C299’).
     2. Variations in relative water loss rate and expression levels of dehydrin in detached leaves of bermudagrass genotypes differing in drought tolerance
     Drought-tolerant‘Tifway’had a slower RWL than drought-sensitive‘C299’during 7 h of dehydration period. The immunoblot analysis indicated that dehydration induced the accumulation of 74-, 40-, 31, 24-, 19-, and 14 kDa dehydrin polypeptides across the RWL range in both genotypes. The intensity of 74-kDa dehydrin polypeptides was did not change with increasing RWL from 10% to 65% in both‘Tifway’and‘C299’. The intensity of 24-, 19-, and 14-kDa dehydrins increased with RWL from 10% to 65% for both genotypes, but‘C299’had higher expression level than‘Tifway’at the same water deficit. The accumulation of 31-kDa dehydrin was detected in‘Tifway’, but not in‘C299’during dehydration. As RWL increased from 10% to 65%, the intensity of 31-kDa dehydrin increased in‘Tifway’. With the increase in RWL, the intensity of 40-kDa dehydrin proteins was elevated. The accumulation of 40- kDa dehydrin polypeptides in‘Tifway’was more pronounced than in‘C299’at the same level of water deficit (RWL from 10% to 65%).
     3. Variations in photosynthetic physiology for two bermudagrass genotypes differing in drought-tolerance under drought stress
     No reduction was observed for PSII activity in both‘C299’and‘Tifway’under mild drought stress (6 d), while significant decrease was observed for Fv/Fm in both genotypes at 10 and 14 d of drought stress, but to a greater extent for‘C299’. Drought stress led to a significant decrease in photosynthesis, with more dramatic decline in‘C299’than in‘Tifway’.‘Tifway’maintained significantly higher Pn, gs than‘C299’at 6, 10 and 14 d of drought treatment.
     Rubisco activity in‘C299’declined during drought stress to below the well-watered control level at 10 d of treatment, but the decline was not detected until 14 d in‘Tifway’. Analysis using SDS-PAGE demonstrated that no obvious changes in Rubisco (49-kDa large subunit) and PPDK (98-kDa) abundance occurred during drought stress compared with the well-watered control (0 d) in‘Tifway’. Great change was observed in‘C299’for Rubisco and PPDK abundance.
     4. Effects of drought stress and re-watering on photosynthetic components in Kentucky bluegrass
     There was no decline or some reductions in leaf Fv/Fm and other photosynthetic components (Rubisco activity and activation state, Pnmax, CE, Vcmax, Jmax) under short-term or mild drought stress (5 d) in Kentucky bluegrass. Net photosynthetic rate declined with the decreasing of gs, Tr and gm in both‘Midnight’and‘Brilliant’, but to a great extent for ‘Brilliant’. Significant decrease was observed in Rubisco activity, activation state, Pnmax, CE, Vcmax, Jmax, in both cultivars under moderate to severe drought stress, with more dramatic decline in‘Brilliant’than‘Midnight’.
     Photosynthetic parameters such as Vcmax, Jmax, CE, Pnmax were recovered to or close to the well-watered control level in drought-tolerant‘Midnight’after water deficit was alleviated, whereas significantly lower than the well-watered control level for drought-sensitive‘Brilliant’. Leaf Pn and gs were still not recovered to the control level after re-watering in both cultivars.
     5. Effects of CTKs and KCl on stomatal aperture and photosynthesis after re-watering
     10μM of 6-BA and 50 mM KC1 was sufficient for stomatal re-opening in Kentucky bluegrass after rehydration. Leaf Pn, gs, Tr, and stomatal aperture of Kentucky bluegrass decreased with the decreasing of RWC and SWC under drought stress. Leaf Pn, gs, Tr, and stomatal aperture in 6-BA- or KCl-treated plants significantly higher than untreated plants after re-watering. The decrease in the size of stomatal aperture was highly correlated to the decline in Pn, gs, and Tr under drought stress and during re-watering.
     6. Isolation of differentially expressed genes in leaves of Kentucky bluegrass
     A subtracted cDNA library was constructed using SSH approaches, which consist of 503 high quality EST sequences after sequencing. 387 Uni-ESTs were obtained after assembling, which consist of 239 contigs and 148 singlets. BlastX alignment results demonstrated that 156 fragments were homologous with function-known genes, and 147 fragments were homologous with function-unknown genes. The rest 84 ESTs with no hit in published database may represent novel genes. The 156 fragments matched to function-known proteins were further classified into 9 categories, which functions are related to metabolism, protein destination, photosynthesis, transcription, signaling and transduction, cellular defense, cell structure, growth and division, transport, and others. RT-PCR analysis indicated that the expression level of APX, MDHAR, PhGPX increased, whereas the RubS decreased with the progression of drought stress.
引文
[1] Chaves, M.M., Maroco, J.P., Pereira, J.S. Understanding plant responses to drought-from genes to the whole plant. Funct. Plant Biol. 2003, 30:239-264.
    [2] Zhu, J.K. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol. 2002, 53:247-273.
    [3] Seki, M., Kamei, A., Yamaguchi Shinozaki K, Shinozaki, K. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr. Opin. Biotechnol. 2003, 14:194-199.
    [4] Levitt, J. Response of plants to environmental stress. Vol.Ⅱ. 2nd ed. 1980.
    [5]山仑,黄占斌,张岁岐编著.节水农业.北京:清华大学出版社, 2000, 12-13.
    [6]杨敏生,裴保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析.林业科学. 2002, 38(6):36 - 42.
    [7] Carrow, R.N. Drought avoidance characteristics of diverse tall fescue cultivars. Crop Sci. 1996, 36:371-377.
    [8] Salaiz, T.A., Shearman, R.C. Kinbacher, E.J. Creeping bentgrass cultivar water use and rooting response. Crop Sci. 1991, 31:1331-1334.
    [9] Sheffer, K.M., Dunn, J.H., Minner, D.D. Summer drought response and rooting depth of three cool-season turfgrass. Hort Sci. 1987, 22:296-297.
    [10] Liu, Y., Deng, L.Q. The drought resistance of the main tree species in relation with their root characteristics in the western areas of Liaoning province. J. Shengyang Agricul. Univ. 1995, 26(2):171-176.
    [11] Hsiao, T,C., Xu, I.K. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J. Exp. Bot. 2000, 51 (350):1595-1616.
    [12] Huang, B., Gao, H. Root physiological characteristics associated with droughtresistance in tall fescue cultivars. Crop Sci. 2000, 40:196-203.
    [13] Huang, B., Fry, J.D. Root anatomical, physiological, and mophological responses to drought stress for tall fescue cultivars. Crop Sci. 1998, 38:1017-1022.
    [14]杨静慧,杨焕庭.苹果树植物叶片角质层厚度与植物抗旱性.天津农学院学报,1996, 3(3):27-28.
    [15]蒋高明.植物生理生态.北京:高等教育出版社,2004, 191-192.
    [16]韦梅琴,李军乔.委陵菜属四种植物茎叶解剖结构的比较研究.青海师范大学学报. 2003, (3):48-50.
    [17]葛晋纲,蔡庆生,周兴元,等.土壤干旱胁迫对2种不同光合类型草坪草的光合特性和水分利用率的影响.草业科学. 2005, 22:103- 107.
