零传动滚齿机精度控制及颤振抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“零传动”又称直接驱动,即取消动力源与最终执行部件之间的所有机械传动环节。机床中常用的零传动功能部件有电主轴、直线电机和力矩电机等。零传动技术为提高机床性能提供了诸多好处:最大限度地减小了传动误差、为高速加工提供了可能、提高了机床执行部件的运动灵敏性等。目前,国外的先进滚齿机已大量采用了该项技术并取得了很好的成效,但其设计原理和技术均严格保密。为打破这种技术垄断局面,笔者所在课题组与国内某机床厂合作研发了一台基于零传动功能部件的数控滚齿机原型,并对相关理论和技术进行了比较系统的研究,其研究成果为提高我国齿轮加工机床的设计和制造水平打下基础。
     将零传动技术应用于滚齿机,不是单一针对零传动功能部件设计和制造技术的研究,也不是简单地将零传动功能部件置换进机床的工程处理过程,而是需要解决一系列从整体到局部的设计关键理论和技术问题。在这些问题中,既有滚齿机独有的问题,也有常规机床的共性问题。本文主要围绕零传动滚齿机精度控制理论和技术展开,并对机床的抗颤振结构优化问题进行了比较深入的探索。
     (1)对影响普通数控滚齿机展成运动精度的主要因素及其作用规律进行了分析,发现其展成运动误差仍然主要来自于机械传动环节,所以在原机床框架下进一步提高机床展成运动精度的空间不大;在此基础上,分析了零传动对提高展成运动精度的作用机理,研究结果表明:应用零传动技术在解决这一问题上具有先天的优势。因此,零传动滚齿机的精度控制重点,应当是机床两主轴之间的位姿精度和主轴部件的抗扰动能力。
     (2)实现机床精度的合理控制,建立一个有效的机床误差模型是必要的。根据滚齿机的结构和运动特点,机床的误差建模采用多体系统理论与齿轮啮合原理相结合的方法。该模型量化地描述了滚齿机各个组成部分之间的位姿和运动关系,尤其反映了各误差源对位姿、运动的作用规律和各误差源之间的关系,是机床精度控制工作的理论基础。
     (3)将加工误差敏感方向与机床误差源的传递规律相结合,提出了“机床敏感误差”(机床中对最终加工精度影响程度高的源误差)的概念,由此衍生出“敏感设计参数”和“误差敏感度”概念;以“抓主要矛盾”的思想,确定了针对机床敏感误差的机床精度控制策略。为实施机床的误差敏感度分析,以重构的方式将机床的理论误差模型简化为拥有两个子模型的工程误差模型,合理地将中间部件的位姿误差、运动误差参量与复杂的滚齿空间啮合关系分开,大大提高了模型的可操作性和使用的灵活性,同时使分析结果更具针对性。文中详细介绍了两个子模型的建立和使用方法,示例展示了其可行性和使用效果。
     (4)在分析综合国内外相关研究状况的基础上,以机床抗颤振结构优化为目的,对再生型切削颤振模型进行了系统的研究。根据研究结果,将机床加工系统简化为只具有两个弹性体的单自由度再生颤振模型,该模型能提高机床抗颤振结构优化的效率。基于此模型,一个“只对机床薄弱部件进行结构优化”的新构思被提出,并讨论了优化目标参数、数学模型和优化算法。试验研究结果展示了切削颤振产生和发展的过程和特征,同时验证了本文理论分析的正确性。以YK3610滚齿机样机的滚刀主轴系统为对象,对抗颤振结构优化的效果进行了模拟试验,取得了令人满意的结果。
     (5)介绍了YK3610样机的初步评估试验,试验数据反映了样机的主要性能,也揭示样机存在的一些问题,为该机床的调整和改进提供了第一手资料。
“Zero-transmission”is also called“Direct-Drive”, namely all the mechanical transmission parts between motor and final executive component are canceled. In machine tool, the typical function components with Direct-Drive include“motorized spindle”, linear motor and internal torque motor. Zero-transmission technology provides many advantages for enhancing the machine tool performance, for example, maximally reducing the transmission error, offering the possibility of high-speed cutting, improving the movement sensitivity of the executive components, etc. Currently, this technology has been widely adopted in advanced hobber overseas, and has achieved good effect. However, all the interrelated design principles and technologies are kept as secret severely. In order to break this technology monopoly, cooperating with a Chinese machine tool company, the research group including the author has developed the No.1 CNC hobber prototype based on zero transmission function components in China, and many correlative theories and the technologies have been studied systematically in this process. These study results build a solid foundation for advancing the design and manufacture level of gear cutting machine of China.
