用户名: 密码: 验证码:
水中油污染物分散与降解机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,石油泄漏事故频发,事故发生后残留在水面上的油膜难以有效去除,对海洋、河流等水体的生态环境造成极大危害,针对油泄漏的处理技术是当前的研究热点之一。在水力扰动条件下,油膜被打碎形成小油滴,水体中的悬浮固体微粒将油滴包裹,形成油滴(oil)与悬浮颗粒物(mineral)的聚结物oil-mineral-aggregate。OMA聚结物的形成将有效降低油滴粒径,促进油膜分散,有利于油类污染物的自然降解。本论文系统地研究了影响OMA形成的各种因素,对粘土进行表面改性处理,增强油滴在水中与固体微粒形成OMA的效率,应用于油膜在水中的分散,并对实验数据进行模型拟合,深入探讨了OMA形成的机理,并针对OMA对油被微生物降解过程的促进进行了初步研究。主要研究内容和结果如下:
     1.对长江口和杭州湾不同位置的沉积物微粒与柴油、重油OMA的形成机理进行研究,发现颗粒物粒径分布、有机组成、颗粒物浓度是影响OMA形成效率的主要因素,仅粒径小于3μm的微细颗粒能与油滴形成OMA;沉积物的有机质含量高,有利于微粒与油滴的聚结;颗粒物浓度越高,OMA形成效率越高混合液盐度的升高在一定范围内可促进微粒在油滴表面的吸附过程。油膜经表面活性剂分散进入水相后,与固体微粒形成OMA的效率与表面活性剂类型有关,阳离子表面活性剂有利与油滴与固体微粒的聚结。
     2.采用不同类型的表面活性剂对粘土进行改性,得出CTAB改性粘土与油滴的聚结效率最高。钠基膨润土Na-B在经过酸预处理后利于CTAB在粘土上的负载,改性时间为6h、改性剂初始浓度为2g/L时,改性反应达到平衡。采用扫描电镜对改性前后的粘土微粒进行观察,发现与Na-B表面特征相比,CTAB-B的表面更粗糙,孔道结构特征更加明显,原本附着在粘土孔道结构中的微细颗粒被释放出来。通过对Na-B和CTAB-B进行红外光谱和元素分析,证实阳离子表面活性剂CTAB的长碳链有机基团被成功负载在粘土颗粒表面,成功制备了改性粘土CTAB-B.热失重试验表明,改性前后的粘土均具有一定的热稳定性,改性前的Na-B吸水性更强,改性后的CTAB-B疏水性好于Na-B。粘土改性前后表面Zeta电位的测定结果表明,改性过程使粘土表面电性发生反转,由原先带负电转为带正电。
     3.粘土经改性后,与柴油、重油形成OMA的效率得到大幅提升。通过荧光显微镜观察发现,OMA结构有三种类型,分别为液滴型、片状、固体型。粘土改性前后分别与柴油和重油形成的OMA结构有所不同,CTAB-B在油滴表面的负载量更高,OMA结构更稳定。CTAB-B与柴油形成的OMA粒径分布范围更广,形成OMA聚结体平均粒径小于Na-B与柴油形成的OMA。
     4.粘土投加量增加有利于提高OMA形成效率。OMA形成效率在粘土临界浓度、临界盐度值达到最大。表面特性是固体微粒与油滴的结合的关键因素。膨润土经改性后,与油滴间的吸引力增强,结合效率更高。建立了OMA-固体微粒浓度模型,采用线性拟合的方式,计算模型参数,该模型相关系数高于0.9。拟合结果表明,当粘土浓度小于Cs50的50%时,OMA形成效率很低,并不会随粘土浓度上升;当粘土浓度大于等于Cs50时,模型系数n越高,OMA形成效率随粘土浓度升高速率越高。
     5.固体微粒FX、Na-B、CTAB-B与柴油、重油形成OMA,有效促进了油滴在水中的分散,同时,微粒的粗糙表面为微生物的附着生长提供有利条件,增大微生物与油滴的接触面积,从而加强了两种油污染物的微生物降解过程。CTAB-B对油污染物降解促进效果最好,柴油、重油在5天内降解基本达到平衡,去除率分别达到73%和79%。水样的盐度对油降解效率产生一定影响。盐度的升高对微生物的活性有一定的抑制,但是当盐度接近CTAB-B与柴油、重油形成OMA效率最大时的临界盐度值时,由于油滴粒径降低,则促进了微生物对油污染物的降解。柴油、重油经微生物降解后生成有机酸类物质,使水样pH降低。Na-B、CTAB-B可以吸附水样中的质子,对水样pH变化起到缓冲作用,Na-B、CTAB-B存在的条件下,油污染物经降解后,水样pH变化不大。柴油、重油经过微生物降解后,短碳链有机物基本被降解,剩余成份主要为长碳链难降解有机物。
     以上研究结果有助于了解油污染物在水中的分散状态,对溢油模型的建立和修正提供实验数据和理论基础,为建立以OMA为机理的水体油污染物去除技术提供科学依据。
In recent years, oil slim in water derived from increasing oil spill accidents has been seriously threatened marine ecological environment. The technology of removing oil slim is one of the presently studying hotspots. The oil droplets dispersed from surface slicks caused by local flow and turbulence conditions aggregates with suspended mineral particles naturally and readily forming oil mineral aggregates (OMA), which enhance dispersion of spilled oil and decreases average oil droplet size by preventing the droplets recoalescence. This process is good for oil biodegradation. In this study, the influence of factors on OMA formation was investigated. Clay was modified and then used to form OMA with different oil. Models were developed for experimental data fitting and OMA formation mechanism was further discussed. Besides, the oil biodegradation facilitation by OMA was studied. The main conclusions of this dissertation are as follows:
     1. The study on OMA formation with sediment minerals from Yangtze Estuary and Hangzhou Bay found that particulate matter size distribution, organic matter content and concentration were important parameters, and light diesel and heavy oil only formed OMA with minerals with grain diameters less than3μm. High organic matter content of sediment was proved to be good for aggregation between particle and oil droplet. The OMA formation efficiency increased with the particle concentration. Oil droplet separated by different surfactant would have different OMA formation efficiency with mineral and cationic surfactant promote OMA formation.