    [18]张宪政,苏正溆.作物水分亏缺伤害生理研究概况.沈阳农业大学学报. 1996, 27(1):85-91.
    [19]马秀芳,沈秀瑛,杨德光,等.不同耐旱性玉米品种对干旱的生理生化反应.沈阳农业大学学报. 2002, 33(3):167-170.
    [20]杨鹏辉,李贵全,郭丽,等.干旱胁迫对不同抗旱大豆品种质膜透性的影响。山西农业科学. 2003, 31(3):23-26.
    [21]葛体达,隋方功,张金政.玉米根、叶质膜透性和叶片水分对土壤干旱胁迫的反应.西北植物学报. 2005, 25(3):507-512.
    [22]冉秀芝.冷季型草坪草抗热抗旱生理生化机理研究[学位论文].西南农业大学, 2003.
    [23]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报. 2001, 18(4):459-465.
    [24]李德全,邹琦,程炳嵩.植物在逆境下的渗透调节.山东农业大学学报. 1989, (2):75-80.
    [25] Kishor, P.B.K., Hong, Z., Miao, G.H., et al. Over expression ofΔ1-pyrroline-5-carboxylate synthetase increases proline products and confers osmo-tolerance in transgenic plants. Plant Physiol. 1995, 108:1387-1394.
    [26] McCue, K.F., Hanson, A.D. Drought and salt tolerance: towards understanding and application. Trends Biotechnol. 1990, 8:358-362.
    [27]钱永生,王慧中.渗透调节物质在作物干旱逆境中的作用.杭州师范学院学报(自然科学版).2006, 5(6):476-481.
    [28]赵可夫.植物抗盐生理专刊.曲阜师院学报. 1984, 34-39.
    [29] Kenonowicz, A.K. Biochemical and cellular mechanisms of stress tolerance in plant. Berlin: Spring-verlag, 1994. 381-414.
    [30] Mcneil, S.D., Nuccio, M.L., Hanson, A.D. Betains and related osmoprotectants. targets for metabolic engineering of stress resistance. Plant Physiol. 1999, 120:945-949.
    [31] Ray, W., Jin, S., Jayaprakash, T. How to obtain optimal gene expression in transgenic plants.北京:第七次基因学术会议,1999. 4.
    [32] Verslues, P.E., Sharp, R.E. Poline accumulation in maize (Zea mays L.) primary roots at low water potentials. Plant Physiol. 1999, 119:1349-1360.
    [33]余叔文,汤章城.植物生理与分子生物学(第二版).北京:科学出版社, 1998, 739-751.
    [34] Papageorgiou, G.C., Murata, N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth. Res. 1995, 44: 243-252.
    [35] Rajendrakumar, C.S.V., Suryanarayana, T., Reddy, A.R. DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett. 1997, 410:201-205.
    [36] Jiang, Y.W., Huang, B. Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky Bluegrass. Crop Sci. 2001, 41:1168-1173.
    [37]王霞,侯平,尹林克.柽柳植物对干旱胁迫的生理响应和适应性的研究.干旱地区研究. 2000, 10(3):13-17.
    [38] Otting, G. protein hydration in apueons solution. Science. 1991, 254:974.
    [39]时忠杰,胡哲森,李荣生.水分胁迫与活性氧代谢.贵州大学学报(农业与生物科学版). 2002, 21(2):140-145.
    [40] Bowler, C., Van, C.W., Van, M.M., et al. Super oxide dismutase in plants. Crit. Rev. plant Sci. 1994, 13:199-218.
    [41]鲍思伟.水分胁迫对蚕豆(Vicia faba L.)光合作用及产量的影响.西南师范大学学报(自然科学版). 2001, 27(4):446-449.
    [42]罗华建,刘星辉.水分胁迫对枇杷光合特性的影响.果树科学. 1999, 16(2):126-130.
    [43] Earl, H.J. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ. Exper. Bot. 2002, 48(3):237-246.
    [44]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学. 2005, 25(4):80-85.
    [45]陈贵,周毅,郭世伟,等.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究.中国农业科学. 2007, 40(10):2162-2168.
    [46]胡梦芸,张正斌,徐萍,等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究.作物学报. 2007, 33(11):1884-1891.
    [47]汤章城.植物干旱生态生理的研究.生态学报. 1983a, 3(3):196-204.
    [48] Wang, Z., Huang, B. Genotypic variation in abscisic acid accumulation, water relations, and gas exchange for Kentucky bluegrass exposed to drought stress. J. Am. Soc. Hortic. Sci. 2003, 128:349-355
    [49] Wang, Z., Huang, B., Stacy, S.A., et al. Abscisic acid accumulation in relation to drought tolerance in Kentucky Bluegrass. Hortscience. 2004, 39(5):1133-1137.
    [50]王少先,彭克勤,萧浪涛,等。逆境下ABA的积累及触发机制。植物生理学通讯. 2003, 10(39):413-419.
    [51]汤章城.植物对水分胁迫的反应和适应性Ⅱ:植物对干旱的反应和适应性.植物生理学通讯. 1983, 3(4):1-7.
    [52]赵领军,赵善仓.干旱胁迫下苹果根系内源激素含量的变化.山东农业科学. 2007, 2:48-49.
    [53]王清泉,陈云,谢虹,等.干旱和氮素交互作用对玉米叶片水势、气孔导度及根部ABA与CTK合成的影响.中国农学通报. 2004, 20(3):20-23.
    [54]赵文魁,童建华,谢深喜,等.干旱胁迫对枳橙内源激素含量的影响.现代生物医学进展. 2008, 8(9):1662-1664.
    [55]李玉梅,李建英,王根林,等.水分胁迫对大豆幼苗叶片内源激素的影响.大豆科学. 2007, 26(4):627-626.
    [56]卢萍,卢青,杜荣骞. LEA基因及Lea蛋白的研究进展.内蒙古师大学报. 1999, 28(2):138-141.
    [57]张林生,赵文明. LEA蛋白与植物的抗旱性.植物生理学通讯. 2003, 39(1):61-66.
    [58]赖钟雄,张妙霞,李冬梅,等.植物LEA蛋白与Lea基因表达.福建农林大学学报(自然科学版). 2002, 31(4):463-466.
    [59] Chrispeels, M.J., Maurel, C. Aquaporins: The molecular basis of facilitated water movement through living plant cells? Plant Phyiol. 1994, 105:9-13.
    [60] Quintero, J.M., Fournier, J.M., Benlloch, M. Water transportin sunflower root systems effects of ABA , Ca+ status and HgCl2. J. Exp. Bot. 1999, 339:1607-1612.
    [61]何宝坤,李德全.植物渗调蛋白的研究进展.生物技术通报. 2002, 2:6-10.
    [62]陈忠,苏维埃,汤章城.植物热激蛋白.植物生理学通讯. 2000,36(4):289-296.
    [63]郭沿敬,陈娜,孟庆伟.叶绿体小分子量热激蛋白介绍.植物学通报. 2005, 22(2):223-230.
    [64] ParselI, D.A.,Lindquist, S. The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged protein. Annu. Rev. Crenet. 1993, 27:437-496.
    [65] Davies, W.J., Zhang, J. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Boil. 1991, 42:55-76.