     Applying the zero transmission technology in hobber is neither an onefold research on the zero transmission function components, nor a simple engineering process of replacing this type of function components into machine tool, but needs to solve a series of essential theory and the technical questions in design from whole to part. These problems include not only the particular one in hobber but also the general one in common machine tool. This article mainly discusses the strategies and methods of controlling the precision on a zero transmission hobber, and does some beneficial explorations on the anti-chatter structure optimization.
     (1) The main influential factors for generating motion precision and their action law are analyzed detailedly on a general CNC hobber, and the results show that the generating motion error also mainly comes from the mechanical transmission parts. Therefore, there’s not enough room to improve the generating motion precision under the existing machine frame. Based on it, the action mechanism that zero transmission improves the generating motion accuracy is studied. The study results show that zero transmission has natural dominance in solving this difficult problem. So the key points of the precision-control problem on the zero-transmission hobber should be to control the position-pose precision between the two spindles and improve the ability of anti-disturbance.
     (2) To realize the precision-control of a machine tool effectively, it is necessary to establish a valid error model of the object machine tool. According to the structure and the motion characteristics of the hobber, a theoretical model is built by combining the multi-body system theory with the gear meshing principle. This model describes the position-pose and motion relations quantitatively between the components in this hobber, and especially, contains the action rule of machine error sources and the relations between the error sources. It is the theory foundation for the precision-control work.
     (3) Combining the sensitive direction of processing error and the transmission law of source error, a new concept called“the sensitive error in machine tool”is put forward, which is a more influential source errors to final processing precision in the machine tool. According to the idea of fastening main factor, a new machine precision-control strategy to control the sensitive errors is proposed. To realize the sensitivity analysis of machine errors, the theoretical error model of the hobber is simplified to an engineering error model with two sub-models by reconstructing, which separates reasonably the numerous position-pose error parameters, the movement error parameters in middle components from the complex space meshing relation of gear hobbing. This model has the better operability, operational versatility and pertinence. In this paper, the details of how to build and use the two sub-models are introduced, and their feasibility and effect are demonstrated.
     (4) Based on analyzing and integrating the relative information coming from the domestic and oversea research and taking the anti-chatter structure improvement of machine tool as goal, the regenerative chatter model has been studied systematically. According to the study results, the machine processing system is simplified as a single-degree of freedom (SDOF) chatter model, which only has two elasticity bodies. The new model can make the anti-chatter structure improvement more effective. Based on this model, a new scheme is proposed, in which only the structure of weak component among a machine tool needs to be improved. Then, the optimizing target function, mathematical model and optimizing algorithm are discussed respectively. The experimental research results demonstrate the process and the characteristic during the cutting chatter occurring and expanding, and also the accuracy of relative theories are confirmed basically. Taking the hob spindle system of YK3610 hobber as an example, a simulation test has been done, and the result is satisfactory.
     (5) In the final part of this paper, some evaluation experiments of the YK3610 prototype at primary stage is introduced. The experiment data has reflected the main performance of this prototype, exposed some extant questions, and provided firsthand information to improve and adjust the machine tool.
引文
[1]齿轮手册编委会.齿轮手册(上、下)[M].北京:机械工业出版社,2000.
    [2]齿轮制造手册编委会.齿轮制造手册[M].北京:机械工业出版社,1998.
    [3]李先广.当代先进制齿及制齿机床技术的发展趋势[J].制造技术与机床,2003,(2):10-11.
