用户名: 密码: 验证码:
弹吉他机器人的行走研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹吉他机器人属于娱乐机器人的一种,它具有人类的外部特征,可以用吉他弹奏简单的音符、完成慢速行走、弯腰行礼、点头、摆手打招呼等功能,还可实现无线遥控,按照人的意愿来完成以上动作,给人们带来无限的乐趣。
     本文在搭建弹吉他机器人系统的基础上,主要对弹吉他机器人的行走方式进行了研究。在机器人的众多行走方式中,我们选择了两轮式和双足式作为该机器人的行走方案分别进行了探究。
     在搭建机器人系统时,机械部分建立了以蜗轮蜗杆、同步带和齿轮传动为动力传递的活动关节,并根据所需的驱动力矩大小确定了不同型号的电机为动力源。电控部分以意法半导体的STM32F103ZET6为核心的红牛开发板为主控制板,对传感器信号进行实时采集,发出控制信号;该系统搭载了MTi航姿测量系统、光电编码器和光电对射传感器等感知模块,并安装了无线传输控制模块;通讯方式采用了SPI总线和RS232总线,直流电机主要由基于16位DSP的BDMC系列伺服驱动器实现驱动。软件部分主要进行了STM32F103的诸多设备如GPIO、UASRT、按键中断、定时器中断、SPI及RS232总线驱动,以及机器人控制算法程序等。
     在行走方式研究中,两轮式移动方式作为该机器人行走的备选方案,采用拉格朗日方法对其进行了动力学建模,并在ADAMS中建立虚拟样机和控制量设置,为控制算法的联合仿真提供了基础。双足步行方式为机器人的首要方案,首先设计了适用于此种研究的机器人物理样机,同时也在ADAMS中设计了虚拟样机,并按人类行走的步态数据进行行走控制设置,实现了该虚拟样机的行走运动仿真。在此基础上应用拉格朗日方法建立了步行机器人的动力学模型,并与运动仿真结果进行了对比,对比结果表明动力学建模与实际人类行走时的动力学情况基本吻合,为后续机器人行走的深入研究提供了参考。
Guitar-playing robot, with the characteristics of human, belongs to a kind of entertainment robots. It can not only play simple notes, move slowly, bend over for salute and wave hello, but also be controlled with a wireless remote game console. Under the control of the remote control system, it can perform on such actions well according to the expectations of the players. The robot brings infinite fun to our human beings.
     Based on the building the system of a guitar-playing robot, a study of the robot's locomotion control was presented in this paper. Two-wheel mode and biped moving functions were selected as the robot moving ways in many cases, and the two projects were studied by us respectively.
     When we built the robot system, the worm and worm wheel, synchronous belt and gear drive for active joints were designed for the mechanical part. Some different types of DC motor were selected for the driving source according to the calculation results of the driving torque of each joint. As for the electronic control part, the red bull development board was employed as the master controller, on which STM32F103ZET6produced by ST microelectronics was designed as the core chip. The functions of the controller included sensors'signal collection and generation and transmission of the robotic system's control signal. The system carried MTi navigation attitude measurement system, photoelectric encoder, photoelectric sensors and the wireless remote module. SPI bus and RS232bus were adopted as the communication components. DC motor was driven by BDMC36xx series DC motor servo driver based on16-bit DSP. Device driver of STM32F103ZET6, such as GPIO, USART, key interrupt, timer interrupt, SPI and RS232, were programmed. At last, the walking control program of the robot was given in the paper.
     The way of two-wheel moving was alternative project for the robot, and a dynamic model of it was built based on Lagrange method. The virtual machine and some control varieties were designed based on ADAMS, which provided a basis for the simulation of the robot move. Biped walking mode played the key role to the guitar-playing robot. First of all, we designed the physical prototype robot that was suited for the research of biped walking and then a virtual prototype was designed based on ADAMS, whose control program was set according to the data of the human walking gait. The motion simulation of the virtual prototype was realized in the end. On the basis of those, a dynamic model was built based on Lagrange method. Two results of the torque about the key joint (left ankle2nd) were compared. The two curves showed that the dynamic modeling was consistent with the human walking, which provided a reference for the further study.