    [66] Shinozaki, K., Shinozaki, K.Y. Gene expression and signal transduction in water stress response. Plant Physiol. 1997, 115:327-334.
    [67] Pla, M., Gomez, J., Goday, A., et al. Regulation of the abscisic acid responsive gene rap28 in maize viviparous mutants. Mol. Gen. Genet. 1991, 230:394-300.
    [68] Urao, T.,Yamaguchi-Shinozaki, K.,Urao, S. An Arabidopsis MYB homolog is induced by dehydration stress and its gene-product binds to the conserved MYB recognition sequence. Plant Cell. 1993, 5(11):1529-1539.
    [69] Holmberg, N. Improving stress tolerance in plants by gene transfer. Trends Plant Sci. 1998, (3):1361-1366.
    [70] Shi, W.M., Muramoto, Y., Ueda, A., et al. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene. 2001, 273 (1):23-27.
    [71] Zhang, H., Wang, J., Nickel, U., et al. Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol. Biol. 1997, 34(6):967-971.
    [72]马长乐,王萍萍,曹子谊,等.盐地碱蓬(suaeda salsa)APX基因的克隆及盐胁迫下的表达.植物生理与分子生物学报. 2002, 28(4):261-266.
    [73] Close, T.J., Meyer, N.C., Radik, J. Nucleotide sequence of a gene encoding a 58.52 kilodalton barley dehydrin that lacks a serine tract. Plant Physiol. 1995, 107 (1):289-290.
    [74] Campbell, S.A., Crone, D.E., Ceccardi, T.L., et al. A ca.40 kDa maize (Zea mays L.) embryo dehydrin is encoded by the dhn2 locus on chromosome 9. Plant Mol. Biol. 1998, 38(3):417-423.
    [75] Welin, B.V., Olson, A., Nylander, M., et al. Characterization and differential expression of dhn/ lea/ rab2like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol. Biol. 1994, 26(1):131-144.
    [76]俞嘉宁,山仑. LEA蛋白与植物的抗旱性.生物工程进展. 2002, 22(2):10-14.
    [77]王子宁,张劲松,郭北海,等.小麦Na+/H+反转运蛋白基因的克隆和特性.植物学报. 2002, 44(10):1203-1208.
    [78] Fukuda, A., Nakamura, A., Tanaka, Y. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza Sativa. Biochem. Biophys. Acta. 1999, 1446:148-155.
    [79] Gaxiola, R.A., Rao, R., Sherman, A., et al. The Arabidopsis thaliana proton transporters AtNhx1 and Avp1 can function in cation detoxifyication in yease. Proc. Natl. Acad. Sci. 1999, 96:1480-1485.
    [80] Wu, S.J., Ding, L., Zhu, J.K. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell. 1996, 8:287-293.
    [81] Bray, E.A. Molecular responses to water deficit. Plant Physiol. 1993, 103:1035-1040.
    [82] Shinozaki, K., Yamaguchi-Shinozaki, K. Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 1996, 2(2):161-167.
    [83] Shinozaki, K., Yamaguchi-Shinozaki, K. Gene expression and signal transduction in water-stress response. Plant Physiol. 1997, 115:327-334.
    [84]刘欣,李云.转录因子与植物抗逆性研究进展.中国农学通报. 2006, 22(4):61-65.
    [85]项鹏.基因表达差异显示方法研究进展.国外医学临床生物化学与检验学分册. 2001, (22)4:179-181.
    [86]陆海,张建秋,张玉玲,等.一种优化的mRNA差异显示技术分析白刺盐碱胁迫表达相关基因研究.成都大学学报(自然科学版). 2004, 23(2).
    [87]安健,汪明,王黎霞,等. mRNA差异显示PCR的研究进展.北京农学院学报. 2005, 20(2):64-68.
    [88] von der Kammer, H., Mayhaus, M., Hoffmann, B., et al. Identification of genes regulated by muscarinic acetylcholine receptors: application of an improved and statistically comprehensive mRNA differential display technique. Nucleic Acids Res. 1999, 27(10):2211-2218.
    [89]肖华胜,黄文晋.降低差异显示PCR假阳性和提高重复性的几种策略.生物化学与物理进展. 1999, 26(5):437-438.
    [90]王栋.应用mRNA差异显示技术研究鸡肉用性状杂种分子优势分子遗传机理[博士学位论文].中国农业大学, 2003.
    [91]杨林,袁爱力,李勇,等.一种基因克隆的新策略-cDNA的代表性差异分析法.国外医学遗传学分册. 1998, 21(3):113-116.
    [92]韩斌,彭建营. cDNA-AFLP技术及其在植物基因表达研究中的应用.西北植物学报. 2006, 26(8):1753-1758.
    [93]王锋. cDNA-AFLP技术原理及其在研究植物基因差异表达中的应用.生物学通报. 2005, 40(7):59-60.
    [94]郭秀林,张正斌,李景娟,等. cDNA-AFLP技术在植物抗逆性相关基因表达研究中的应用.西北农林科技大学学报(自然科学版). 2006, 34(11):87-92.
    [95] Adams, M.D., Kelley, J.M., Gocayne, J.D., et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991,252:1651-1656.
    [96] Diatchenko, L., Lau, Y.F.C., Campbell, A.P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA. 1996, 93:6025-6030.
    [97]陆秋恒,罗志勇.抑制消减杂交(SSH)技术及在克隆基因方面的最新进展.国外医学分子生物学分册. 2001, 23(6):380-383.
    [98] Von Stein, O.D., Thies, W.G., Hofmann, M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res. 1997, 25(13): 2598-2602.
    [99] Schena, M., Shalon, D., Dais, R.W. Quantitative monitoring of gene expression patterns with a complementary DNA Microarray. Science. 1995, 270:467-469.
    [100]郑琳,赵明光,毕玉蓉. cDNA微阵列技术:一种有效的差别表达基因克隆新方法.生命的化学. 2003, 23(1):73-75.
    [1]庄丽,陈亚宁,陈明,等.模糊隶属法在塔里木河荒漠植物抗旱性评价中的应用.干旱区地理. 2005, 28(3):368-371.
    [2]张鹤山,张德罡,刘晓静,等.灰色关联度分析法对不同处理下草坪质量的综合评判.草业科学. 2007, 24(11):73-76.
    [3]李禄军,蒋志荣,李正平,等. 3树种抗旱性的综合评价及其抗旱指标的选取.水土保持研究. 2006, 13(6):252-254.
    [4] Carrow, R.N. Drought resistance aspects of turfgrasses in the southeast: evapotranspiration and crop coefficients. Crop Sci. 1995, 35:1685-1690.
    [5] Carrow, R.N. Drought resistance aspects of turfgrasses in the southeast: root-shoot responses. Crop Sci. 1996, 36:687-694.
    [6] Huang, B., Duncan, R.R, Carrow, R.N. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: II. Root aspects. Crop Sci. 1997, 7:1863-1869.
    [7] Huang, B., Duncan, R.R, Carrow, R.N. Drought-resistance mechanism of seven warm-season turfgrasses under surface soil drying: I. Shoot response. Crop Science. 1997, 37:1858-1863.
    [8] Qian, Y, Fry, J.D., Upham, W.S. Rooting and drought avoidance of warm-season turfgrasses and Tall Fescue in Kansas. Crop Sci. 1997, 37:905-910.