    [4]刘润爱,张根保等.滚齿机及滚齿加工技术的发展趋势[J].现代制造工程,2003,(11):84-86.
    [5]乐美豪.渐开线圆柱齿轮精加工现状[J].制造技术与机床,1996,(7):11-1
    [6]乐美豪.我国齿轮、螺纹、花键机床市场的现状和展望(一)[J].制造技术与机床,1999,(l):5-8.
    [7]乐美豪.我国齿轮、螺纹、花键机床市场的现状和展望(二)[J].制造技术与机床,1999,(2):5-7.
    [8]杨勇波.齿轮行业的现状及发展趋势[J].通用机械.2004,(10):32-34.
    [9]乐美豪.我国齿轮制造业的发展现状及展望(上)[J].制造技术与机床,2000,(11):8-9.
    [10]乐美豪.我国齿轮制造业的发展现状及展望(下)[J].制造技术与机床,2000,(12):7-9.
    [11]亢再章,唐丛梅.硬齿面齿轮滚切技术[J].机械传动,1998,22(1):48-50.
    [12]吴焱明.齿轮加工数控技术的研究[D].合肥:合肥工业大学,2000,10.
    [13]吴焱明,王纯贤,韩江,王治森.齿轮加工数控系统体系结构的研究[J].制造技术与机床,2001,(12):7-10
    [14]黄强,张根保,刘润爱.开放式滚齿机数控系统开发策略及系统结构研究[J].机床与液压,2006,(1):15-18.
    [15]黄强,张根保,刘润爱.滚齿机干切适应性技术研究[J].制造技术与机床,2007,(3):66-68.
    [16]李先广,廖绍华,曹华军,刘飞.齿轮加工机床绿色设计与制造策略及实践[J].制造技术与机床,2003,(11):18-21.
    [17] Power dry cutting technical information[Z]. http://www.gleason.com, 2003,3 .
    [18] The ecological and economical benefits of power dry cutting[Z]. http://www.gleason.com, 2003.3.
    [19] Dr.Ing.A.Mundt. Successful hobbing without coolant[C]. Liebherr-Verzahntechnik GmbH,22. April 1999,4.
    [20] Takahide Tokawa, Yukihisa Nishimura, Yozo Nakamura. High Productivity Dry Hobbing System. Mitsubishi Heavy Industries[C], Ltd.Technical Review,2001,38(1):28-32.
    [21]东川隆英等著.蒋修治泽.高效干滚齿加工系统[J],国外金属加工,2001(4):39~43.
    [22]黄强,罗辑,唐其林.高速干式滚齿加工及其关键技术[J].机床与液压.2007,(5):29-32.
    [23]赵正书.干式切削及其在齿轮加工中的应用[J].机械工艺师,2000,(9):62-63.
    [24]罗魁元,邓生明.Y3150E滚齿机的数控改造及应用[J].机床与液压,2004,1:144-145.
    [25]秦树人,胡信义,王佳深等.齿轮传动系统现代测试方法与装置[M].成都:四川科学技术出版社,1990.
    [26]曾令万.数控高速滚齿机模块化设计及其经济分析[D].重庆:重庆大学,2003.
    [27]方毅,薛小雯.椭圆齿轮滚齿机的工作原理及齿形方程[J].新技术新工艺,2002,(9):20-22.
    [28]黄建龙,胡赤兵,邬再新等.非圆齿轮数控滚切加工系统结构[J].机械研究与应用,1999,12(1):15-16.
    [29]吴焱明,王纯贤,韩江,王治森.齿向修形齿轮的数控加工技术[J].制造技术与机床,2000(3):32-34.
    [30]王治森,吴焱明等.支持全球制造的智能化网络数控系统[J].中国机械工程,1999,10(12):1354-1357.
    [31]韩江,赵福民,王治森,吴焱明.网络数控系统的概念及其技术内容[J].中国机械工程,2001,12(10):1141-1145.