     2. Different types of surfactant were used to modify the clay. CTAB modified clay has the higest aggregation efficiency with oil droplet. Acid pretreatment clay had better CTAB modifiy efficiency. The reaction equilibrium reached at6h with initial CTAB concentration of2g/L. The surface structure of clay before and after modified was studied with SEM. Modified clay (CTAB-B) has a more rough surface and more apparent structural channels features compared to original clay (Na-B). IR results showed that long carbon chain of CTAB was introduced to the surface of clay which confirmed the successful modification. TG curves of clays indicated that both CTAB-B and Na-B had preferable thermostability. CTAB-B had better hydrophobicity than Na-B. Zeta potential test result demonstrated that Na-B was negative charged and CTAB-B was positive charged.
     3. Light diesel and heavy oil OMA formation efficiency has increased sharply with modified clay. Under UV epi-fluorescence observation, it was found that there are three different structure types of OMA:droplet, solid and flake. OMA formed with CTAB-B and Na-B had different structure. Much more CTAB-B particles adhered to the surface of oil droplet, by which OMA formed with CTAB-B was more stable. The size of OMA formed with CTAB-B was wider ranged and the average of it was smaller.
     4. OMA formation efficiency increased with clay dosage. Maximum efficiency reaches at critical clay concentration and salinity. Surface property is the key factor for the aggregation. Surface modification increased the affinity between oil droplet and particle. OMA-particle concentration model was set up and the experimental data was linear fitted. Correlation coefficients of the model were more than0.9. The fitting results indicated that OMA formation efficiency was very low as the particle concentration was lower than50%of CS50, and OMA formation efficiency increased with particle concentration as which was more than50%of CS50. The increasing rate of efficiency with particle concentration went up with the model parameter n.
     5. The diameter of oil droplet decreased because of OMA formation with particle FX、 Na-B and CTAB-B. Meanwhile, larger rough surface provided by particles was beneficial for bacteria culture. Oil biodegradation was consequently enhanced by this process. Furthermore, oil biodegraded at the highest rate with addition of CTAB-B, and light diesel and heavy oil removal efficiency reached73%and79%in five days respectively. Yet increasing salinity restrained the microorganisms' growth, the size of oil droplet decreased with increasing salinity by which oil biodegradation was facilitated. pH of the water was reduced due to organic acids produced by oil degradation. Na-B、CTAB-B played a important role on pH balance by adsorption of hydrogen ion. Most of the organics with short carbon chain in light diesel and heavy oil was removed and only a small fraction of residual oil with long carbon chain was left.