    [9]卢少云,陈斯平,陈斯曼,等.三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的反应.园艺学报. 2003, 30(3):303-306.
    [10] Jiang, Y., Huang, B. Drought and heat stress injury to two cool-season Turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 2001, 41:436-442.
    [11] Fu, J., Huang, B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 2001, 45:105-114.
    [12] Wang, Z., Huang, B., Xu, Q. Effects of abscisic acid on drought resistance of Kentucky bluegrass. J. Am. Soc. Hortic. Sci. 2003, 128(1):36-41.
    [13] Wang, Z., Huang, B., Bonos, S.A., et al. Abscisic acid accumulation in relation to drought tolerance in Kentucky bluegrass. HortScience. 2004, 39(5):1133-1137.
    [14]王赞,吴彦奇,毛凯.狗牙根研究进展.草业科学. 2001, 18(5):37-41.
    [15] Close, T.J., Fenton, R.D., Moonan, F. A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol. Biol.1993, 23:279-286.
    [16] Close, T.J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 1996, 97:795-803.
    [17] Lopez, C.G., Banowetz, G.M., Peterson, C.J., et al. Wheat dehydrin accumulation in response to drought stress during anthesis. Funct. Plant Biol. 2002, 29:1417-1425.
    [18] Lopez, C.G., Banowetz, G.M., Peterson, C.J., et al. Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci. 2003, 43:577-582.
    [19] Jiang, Y., Huang, B. Protein alterations in response to water stress and ABA in Tall fescue. Crop Sci. 2002, 42:202-207.
    [20] Lopez, C.G., Banowetz, G.M., Peterson, C.J., et al. Differential accumulation of a 24-kDa dehydrin protein in wheat seedlings correlates with drought stress toleranceat grain filling. Hereditas. 2001, 135:175-181.
    [21] Olave-Concha, N., Bravo, L.A. Differential accumulation of dehydrin-like proteins by abiotic stresses in Deschampsia Antarctica Desv. Polar Biol. 2005, 28:506-513.
    [22] Beck, E.G., Fettig, S., Knake, C., et al. Specific and unspecific responses of plant to cold and drought stress. J. Biosci. 2007, 32:501-510.
    [23]陈谷,马其东. NTEP评价体系在草坪草评价中的应用.草业科学, 2000, 17(1):62-69.
    [24] http://www.ntep.org/reports/kb05/kb05_09-10/kb05_09-10.htm
    [25] Li, R., Volenec, J.J., Joern, B.C., et al. Seasonal changes in nonstructural carbohydrates, protein, and macronutrients in roots of alfalfa, red clover, sweetclover, and birdsfoot trefoil. Crop Sci. 1996, 36:617-623.
    [26] Patton, A.J., Cunningham, S.M., Volenec, J.J., et al. Difference in freeze tolerance of zoysiagrasses: I. Role of proteins. Crop Sci. 2007, 47:2162-2169.
    [27] Fedro, S.Z., Grady, L.M., Zhang, W. Reduced irrigation of St. Augustine grass turfgrass in the tampa bay area. Gainesville: University of Florida Extension, 2000.
    [28] Wang, Z., Huang, B., Genotypic variation in abscisic acid accumulation, water relations, and gas exchange for Kentucky Bluegrass exposed to drought stress. J. Am. Soc. Hortic. Sci. 2003, 128(3):349-355.
    [29]郑玉红,蔡庆生,刘建秀.水分胁迫对几种假俭草的影响.草地学报. 2005, 13(2):102-105.
    [30]李存焕,耿玉东.沟叶结缕草草坪质量与水热因子的关系.草业科学. 2002, 19 (5):67-69.
    [31]周兴元,曹福亮,陈国华.两种暖季型草坪禾草对土壤持续干旱胁迫的生理反应.草业学报. 2004, 13(1):84-88.
    [32]阿力木·沙比尔,阿不来提·阿不都热依木,齐曼·尤努斯. 6份新疆狗牙根抗旱性比较.新疆农业大学学报. 2008, 31(2):17-21.
    [33]任丽花,王义祥,翁伯琦,等.土壤水分胁迫对圆叶决明含水量和光合特性的影响.厦门大学学报(增刊). 2005, 44:28-31.
    [34]马秀芳,沈秀瑛,杨德光,等.不同耐旱性玉米品种对干旱的生理生化反应.沈阳农业大学学报. 2002, 33(3):167-170.
    [35]杨鹏辉,李贵全,郭丽,等。干旱胁迫对不同抗旱大豆品种质膜透性的影响。山西农业科学. 2003, 31(3):23-26.
    [36]袁佐清.不同玉米自交系抗旱性生理指标的研究.山东理工大学学报. 2004, 18(6):25-28.
    [37]刘成,申海兵,石云素,等.开花期干旱胁迫对玉米细胞膜透性、抗脱水性和产量的影响.新疆农业科学. 2008, 45(3):418-422.
    [38]白景文,罗承德,李西,等.两种野生岩生植物的抗旱适应性研究.四川农业大学学报. 2005, 23(3):290-294.
    [39]康俊梅,杨青川,樊奋成.干旱对苜蓿叶片可溶性蛋白的影响.草地学报. 2005, 13(3):199-202.
    [40]徐民俊,刘桂茹,杨学举,等.水分胁迫对抗旱性不同冬小麦品种可溶性蛋白质的影响.干旱地区农业研究. 2002, 20(3):85-92.
    [41]刘娥娥,汪沛洪,郭振飞.植物的干旱诱导蛋白.植物生理学通讯. 2001, 37 (2):155-160.
    [42]孙存华,杜伟,徐新娜,等.干旱胁迫对藜叶片干旱诱导蛋白的影响.干旱地区研究. 2009, 26(3):371-376.
    [43]石峰,谢惠民,张晓科.冬小麦不同抗旱品种抽穗期干旱诱导蛋白差异与抗旱性的研究.麦类作物学报. 2005, 25(3):32-36.
    [44] Hong, B., Barg, R., Ho, D.T. Developmental and organ specific expression of an ABA and stress induced protein in barley. Plant Mol. Biol. 1992, 18:663-674.
    [45]赖钟雄,张妙霞,李冬梅,等.植物LEA蛋白与Lea基因表达.福建农林大学学报(自然科学版). 2002, 31(4):463-466.
    [46] Volaire, F., Geneviève, C., Fran?ois, L. Drought survival and dehydration tolerance in Dactylis glomerata and Poa bulbosa. Aust. J. Plant Physiol. 2001, 28:743-754.
    [47] Muthalif, M.M., Rowland, L.J. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus). Plant Physiol. 1994, 104:1439-1447.
    [48] Arora, R., Rowland, L.J., Panta, G.R. Chill-responsive dehydrins in blueberry: are they associated with cold hardiness or dormancy transitions? Physiol. Plant. 1997, 101:8-1016.
    [49] Rorat, T. Plant dehydrins-tissue location, structure and function. Cell. Mol. Biol. Lett. 2006, 11:536-556.
    [50] Olave-Concha, N., Bravo, L.A. Differential accumulation of dehydrin-like proteins by abiotic stresses in Deschampsia Antarctica Desv. Polar Biol. 2005, 28:506-513.