    [32]徐守祥.开放式控制系统——欧洲数控业的发展策略[J].制造技术与机床,1997,(3):4-6.
    [33] S. Schofield et al. Open Architecture Controllers for Machine Tools, Part I: Design Principles[J]. Journal of Manufacturing Science and Engineering, 1998,120(5).
    [34] Liorente et al. Open Architecture for Control of Automatic Plants[J], Manufacturing System. Manufacturing System,1996, 25(1):29-36.
    [35] Liorente et al. Reuse of Control Software for Manufacturing System[C]. CIRP Ann.1997,40(1).
    [36]肖本贤.用于CNC系统的智能伺服技术[J].微电机,1997,30(1):24-27 .
    [37] B.P.Erdel,New Dimensions in Manufacturing Cincinnati:Hanser[M] Garder Publications, 1998,USA.
    [38]刘志峰等.干切削加工技术及应用[M],北京:机械工业出版社.2005.
    [39] http://www.Liebherr.com.
    [40] http://www.mitsubishigearcenter.com .
    [41] http://www.gleason.com .
    [42] http://www.hurth-modul.de Jun.
    [43] http://www.kapp-use.com..
    [44] J. D. Han, Y .C. Wang. Acceleration feedback control for direct-drive motor system[C]. IEEE International Conference on Intelligent Robots and Systems, 2000(5):1068-1074.
    [45] Carl J. Kempf ,Seiichi Kobayashi. Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positioning Table[C]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1999,7(5): 513-522.
    [46]张伯霖,杨庆东,陈长年.高速切削技术及其应用[M].北京:机械工业出版社,2002.
    [47] Ni.CNC Machine Accuracy Enhancement Through Rea1-time Error Compensation[J]. Journal of Manufacturing Science and Engineering,1997,119(11):717-725.
    [48] Chen X B, Geddam A,Yuan Z J. Accuracy Improvement of Three-Axis CNC Machining Centers by Quasi-Static Error Compensation[J]. Journal of Manufacturing Systems,1997,16(5):323-336.
    [49]何开明.YKS3120六轴数控高速滚齿机[J].机械与电子,2001,(2):50.
    [50] Takashi Emura, Zhaowei Zhong. Study on a numerically controlled hobbing machine using direct-drive servomechanism[C]. Proceedings of the 1989 International Power Transmission and Gearing Conference: New Technologies for Power Transmissions of the 90's, 1989,697-704.
    [51] Zhong Zhaowei; Emura Takashi. Direct-drive NC hobbing machine (1st report, increase of ervo-stiffness by using an inertial damper ) [C]. Nippon Kikai Gakkai Ronbunshu, C Hen, 1987,53(496):2561-2566.
    [52] Zhong ZhaoWei , Emura Takashi . Direct-drive NC hobbing machine (2nd report. Investigation of cutting accuracy) [C]. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1989,55(516): 2259-2264.
    [53] Michiaki Hashitani,Kouichi Masuo.ZE15A Gear Grinding Machine for economical hard gear finishing of quiet, small gears[C].Mitsubishi Heavy Industries, Ltd.Technical Review,2005,42(2):1-5.
    [54]黄晓明.高速电主轴热态特性的有限元分析[D].广州:广东工业大学,2003.
    [55]张伯霖,夏红梅,黄晓明.数控机床高速化的研究与应用[J].中国机械工程,12(10):1132-1137.
    [56]戴显明,张珂,吴玉厚.数控机床高速电主轴的性能研究[J].沈阳建筑工程学院学报(自然科学版),2002,18(4):321-322.
    [57] Berd Bossmanns , Jay F . Tu . A Thermal Model for High Speed Motorized Spindles[J]. International Journal of Machine Tool &Manufacture, 1999,39:1345-1366.
    [58] Brian Kellock. The Future for High-Speed Spindles[J]. Machinery and ProductionEngineering, 1999,157:43-46.
    [59]黄晓明,张伯霖,肖曙红.高速电主轴热态特性的有限元分析[J].航空制造技术,2003,(10):20-24.