引文
[1]日本机器人学会.新版机器人技术手册.宗光华,程君实,等,译.北京:科学出版社,2008
    [2]蔡自兴.机器人学.北京:清华大学出版社,2000,1-28
    [3]周远清,张再兴,许万雍.智能机器人系统.清华大学出版社,1989,1-26
    [4]Kato I, Tsuiki H, The hydraulically powered biped walking machine with a high carrying capacity. Proc. of the International Symposium on External Control of Human Extremities. Dubrovnik, Yugoslavia, September 1972.410-421
    [5]Hirai K, Hirose M, Haikawa Y, et al. The Development of Honda Humanoid Robot. Proc. of the IEEE International Conference on Robotics and Automation. Leuven, Belgium, May 1998.1321-1326
    [6]Hirai K, Hirose M, Takenaka T. Current and Future Perspective of Honda Humanoid Robot. IEEE/RSJint. Intelligent Robots and systems,1998, Tokyo: 500-508
    [7]Sakagami Y, Watanabe R, Aoyama C, et al. The intelligent ASIMO:System overview and integration. Proc. of the IEEE/RSJ International conference on Intelligent Robots and Systems. Lausanne, Switzerland, October 2002.2478-2436
    [8]Fujita M, Kuroki Y, Ishida T, et al. Autonomous behavior control architecture of entertainment humanoid robot SDR-4X. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las vegas, USA, October 2003. 960-967
    [9]Geppert L. Qrio, the robot that could. IEEE spectrum,2004,41(5):34-37
    [10]Zheng Y F, Hemami H. Impact effect of biped contact with the environment. IEEE Transactions on Systems, Man, and Cybernetics,1984,14(3):437-443
    [11]Zheng Y F, Fred R S. Design and motion control of practical biped robots. International Journal of Robotics and Automation,1988,3(2):70-77
    [12]Zheng Y F, Shen J, Gait Synthesis for the SD-2 biped robot to climb sloping surface. IEEE Transaction on Robotics and Automation,1990,6(1):86-96
    [13]杨新海.双足步行方法与控制系统研究[硕士学位论文].哈尔滨:哈尔滨工程大学,2006
    [14]Lohmeier S, Loffler K, Gienger M, Uibrich H, Pfeiffer F. Computer system and Control of Biped "Johnnie",2004 IEEE International Conference on Robotics and Automation. New Orieans, LA,2004.
    [15]Pfeiffer F, Loffier K, M.Gienger M. The Concept of Jogging JOHNNIE.2002 IEEE International Conference on Robotics and Automation. Washington DC, 2002,3129-3135
    [16]刘志远.双足机器人动态行走研究[博士学位论文].哈尔滨:哈尔滨工业大学,1991
    [17]纪军红.HIT-Ⅲ双足步行机器人步态规划研究[博士学位论文].哈尔滨:哈尔滨工业大学,2000
    [18]Yang J, Huang Q, Li J X, et al. walking pattern generation for humanoid robot considering upper body motion. Proc. for the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, October,2006.4441-4446
    [19]张,黄强,李光日.仿人机器人7DOF腿部的运动分析与仿真.微计算机信息,2008,5:197-199
    [20]刘莉,汪劲松,陈恳,等.THBIP-I拟人机器人研究进展.机器人,2002,24(3):262-267
    [21]Tang Q, Xiong R, Chu J. Tip over avoidance control for biped robot. Robotica, 2009,27(6):883-889
    [22]魏航信,刘明治,王淑艳,等.仿人型跑步机器人的运动学分析.中国机械工程,2006,17(13):1321-1324
    [23]李佳宁,易建强等.移动机器人体系结构研究进展[J].机器人,2003年7月,第25卷第5期:756-760.
    [24]刘金琨.智能控制.北京:电子工业出版社,2005:1-2
    [25]Colette Shen, Jinger Zhao, Brave New Machine:Will Ginger Revolutionize the way We Move? Havard Science Review,2002:57-60
    [26]刘斌.两轮自平衡小车软硬件研发与基于模糊线性化模型的变结构控制研究.西安电子科技大学硕士学位论文.2009
    [27]黎田.两轮自平衡机器人自适应控制算法的研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2007
    [28]Alexander R M. Walking made simple. Science,2005,308:58-59
    [29]Vukobratovic M, Jurieic D, Contribution to the synthesis of biped gait. IEEE Transactions on bio-Medical Engineering,1969,16(1):1-6
    [30]Huang Y. H., Liao Q. Z., Wei S. M., Guo L. "Dynamic Modeling and Analysis of a Front-Wheel Drive Bicycle Robot Moving on a Slope" in 2010 IEEE International Conference on Automation and Logistics, ICAL2010, Hong Kong and Macau, China,2010, p.43-48.
    [31]申铁龙.机器人鲁棒控制基础.清华大学出版社.2000.205-213
    [32]张军,胡海霞.空间机器人动力学建模与模型验证.空间控制技术与应用,2009,35(6):6-12
    [33]李国进,易丐,林瑜.仿人机器人的一种双向动力学建模方法.广西大学学报:自然科学版,2011,36(6):1009-1015
    [34]罗小美.基于ADAMS人体动力学的建模与仿真研究[硕士学位论文].广州:广东工业大学,2006
    [35]熊有伦,唐立新,丁汉,等.机器人技术基础.武汉:华中理工大学出版社,1996
    [36]Furusho J, Sano A, Sensor-based control of a nine-link biped. International Journal of Robotics Research,1990,9(2):83-98
    [37]Karkoub M A, Zribi M, Parent M. Modeling and stabilization of a series of self-balancing two-wheel vehicles. Journal of Multi-body Dynamics,2010,224: 221-231
    [38]Salerno A, Angeles J. Anew family of two-wheeled mobile robots:Modeling and controllability. IEEE Transactions on Robotics,2007,23:169-173
    [39]Yesiloglu S M, Temeltas H, Kaynak O. Dynamical modeling of two-wheel cart: Cooperating manipulator approach. IEEE International Conference on Systems, Man and Cybernetics,2005,3:2008-2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700