    [51]陆岚和.作物抗旱性鉴定方法与指标研究进展.山西农业科. 1999, 27(4):39-63.
    [1]王忠.植物生理学.北京:中国农业出版社, 2000.
    [2] Clarke, J.M., Romagosa, I., Jana, S., et al. Relationship of excised leaf water loss rateand yield of durum in diverse environments. Can. J. Plant Sci. 1999, 69:1075-1081.
    [3] Clarke, J.M., Richards, R.A., Condon, A.G. Effect of drought stress on residual transpiration and its relationship with water use of wheat. Can. J. Plant Sci. 1991, 71:695-702.
    [4]万超文,李舒凡.持续水分胁迫对大豆鼓粒期抗旱性及籽粒品质的影响.植物遗传资源学报. 2000, 2:9-14.
    [5]赵微平.小麦的抗旱性.见:小麦生理与分子生物学.北京:北京农业大学出版社. 1993, 67-68.
    [6]刘学义.全国第十届大豆科研生产座谈会材料. 1995, 30-31.
    [7]兰巨生.对离体叶片失水率作为小麦抗旱性指标的评价.华北农学报. 1997, 12(4):52-56.
    [8]赖钟雄,张妙霞,李冬梅,等.植物LEA蛋白与Lea基因表达.福建农林大学学报(自然科学版). 2002, 31(4):463-466.
    [9] Huang, B., Gao, H. Physiological responses of diverse tall fescue cultivars to drought stress. Hort Science.1999, 34(5):897-901.
    [10] Huang, B., Gao, H. Root physiological characteristics associated with drought resistance in tall fescue cultivars. Crop Sci. 2000, 40(1):196-203.
    [11] Wang, Z., Huang, B. Genotypic variation in abscisic acid accumulation, water relations, and gas exchange for Kentucky Bluegrass exposed to drought stress. J. Am. Soc. Hortic. Sci. 2003, 128(3):349-355.
    [12] Jiang, Y., Huang, B. Protein alterations in response to water stress and ABA in Tall fescue. Crop Sci. 2002, 42:202-207.
    [13] Fu, J., Huang, B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 2001, 45:105-114.
    [14] Wang, Z., Huang, B., Xu, Q. Effects of abscisic acid on drought resistance of Kentucky bluegrass. J. Am. Soc. Hortc. Sci. 2003, 128(1):36- 41.
    [15] Wang, Z., Huang, B., Bonos, S.A., et al. Abscisic acid accumulation in relation to drought tolerance in Kentucky bluegrass. HortScience. 2004, 39(5):1133-1137.
    [16] Jiang, Y., Huang, B. Drought and heat stress injury to two cool-season Turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci. 2001, 41:436-442.
    [17]卢少云,陈斯平,陈斯曼,等.三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的反应.园艺学报. 2003, 30(3):303-306.
    [18] Ristic, Z., Jenks, M.A. Leaf cuticle and water loss in maize lines differing in dehydration avoidance. J. Plant Physiol. 2002, 159:645-651.
    [19] Li, R., Volenec, J.J., Joern, B.C., et al. Seasonal changes in nonstructural carbohydrates, protein, and macronutrients in roots of alfalfa, red clover, sweetclover, and birdsfoot trefoil. Crop Sci. 1996, 36:617-623.
    [20] Patton, A.J., Cunningham, S.M., Volenec, J.J., et al. Difference in freeze tolerance of zoysiagrasses: I. Role of proteins. Crop Sci. 2007, 47:2162-2169.
    [21]魏永胜,梁宗锁,山仑,等.利用隶属函数值法评价苜蓿抗旱性.草业科学. 2005, 22(6):33-36.
    [22]胡化广,刘建秀,宣继萍,等.结缕草属植物的抗旱性初步评价.草业学报. 2007, 16(1):47-51.
    [23] Golestani Araghi, S., Assad, M.T. Evaluation of four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica. 1998, 103:293-299.
    [24]李舒凡,邵桂花.大豆抗旱性鉴定方法的探讨与评价.作物杂志. 1992, 1:30-31.
    [25]李德全,郭清福.冬小麦抗旱生理特性的研究.作物学报. 1993, 19(2):125-131.
    [26]王宪泽.作物抗旱育种生理生化指标的研究.中国农学通报. 1994, 10(5):5-8.
    [27] Yang, R.C., Jana, S., Clarke, J.M. Phenotypic diversity and associations of some potentially drought-responsive characters in durum wheat. Crop Sci. 1991, 31:1484-1491.
    [28]徐宗才,田丰,刘云.不同品种马铃薯叶片生理特性与抗旱性研究.干旱地区农业研究. 2008, 26(5):153-155.
    [29]张明生,彭忠华,谢波,等.甘薯离体叶片失水速率及渗透调节物质与品种抗旱性的关系.中国农业科学. 2004, 37(1):152-156.
    [30] Hong, B., Barg, R., Ho, D.T. Developmental and organ specific expression of an ABA and stress induced protein in barley. Plant Mol. Biol. 1992, 18:663-674.
    [31]赖钟雄,张妙霞,李冬梅,等.植物LEA蛋白与Lea基因表达.福建农林大学学报(自然科学版). 2002, 31(4):463-466.
    [32] Close, T.J., Fenton, R.D., Moonan, F. A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol. Biol. 1993, 23: 279-286.
    [33] Lopez, C.G., Banowetz, G.M., Peterson, C.J., et al. Wheat dehydrin accumulation in response to drought stress during anthesis. Funct. Plant Biol. 2002, 29:1417-1425.
    [34] Lopez, C.G., Banowetz, G.M., Peterson, C.J., et al. Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci. 2003, 43:577-582.
    [35] Lopez, C.G., Banowetz, G.M., Peterson, C.J., et al. Differential accumulation of a 24-kDa dehydrin protein in wheat seedlings correlates with drought stress tolerance at grain filling. Hereditas. 2001, 135:175-181.
    [1] Kallarackal, J., Milbum, J.A., Baker, D.A. Water relations of banana. III, Effects of controlled water stress on water potential, transpiration, photosynthesis and leaf growth. Aust. J. Plant Physiol. 1990, 1:79-90.
    [2] Lawlor, D.W., Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002, 25(2):275-295.
    [3] Cornic, G. Drought stress inhibits photosynthesis by decreasing stomata aperture–not by affecting ATP synthesis. Trends Plant Sci. 2000, 5:187-188.
    [4] Long, S.P., Humphries, S., Falkowski, P.G. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994, 45:633-662.
    [5] Giardi, M.T., Geiken, B., Kucera, T., et al. Long-term drought stress induces structural and functional reorganization of photosystem II. Planta. 1996, 199(1):118-125.
    [6] Medrano, H., Parry, M.A.J., Socias, X., et al. Long term water stress inactivates Rubisco in subterranean clover. Ann. Appl. Biol. 1997, 131:491-501.
    [7] Earl, H.J. Stomatal and non–stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ. Exp. Bot. 2002, 48:237-236.
    [8] Flexas, J., Bota, J., Loreto, F., et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 2004, 6:269-279.
    [9] Souza, R.P., Machado, E.C., Silva, J.A.B., et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 2004, 451:45-56.
    [10] Lawson, T., Oxborough, K., Morison, J.L., et al. The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. J. Exp. Bot. 2003, 54(388):1743-1752.