    [60]肖曙红,黄晓明,张伯霖.高速角接触球轴承发热及其影响因素[J].机床与液压,2004,(12):17-20.
    [61]张孝恩,张明利,电主轴在加工中心上的应用[J].制造技术与机床,2000,(9):25-26.
    [62] George Ellis.Direct-drive rotary motors streamline machine design[J]. control Engineering,2000,3:152.
    [63] www.Kollmorgen.com.
    [64]黄强,张根保,罗辑.内置式力矩电机在数控滚齿机设计中的应用研究[J].机械传动,2006,(4):77-79.
    [65] F.Aghili, M.Buehler. A new indirect adaptive control strategy for a synchronous direct drive motor[C]. IEEE International Conference on Robotics and Automation Minneapolis, 1996,(4):2865-2870.
    [66] Naoyuki TAKESUE, Guoguang ZHANG, Junji FURUSHO, et al. High stiffness control of direct-drive motor system by a homogeneous ER fluid[C]. IEEE International Conference on Robotics and Automation,1999,188-192.
    [67] Kenichi KOYANAGI, Naoyuki TAKESUE, Guoguang ZHANG, et al. High gain feedback control of direct-drive motor system by a homogeneous ER fluid[C].IEEE,2000,1833-1837.
    [68]苏玉鑫,段宝岩.提高直接驱动电动机系统刚度的机电一体化设计[J].机械工程学报,2001,37(8):75-79 .
    [69]巩娟,李庆祥,李玉和.精密工作台的设计与实验研究[J].光学技术,2005,31(4):636-638.
    [70]谭伟,赵锡芳.机器人直接驱动技术研究现状及发展[J].机械工程师,2000,(4):4-7.
    [71]吴云洁,王卫红,尔联洁.三轴电动飞行转台控制系统工程设计与实现[J].系统仿真学报,2002,14(1):97-99.
    [72]刘润爱,张根保.零传动齿轮加工机床关键技术研究[J].制造技术与机床. 2004(12):47-49.
    [73]邓英剑.直线电机及其在高速机床中的应用[J].机械设计与制造,2004(4):42-43.
    [74]王先逵,陈定积,吴丹.机床进给系统用直线电动机综述[J].制造技术与机床,2001(8).
    [75]张永强.高速切削及其关键技术的发展现状[J]航空精密制造技术2001,37(2),1-5.
    [76]现代实用机床设计手册编委会.现代实用机床设计手册(上册)[M].北京:机械工业出Engineering, 1999,157:43-46.
    [59]黄晓明,张伯霖,肖曙红.高速电主轴热态特性的有限元分析[J].航空制造技术,2003,(10):20-24.
    [60]肖曙红,黄晓明,张伯霖.高速角接触球轴承发热及其影响因素[J].机床与液压,2004,(12):17-20.
    [61]张孝恩,张明利,电主轴在加工中心上的应用[J].制造技术与机床,2000,(9):25-26.
    [62] George Ellis.Direct-drive rotary motors streamline machine design[J]. control Engineering,2000,3:152.
    [63] www.Kollmorgen.com.
    [64]黄强,张根保,罗辑.内置式力矩电机在数控滚齿机设计中的应用研究[J].机械传动,2006,(4):77-79.
    [65] F.Aghili, M.Buehler. A new indirect adaptive control strategy for a synchronous direct drive motor[C]. IEEE International Conference on Robotics and Automation Minneapolis, 1996,(4):2865-2870.
    [66] Naoyuki TAKESUE, Guoguang ZHANG, Junji FURUSHO, et al. High stiffness control of direct-drive motor system by a homogeneous ER fluid[C]. IEEE International Conference on Robotics and Automation,1999,188-192.
    [67] Kenichi KOYANAGI, Naoyuki TAKESUE, Guoguang ZHANG, et al. High gain feedback control of direct-drive motor system by a homogeneous ER fluid[C].IEEE,2000,1833-1837.
    [68]苏玉鑫,段宝岩.提高直接驱动电动机系统刚度的机电一体化设计[J].机械工程学报,2001,37(8):75-79 .
    [69]巩娟,李庆祥,李玉和.精密工作台的设计与实验研究[J].光学技术,2005,31(4):636-638.
    [70]谭伟,赵锡芳.机器人直接驱动技术研究现状及发展[J].机械工程师,2000,(4):4-7.
    [71]吴云洁,王卫红,尔联洁.三轴电动飞行转台控制系统工程设计与实现[J].系统仿真学报,2002,14(1):97-99.
    [72]刘润爱,张根保.零传动齿轮加工机床关键技术研究[J].制造技术与机床. 2004(12):47-49.
    [73]邓英剑.直线电机及其在高速机床中的应用[J].机械设计与制造,2004(4):42-43.
    [74]王先逵,陈定积,吴丹.机床进给系统用直线电动机综述[J].制造技术与机床,2001(8).
    [75]张永强.高速切削及其关键技术的发展现状[J]航空精密制造技术2001,37(2),1-5.
    [76]现代实用机床设计手册编委会.现代实用机床设计手册(上册)[M].北京:机械工业出Strategies for Numerical Control Mzchine[J]. Control Methods for Manufacturing Process.1988, 7: 41-49.
    [99] CHEN J S, YUAN J, NI J. Compensation of Non-Rigid Body Kinematic Effect of a Machining Center[J]. Transaction of NAMRI.1992, 20: 325-329.
    [100] LIN P D, EHMANN K F. Direct Volumetric Error Evaluation of Muti-Axis Machines[J]. Int.J. of mach, Tools Manufact, 1993, 33(5): 675-693.
    [101]李圣怡,戴一凡.精密和超精密机床精度建模技术[M].长沙:国防科技大学出版社,2007.
    [102] A. K. Srivastava, S.C. Veldhuis, M. A. Elbestawit. Modeling geometric and thermal errors in a five-axis CNC machine tool[J]. International Journal of Machine Tools & Manufacture, 1995,(9): 1321~1337.
    [103] J. A. Soons, F. C. Theuws, P. H. Schellenkens. Modeling the errors of multi-axis machines: a general methodology[J]. Precision Engineering, 1992,14(1): 5~19.
    [104] V. S. B. Kiridena, P. M. Ferreira. Kinematic modeling of quasistatic errors of three-axis machining center[J]. International Journal of Machine Tools & Manufacture,1994,34(1): 85~100.
    [105] Rahman M, Heikkala J, Lappalainen K. Modeling measurement and error compensation of multi-axis machine tools. Part 131 theory[J] . International Journal of Machine Tools & Manufacture, 2000, 40: 1535-1546.
    [106] Lo C H, Yuang J X, Ni J. An application of real-time error compensation on a turning center[J] International Journal of Machine Tools Manufacture, 1995(12): 1669-1682.
    [107] Lee H S, Kim S W. Real-time correction of movement errors of a machine axis by multiple null-balancing using TWYMAN-GREEN interferometry[J]. International Journal of Machine Tools & Manufacture, 1995(3): 477-486.
    [108] Su Shiping, Li Shengyi. A study on Prediction Modeling Machining Accuracy for CNC Machine Tools[C].ICPN 2002,2002,2(10): 123~127.
    [109]刘又午,章青,赵小松等.基于多体理论模型的加工中心热误差补偿技术[J].机械工程学报2002, 38(1): 127-130.
    [110]刘又午,刘丽冰,赵小松等.数控机床误差补偿技术研究[J].中国机械工程,1998, 9(12): 48~52.
    [111]粟时平,李圣怡,王贵林.多轴数控机床的通用运动学综合空间误差模型[J].国防科技大学学报,2001,23(4):45~50.
    [112]任永强,杨建国.五轴数控机床综合误差补偿解耦研究[J].机械工程学报.2004,40(2):55-59.
    [113]杨建国,张宏韬等.数控机床热误差实时补偿应用[J].上海交通大学学报,2005,39(9):1389-1392.