    [11] Cheng, L., Fuchigami, L.H. Rubisco activation state decreases with increasing nitrogen content in apple leaves. J. Exp. Bot. 2000, 51(351):1687-1694.
    [12] Li, R., Volenec, J.J., Joern, B.C., et al. Seasonal changes in nonstructural carbohydrates, protein, and macronutrients in roots of alfalfa, red clover, sweetclover, and birdsfoot trefoil. Crop Sci. 1996, 36:617-623.
    [13] Patton, A.J., Cunningham, S.M., Volenec, J.J., et al. Difference in freeze tolerance of zoysiagrasses: I. Role of proteins. Crop Sci. 2007, 47:2162-2169.
    [14] Canaani, C., Havaux, M., Malkin, S. Hyroxylamine, hydrazine and methylamine donate electrons to the photo-oxidizing side of PSII in leaves inhibited in oxygen evolution due to water stress. Biochim. Biophys. Acta. 1986, 851:151-155.
    [15] He, J., Wang, J., Liang, H. Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol. Plant. 1995, 93:771-777.
    [16] Lu, C.M., Zhang, J.H. Effects of water stress on photosynthesis II photochemistry and its thermostability in wheat plants. J. Exp. Bot. 1999, 50:1199-1206.
    [17] Pieters, A.J., Souki, S.E. Effects of drought during grain filling on PSII activity in rice. J. Plant Physiol. 2005, 162:903-911.
    [18] Saccardy, K., Pineau, B., Roche, O., et al. Photochemical efficiency of photosystem II and xanthophyll cycle components in Zea mays leaves exposed to water stress and high light. Photosynth. Res. 1998, 56:57-66.
    [19] Baker, N.R., Bowyer, J.R. Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. BIOS Scientific Publishers, Oxford. 1994.
    [20] Lundqvist, T., Schneider, G. Crystal structure of activated ribulose-1,5-bisphosphate carboxylase complexed with its substrate, ribulose-1,5-bisphosphate. J. Biol. Chem. 1991, 266:12604-12611.
    [21]熊晓然,陈蔚梅,冯胜彦,等.植物Rubisco活性中心的模拟分析.中国生物化学与分子生物学报. 2003, 19(4):493-498.
    [22] Ashida, H., Danchin, A., Yokota, A. Was photosynthetic Rubisco recruited by acquisitive evolution from Rubisco like proteins involved in sulfur metabolism? Res Microbiol. 2005, 156:611-618.
    [23]薛菘,汪沛洪.水分胁迫对冬小麦CO2同化作用的影响.植物生理学报. 1992, l8(1):l-7.
    [24] Flexas, J., Medrano, H. Drought-inhibition of photosynthesis in C3 plants: stomatal and no-stomatal limitations revised. Ann. Bot. 2002, 89:183-189.
    [25] Bota, J., Medrano, H., Flexas, J. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol. 2004, 162: 671-681.
    [26] Majumdar, S., Ghosh, S., Glick, B.R., et al. Activities of chlorophyllase, phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase in the primary leaves of soybean during senescence and drought. Physiol. Plant. 1991, 81:917-924.
    [27] Parry, M.A.J., Andralojc, P.J., Khan, S., et al. Rubisco activity: effects of drought stress. Ann. Bot. 2002, 89:833-839.
    [28] Lal, A., Edwards, G.E. Analysis of inhibition of photosynthesis under water stress in the C4 species Amaranthus cruentus and Zea mays: electron transport, CO2 fixation and carboxylation capacity. Aust. J. Plant Physiol. 1996, 23:403-412.
    [29] Pankovic, D., Sakac, Z., Kevresan, S., et al. Acclimation to long term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism. J. Exp. Bot. 1999, 50:127-138.
    [30] Edwards, G.E., Nakamoto, H., Burnell, J.N., et al. Pyruvate, Pi dikinase and malate dehydrogenase in C4 photosynthesis: properties and mechanism of light/dark regulation. Ann. Rev. Plant Physiol. 1985, 36:255-286.
    [31] Moons, A., Valcke, R., Montagu, M.V. Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3plant. Plant J. 1998, 1:89-98.
    [32] Chaves, M.M. Effects of water deficits on carbon assimilation. J. Exp. Bot. 1991, 42:1-16.
    [33] Quick, W.P., Chaves, M.M., Wendler, R., et al. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Environ. 1992, 15:25-35.
    [34]许大全.光合作用测定及研究中一些值得注意的问题.植物生理学通讯. 2003, 39(5):493-495.
    [35]胡美君,郭延平,沈允钢,等.柑橘属光合作用的环境调节.应用生态学报. 2006, 17(3):535-540.
    [36] Dai, J., Gao, H., Dai, Y., et al. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biol. 2004, 6: 171-177.
    [37] Flexas, J., Ribas-Carbo, M., Bota, J., et al. Decreased Rubisco activity during water stress in not induced by decreased relative water content but related to condition of low stomatal conductance and chloroplast CO2 concentration. New Phytol. 2006, 172:73-82.
    [38]关义新,戴俊英.土壤干旱下玉米叶片游离脯氨酸的累积及其与抗旱性的关系.玉米科学. 1996, 4 (1): 43-45.
    [39]钱莲文,郭建宏,杨智杰.干旱胁迫对常绿杨光合特性及生长量的影响.福建林学院学报. 2009, 29(1):57-61.
    [1] Lawlor, D.W., Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002, 25(2):275-295.
    [2] Cornic, G. Drought stress inhibits photosynthesis by decreasing stomata aperture–not by affecting ATP synthesis. Trends Plant Sci. 2000, 5:187-188.
    [3] Long, S.P., Humphries, S., Falkowski, P.G. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994, 45:633-662.
    [4] Giardi, M.T., Cona, A., Geiken, B., et al. Long-term drought stress induces structural and functional reorganization of photosystem II. Planta. 1996, 199:118-125.
    [5] Medrano, H., Parry, M.A.J., Socias, X., et al. Long term water stress inactivates Rubisco in subterranean clover. Ann. Appl. Biol. 1997, 131:491-501.
    [6] Flexas, J., Bota, J., Loreto, F., et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 2004, 6:269-279.
    [7] Katul, G., Leuning, R., Oren, R. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ. 2003, 26: 339-350.
    [8] Monti1, A., Brugnoli, E., Scartazza, A., et al. The effect of transient and continuous drought on yield, photosynthesis and carbon isotope discrimination in sugar beet (Beta vulgaris L.). J. Exp. Bot. 2006, 57(6):1253-1262.
    [9] Wang, Z., Huang, B. Genotypic variation in abscisic acid accumulation, water relations, and gas exchange for Kentucky bluegrass exposed to drought stress. J. Am. Soc. Hortic. Sci. 2003, 128:349-355.
    [10] Wang, Z., Huang, B., Stacy, S.A., et al. Abscisic acid accumulation in relation to drought tolerance in Kentucky Bluegrass. Hortscience. 2004, 39(5):1133-1137.
    [11] Farquhar, G.D., von Caemmerer, S., Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 1980, 149:78-90.
    [12] Farquhar, G.D., Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33:317-345.
    [13] Herrera, A., Tezara, W., Marín, O., et al. Stomatal and non-stomatal limitations of photosynthesis in trees of a tropical seasonally flooded forest. Physiol. Plant. 2008, 134:41-48.