    [114]杜正春,杨建国等.主轴回转误差补偿机理和动力学模型研究[J].机械工程学报,2003,39(3):48-53.
    [115]章青,张海根,刘又午.数控机床误差补偿技术及应用——载荷误差补偿技术[J].制造技术与机床,1999,2:8-10.
    [116]章青,王国锋,刘又午.数控机床误差补偿技术及应用——几何误差补偿技术[J].制造技术与机床1999,1:30-32.
    [117]刘又午.多体动力学在机械工程领域的应用[J].中国机械工程,2000,11(1-2):144~149.
    [118]刘又午.多体动力学的休斯敦方法及其发展[J].中国机械工程,2000.11(6):601-607.
    [119] R.L.休斯顿,刘又午,多体系统动力学(上册)[M].天津:天津大学出版社,1987.
    [120]Ф·Л·李特文,齿轮啮合原理[M],上海:上海科学技术出版社1984.
    [121]孙大勇,屈贤明,张松滨.先进制造技术[M].北京:机械工业出版社,2000.
    [122]黄美发,高咏生.基于工序加工能力的并行公差优化设计[J].中国机械工程2003第14(5):285~290.
    [123] Du Xiao ping, Chen Wei. Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design[J]. Journal of Mechanical Design, 2000, 122: 385~394.
    [124] Lee Yu Cheng, Wei Chiu Chi. Process Capability Based Tolerance Design to Minimize Manufacturing Loss[J]. International Journal of Advanced Manufacturing Technology, 1998, 14: 33~37.
    [125]曹衍龙,杨将新,吴昭同,吴立群.面向制造环境的稳健公差设计方法[J].中国机械工程,2003,14(2):134~138.
    [126] Huang M, Gao Y, Xu Z, et al. Composite Planar Tolerance Allocation with Dimensional and Geometric Specifications[J]. The International Journal of Advanced Manufacturing Technology, 2002, 20: 341~347.
    [127]匡兵,黄美发,钟艳如等.基于统计公差和质量损失的公差设计[J].系统仿真学报. 2006,18(2)增刊:526~529.
    [128]刘栋梁,孙韶民,高国安.基于产品成本-精度模型的最优公差设计[J].哈尔滨工业大学学报. 1999,31(6):122~124.
    [129]胡洁,熊光愣,吴绍同.基于变动几何约束网络的公差设计研究. [J]机械工程学报. 2003,39(5):20~26.
    [130]胡洁.基于变动几何约束网络的形位公差设计理论与方法研究[D].杭州:浙江大学,2001.
    [131]吴绍同.计算机辅助公差设计[M].杭州:浙江大学出版社.
    [132]肖人彬,邹洪富,陶振武.公差设计多目标模型及其粒子群优化算法研究[J].计算机集成制造系统. 2006,12(7):976~980.
    [133] Skowronski V J, Turner J U. Using Monte Carlo variance reduction in statistical tolerance synthesis [ J] . Computer- Aided Design, 1997, 29 (1): 63 - 69.
    [134]王伯平,景大英.基于遗传算法的配合尺寸公差优化设计[J]..农业机械学报2004, 35(4):198-200.
    [135]曾韬.螺旋锥齿轮设计与加工[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [136] A. Erturk, H.N. Ozguven, E. Budak. Analytical modeling of spindle–tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF[J] . International Journal of Machine Tools & Manufacture, 2006, 46: 1901–1912.
    [137]师汉民.影响机床颤振的几个非线性因素及其数学模型[J].华中工学院学报,1984,12(6):101~112.
    [138]吴雅等.金属切削机床切削噪声的动力学研究[J].机械工程学报,1995,31(5):76~85.
    [139]鲁宏伟,杨叔子.基于非线性模型的切削过程的混沌研究[J].振动工程学报,1996,9(2):169~172.
    [140] Lee B Y, Tarng Y S, Ma S C. Modeling of the process damping force in chatter vibration[J]. International Journal of Machine Tool and manufacture, 1995,35(7):951~962.
    [141]孔繁森,于骏一.切削过程再生颤振的模糊稳定性分析[J].振动工程学报,1998,11(1):106~109.
    [142] Tobias S A.机床振动学[M].天津大学机械制造系译.北京:机械工业出版社,1980.
    [143] Sadek M M.机床动力学[M].华中工学院机械工程研究所译.武汉:华中工学院出版社,1980.
    [144]王先上.车床振动的自动控制[J].机械工程学报, 1986,22(2): 38-47.
    [145] Shiraishi M,Kume E.Suppression of machine tool chatter by state feedback control[C]. Annal of the CIRP,1988,37(1):369-372.
    [146] Shiraishi M, Yamanaka K, Fujita H.Y.Optical control of chatter in turning[J]. Int J Mach Tools manufact,1991, 31(1): 31-43.
    [147] Alter D M, Tsao T C.Stability of turning processes with active controlled linear motor feed drives[J]. ASME Journal of engineering for industry, 1994, 116: 298-307.
    [148]杨辅伦,于骏一.切削颤振预报控制的研究现状[J].吉林工业大学学报, 1992, 22(1): 110-118.
    [149]费仁元,王民.切削颤振在线监控的研究现状及进展[J].中国机械工程, 2001, 12(9): 1075-1079.
    [150]勾治践,于骏一.变速切削的研究现状[J].吉林工学院学报,1997,18(4):14-17.
    [151]雷源忠,黎明.电流变技术在颤振控制中的应用,现代生产过程的动态控制[M].大连:大连理工大学出版社,1995.
    [152]王茂华,于骏一,张永亮.电流变技术在机床颤振控制技术中的应用[J].机械工程学报,2000,36(11):94-97.
    [153] E.Solis, C.R.Peres, J.E.Jimeneza, R.Alique,J.C. Monje. A new analytical–experimental method for the identification of stability lobes in high-speed milling[J]. International Journal of Machine Tools & Manufacture 2004, 44: 1591–1597.
    [154] Osamu Maeda, Yuzhong Cao, Yusuf Altintas. Expert spindle design system[J]. International Journal of Machine Tools & Manufacture, 2005, 45: 537–548.
    [155] J. H. WANG, K. N. Lee. Suppression of chatter vibration of a CNC machine center-an example[J]. Mechanical Systems and Signal Processing, 1995, 10(5): 551-560.
    [156]张福润等.机械制造工艺学[M].北京:华中科技大学出版社,1998: 106-111.
    [157]李德葆,陆秋海.工程振动试验分析[M].北京:清华大学出版社,2004: 222~227.
    [158]张策等.机床试验的原理和方法[M].北京:机械工业出版社,1986: 393~478.
    [159] K,Yoshitata, K. Osamu, S. Hisaysshi, Behavior of self-excited chatter due to multiple regenerative effect[J]. Journal of Engineering for Industry, 1981, 103: 324-329.
    [160] R. A. Thompson. On the doubly regenerative stability of grinder: the effect of contact stiffness and wave filtering[J]. Journal of Engineering for Industry, 1992, 114: 53-60.
    [161] M Weck, K Teipel. Dynamisches Verhalten Spanender Werkzeugmaschinen[J]. Berlin:Springer—Verlag. I977.
    [162] Beads C F. Damping in Structural Joints[J]..The Shock and Vibration Digest 1982, 6: 563~570.
    [163]陈新,陈新度,秦叶等.机械结构动态设计若干关键技术[J].中国机械工程, 1997, 8(5): 104-108.
    [164] Y. Cao, Y. Altintas, A general method for the modeling of spindle bearing systems[J]. Journal of Mechanical Design, Transactions of the ASME, 2004, 126: 1089–1104.
    [165] J.H. Wang, C. M. Liou, Experimental identification of mechanical joint parameters[J]. ASME Transaction, Journal of Vibration and Acoustics, 1991, 113: 28-36.
    [166] A. Erturk, H.N. Ozguven, E. Budak. Analytical modeling of spindle–tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF[J]. International Journal of Machine Tools & Manufacture, 2006, 46: 1901-1912.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700