    [14] Jacob, J., Lawlor, D.W. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. J. Exp. Bot. 1991, 42:1003-1011.
    [15] Earl, H.J. Stomatal and non–stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ. Exp. Bot. 2002, 48:237-236.
    [16] Souza, R.P., Machado, E.C., Silva, J.A.B., et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 2004, 451:45-56.
    [17]许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯. 1997, 33 (4):241-244.
    [18] Coley, P.D. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol. Monogr. 1983, 53(2):209-233.
    [19] Walting, J.R., Press, M.C., Quick, W.P. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant Physiol. 2000,123(3):1143-1152.
    [20] Keles, Y., Oncei, I. Response of anti-oxidative defense system to temperature andwater stress combinations in wheat seedlings. Plant Sci. 2002, 163:783-790.
    [21] Reddy, A.R., Chaitanya, K.V., Jutur, P.P., et al. Differential anti-oxidative responses to water among five mulberry (Morus alba L.) cultivars. Environ. Exp. Bot. 2004, 52:33-42.
    [22] Asada, K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photos. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50:601-639.
    [23] Lima, A.L.S., Damatta, F.M., Pinheiro, H.A. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ. Exp. Bot. 2002, 47:239-247.
    [24] Souza, R.P., Machado, E.C., Silva, J.A.B., et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 2004, 51:45-56.
    [25]柯世省.干旱胁迫对夏蜡梅光合特性的影响.西北植物学报. 2007, 27(6):1209-1215
    [26]林祥磊,许振柱,王玉辉,等.羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟.生态学报. 2008, 28(10):4718-1723.
    [27] Plaut, Z., Butow, B.J., Blumenthal, C.S., et al. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Res. 2004, 86:185-198.
    [28] Shah, N.H., Paulsen, G.M. Interaction of drought and high temperature on photosynthesis and grain filling of wheat. Plant Soil. 2003, 257:219-226.
    [29] Wilson, K.B., Baldocchi, D.D., Hanson, P.J. Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. Plant Cell Environ. 2001, 24:571-583.
    [1] Schurr, U.,Gollan, T., Schulze, E.D. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant Cell Environ. 1992, 15:561-567.
    [2] Cohen, A., Bray, E.A. Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta. 1990, 182:27-33.
    [3] Lawlor, D.W., Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002, 25(2):275-295.
    [4] Cornic, G. Drought stress inhibits photosynthesis by decreasing stomata aperture–not by affecting ATP synthesis. Trends Plant Sci., 2000, 5:187-188.
    [5] Parkhurst, D.F. Diffusion of CO2 and other gases inside leaves. New Phytol. 1994,126:449-479.
    [6] Maherali, H., Reid, C.D., Polley, H.W., et al. 2002. Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant Cell Environ. 2002, 25:557-566.
    [7] Outlaw, W.H. Jr., Manchester, J. Guard cell starch concentration quantitatively related to stomatal aperture. Plant Physiol. 1979, 64:79-82.
    [8] Outlaw, W.H. Jr. Current concepts on the role of potassium in stomatal movements. Physiol. Plant. 1983, 59:302-311.
    [9] Schroeder, J.I., Ward, J.M., Gassmann, W. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants. Ann. Rev. Biophys. Biomol. Struct. 1994, 23:441-471.
    [10] Blatt, M.R. Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell. Dev. Biol. 2000, 16:221-241.
    [11] Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M., Waner, D. Guard cell signal trausduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52:627-658.
    [12] Humble, G.D., Hsiao, T.C. Specific requirement of potassium for light-activated opening of stomata in epidermal strips. Plant Physiol. 1969, 44(2):230-234.
    [13] Wilson, J.A., Ogunkanmi, A.B., Mansfield, T.A. (1978) Effects of external potassium supply on stomatal closure induced by abscisic acid. Plant Cell Environ. 1978, 1:199-201.
    [14] Raghauendra, A.S. Chloride and nitrate stimulate stomatal opening and decrease potassium uptake and malate production in epidermal tissues of Commelina benghalensis. Aust. J. Plant Physiol. 1980, 7:663-669.
    [15] Morsucci, R., Curvetto, N., Delmastro, S. Involvement of cytokinins and adenosine 3',5'-cyclic monophosphate in stomatal movement in Vicia faba. Plant Physiol. Biochem. 1991, 29:537-547.
    [16] Pharmawati, M., Billington, T., Gehring, C.A. Stomatal guard cell responses tokinetin and natriuretic peptides are cGMP-dependent. Cell Mol. Life Sci. 1998, 54:272-276.
    [17] Pospí?ilová, J. Participation of phytohormones in the stomatal regulation of gas exchange during water stress. Biol. Plant., 2003, 46:491-506.
    [18] Rulcová, J., Pospí?ilová, J. Effect of benzylaminopurine on rehydration of bean plants after water stress. Biol. Plant. 2001, 44:75-81.
    [19] Blackman, P.G., Davies, W.J. The effect of cytokinins and ABA on stomatal behaviour of maize and Commelina. J. Exp. Bot. 1983, 34:1619-1626.
    [20] Pospí?ilová, J., Rulcová, J., Vomá?ka, L. Effect of benzyladenine and hydroxybenzyl adenosine on gas exchange of bean and sugar beet leaves. Biol. Plant. 2001, 44:523-528.
    [21] Mohammadkhani, N., Heidari, R. Water stress induced stomatal closure in two maize cultivars. Res. J. Biol. Sci. 2008, 3:750-754.
    [22] Xu, Z., Zhou, G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 2008, 59:3317-3325.
    [23] Meng, L., Li, L., Chen, W., et al. Effect of water stress on stomatal density, length, width and net photosynthetic rate in rice leaves. J. Shenyang Agri. Univ. 1999, 30:477-480.
    [24] Bota, J., Medrano, H., Flexas, J. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol. 2004, 162:671-681.
    [25] Blackman, P.G., Davies, W.J. Age-regulated changes in stomatal response to cytokinins and abscisic acid. Ann. Bot. 1984, 54:121-I25.
    [26] Druge, U., Schonbeck, F. Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J. Plant Physiol. 1992, 141:40-48.
    [27] Chen, S.L., Wang, S.S., Arie, A., et al. Cytokinins: mderators of stomatal movementin poplar genotypes. J. Beijing Forestry Univ.(English Ed.), 1996, 5:9-22.
    [28] Dodd, I.C. Hormonal interactions and stomatal responses. J. Plant Growth Reg., 2003, 22:32-46.
    [29] Irving, H.R., Gehring, C.A., Parish, R.W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. PNAS. 1992, 89:1790-1794.
    [30]孟朝妮. Auxins, CTKs对ABA诱导气孔关闭的效应及其作用机制研究[硕士学位论文].陕西师范大学,2006.
    [31] Itai, C., Meidner, H. Effect of abscisic acid on solute transport of epidermal tissue. Nature. 1978, 271:653-654.
    [32] Incoll, L.D., Ray, J.P., Jewer, P.C. Do cytokinins act as root to shoot signals? In: Davies, W.J., Jeffcoat, B. (ed.): Importance of Root to Shoot Communication in the Responses to Environmental Stress, 185-197, British Society for Plant Growth Regulation, Bristol, 1990.
    [33] Keams, E.V., Assmann, S.M. The guard cell-environmental connection. Plant Physiol. 1993, 102:711-715.
    [34]孙大业,马力耕.细胞外钙调素—一种植物中的多肽信使?中国科学, 2001, 31:289-297.
    [35]刘新,孟繁霞,张蜀秋,等.气孔保卫细胞信号转导中的第二信使.植物生理学通讯. 2001, 37(6):556-561.
    [36] Thimann, K.V., Satler, S. Relation between senescence and stomatal opening: Senescence in darkness. PNAS. 1979, 76:2770-2773.
    [1] Chaves, M.M., Oliveira, M.M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J. Exp. Bot. 2004, 55(407):2365-2384.
    [2] Diatchenko, L., Lau, Y.F.C., Campbell, A.P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. PNAS. 1996, 93:6025-6030.
    [3] Yammanoto, K., Sasaki, T. Large-scale EST sequencing in rice. Plant Mol. Biol. 1997, 35:15-144.
    [4] Beavn, M., Bancroft, I., Bent, E., et al. Analysis of 1.9 MB of contigous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391: 485-488.
    [5] Fu, X., Huang, Y., Deng, S., et al. Construction of a SSH library of Aegicerascorniculatum under salt stress and expression analysis of four transcripts. Plant Sci. 2005, 169:147-154.
    [6] Wong, Y., Chai-Ling Ho, C., Nguyen, P., et al. Isolation of salinity tolerant genes from the mangrove plant, Bruguiera cylindrica by using suppression subtractive hybridization (SSH) and bacterial functional screening. Aquatic Bot. 2007, 86:117-122.
    [7] Deng, X., Fu, F., Ni, N., et al. Differential gene expression in response to drought stress in maize seedling. Agri. Sci. China. 2009, 8(7):767-776.
    [8]刘桂丰,侯英杰,王玉成,等.干旱胁迫下毛枊消减文库的构建及分析.植物研究. 2005, 25(1):69-73.
    [9] Clement, M., Lambert, A., Herouart, D. Identification of new up-regulated genes under drought stress in soybean nodules. Gene. 2008, 426(1-2):15-22.
    [10] Ouziad, F., Hildebrandt, U., Schmelzer, E. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J. Plant Physiol. 2005, 162(6):634-649.
    [11] Zhang, Y., Mian, M.A., Chekhovskiy, K., et al. Differential gene expression in Festuca under heat stress conditions. J. Exp. Bot. 2005, 56(413):897-907.
    [12] Wang, X., He, R., He, G., et al. Construction of suppression subtractive hybridization libraries and identification of brown planthopper-induced genes. J. Plant Physiol. 2005, 162:1254-1262.
    [13] Zhang, Y., Guenzi, A.C., Anderson., M.P., et al. Enrichment of bermudagrass genes associated with tolerance to the spring dead spot fungus Ophiosphaerella herpotricha. Physiol. Mol. Plant Path. 2006, 68:105-118.
    [14] Huber, S.C. Fructose 2,6-bisphosphate as a regulatory metabolite in plants. Annu. Rev. Plant Physiol. 1986, 37:233-246.
    [15] Stitt, M. Fructose 2,6-bisphosphate and plant carbohydrate metabolism. Plant Physiol. 1987, 84:201-204.
    [16] Chen Y., Piper, P.W. Consequences of the over-expression of ubiquitin in yeast: elevated tolerances of osmostress, ethanol and canavanine, yet reduced tolerances of cadmium, arsenite and paromomycin. Biochim. Biophys. Acta. 1995, 1268(1):59-64.
    [17]王霞,侯平,尹林克,等.土壤水分胁迫对柽柳体内膜保护酶及膜脂过氧化的影响.干旱区研究. 2002, 19 (3):17 - 20.
    [18]任永波,段拥军.植物体内超氧化物歧化酶(SOD)作用研究进展.西昌农业高等专科学校学报. 2002, 9:79-81.
    [19] Serrato, A.J., Cejudo, F.J. Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta. 2003, 217(3):392-399.
    [20] Schweighofer, A., Hirt, H., Meskiene, I. Plant PP2C phosphatases: emerging functions in stresss signaling. Trends Plant Sci. 2004, 9:236-243.
    [21] Cherel, I., Michard, E., Platet, N., et al. Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell, 2002, 14:1133-1146.
    [22] Hetherington, A.M. Guard cell signaling. Cell, 2001, 107:711-714.
    [23] Schroeder, J.I., Kwak, J.M., Allen, G.J. Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature. 2001, 410:327-330.
    [24] Pei, Z.M., Murata, Y., Benning, G., et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 2000, 406:731-734.
    [25] Zhang, X., Zhang, L., Dong, F., et al. Hydrogen peroxide is involved in abscisic acidinduced stomatal closure in Vicia faba. Plant Physiol. 2001, 126:1438-1448.
    [26] Murata, Y., Pei, Z.M., Mori, I.C., et al. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell. 2001, 13:2513-2523.
    [27] Gerisman, H.A., Pabo, C. A general strategy for selecting high-affinity zinc fingerprotein for diverse DNA target sites. Science. 1997, 275:657-661.
    [28] Li, Z., Chen, S. Differential accumulation of the sadenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. Theor. Appl. Genet. 2000, 100 (5):782-788.
    [29] Sakamoto, H., Maruyama, K., Sakuma, Y., et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high2salinity stress conditions. Plant Physiol. 2004, 136:2734 - 2746.
    [30] Serrano, M., Guzmán, P. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics, 2004, 167:919-929.
    [31] Sugano, S., Kaminaka, H., Rybka, Z., et al. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J. 2003, 36:830-841.
    [32] Mukhopadhyay, A., Vij, S., Tyagi, A.K. Over-expression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. PNAS. 2004, 101:6309-6314.
    [33] Chrispeels, M.J., Maurel, C. Aquaporins: The molecular basis of facilitated water movement through living plant cells? Plant Phyiol. 1994, 105:9-13.
    [34] Quintero, J.M., Fournier, J.M., Benlloch, M. Water transportin sunflower root systems effects of ABA, Ca2+ status and HgCl2. J. Exp. Bot. 1999, 339:1607-1612.
    [35] Sakurai, J., Ishikawa, F., Yamaguchi, T., et al. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol. 2005, 46:1568-1577.
    [36] Barrieu, F., Marty-Mazars, D., Thomas, D., et al. Desiccation and osmotic stress increase the abundance of mRNA of the tonoplast aquaporin BobTIP26-1 in cauliflower cells. Planta. 1999, 209:77-86.
    [37] Jang, J., Kim, D., Kim, Y., et al. An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana.Plant Mol. Biol. 2004, 54:713-725.
    [38] Yamada, S., Katsuhara, M., Kelly, W.B., et al. A family of transcripts encoding water channel proteins: tissue-specific expression in common ice plant. Plant Cell. 1995, 7:1129-1142.
    [39] Smart, L.B., Moskal, W.A., Cameron, K.D., et al. Mip genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol. 2001, 42:6860-693.
    [40] González, E.M., Gordon, A.J., C.L. James, C.L., et al. The role of sucrose synthase in the response of soybean nodules to drought. J. Exp. Bot. 1995, 46(291):1515-1523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700