     The above results are helpful to understand oil dispersity in water, provide experimental data and theoretical basis to predict and model the transportation of spilled oil, and offer quantitative evidence that supports further development of practical operational oil removal techniques based on OMA formation.
引文
[1]朱姝霖.海上溢油事故的影响及处理分析.航海,2011,4:57-58
    [2]王君丽,刘春光,冯剑丰,等.石油烃对海洋浮游植物生长的影响研究进展.环境污染与防治,2011,33(4):81-86
    [3]Chapman H, Purnell K, Law R J, et al. The use of chemical dispersants to combat oil spills at sea:A review of practice and research needs in Europe. Marine Pollution Bulletin.2007, 54(7):827-838
    [4]Li Z, Lee K, King T, et al. Application of entropy analysis of in situ droplet-size spectra in evaluation of oil chemical dispersion efficacy. Marine Pollution Bulletin.2011,62(10): 2129-36
    [5]Nordvik A B, Simmons J L, Bitting K R, et al. Oil and water separation in marine oil spill clean-up operations. Spill Science & Technology Bulletin.1996,3(3):107-22
    [6]Mackay D, Chang S, Wells P G. Effectiveness of oil spill chemical dispersant. Marine Pollution Bulletin.1982,13 (8):1071-1086
    [7]Jung S W, Kwon OY, Joo CK, et al. Stronger impact of dispersant plus crude oil on natural plankton assemblages in short-term marine mesocosms. Journal of Hazardous Materials.2012, (In Press)
    [8]Davis H K, Moffat C F, Shepherd N J. Experimental tainting of marine fish by three chemically dispersed petroleum products, with comparisons to the braer oil spill. Spill Science & Technology Bulletin.2002,7(5-6):257-278
    [9]Lee K. Oil-Particle Interactions in aquatic environments:influence on the transport, fate, effect and remediation of oil spills. Spill Science & Technology Bulletin,2002,8(1):3-8
    [10]Lee K, Stoffyn-Egli P, Tremblay G H, et al. Oil-mineral aggregate formation on oiled beaches:natural attenuation and sediment relocation. Spill Science and Technology Bulletin, 2003,8(3):285-296
    [11]Lee K, Stoffyn-Egli P, Owens E H. The OSSAⅡ pipeline oil spill natural mitigation of a river in oil spill by oil-mineral aggregate formation. Spill Science & Technology Bulletin, 2002,7(3-4):149-154
    [12]Zhang H, Khatibi M, Zheng Y, et al. Investigation of OMA formation and the effect of minerals. Marine Pollution Bulletin.2010,60(9):1433-41
    [13]Owens E H, Lee K. Interaction of oil and mineral fines on shorelines:review and assessment. Marine Pollution Bulletin.2003,47(9-12):397-405
    [14]Hong X, Chen W, Zhang L. A probabilistic risk forecast of accidental oil spills from vessels in Luoyuan bay, Fujian province, PRC. Procedia Environmental Sciences.2010,2: 49-56
    [15]Leschine T M. Oil spills and the social amplification and attenuation of risk. Spill Science & Technology Bulletin.2002,7(1-2):63-73
    [16]Burns G, Pond R, Tebeau P, et al. Looking to the future-setting the agenda for oil spill prevention, preparedness and response in the 21st century. Spill Science & Technology Bulletin.2002,7:31-7
    [17]Dalton T, Jin D. Extent and frequency of vessel oil spills in US marine protected areas. Marine Pollution Bulletin.2010,60(11):1939-1945
    [18]杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略.给水排水,2001,27(1):94-101
    [19]Shriadah M M A. Impacts of an oil spill on the marine environment of the United Arab Emirates along the Gulf of Oman. Marine Pollution Bulletin.1998,36(11):876-879
    [20]Ofiara D D. Natural resource damage assessments in the United States:rules and procedures for compensation from spills of hazardous substances and oil in waterways under US jurisdiction. Marine Pollution Bulletin.2002,44(2):96-110
    [21]Kingston P F. Long-term environmental impact of oil spills. Spill Science & Technology Bulletin.2002,7(1-2):53-61
    [22]Psarros G, Skjong R, Vanem E. Risk acceptance criterion for tanker oil spill risk reduction measures. Marine Pollution Bulletin.2011,62(1):116-27
    [23]张国乐.环境保护概论.北京:中国轻工业出版社,1999
    [24]王忠贤.国外水面浮油污染处理介绍.船舶.1994,(2):26-38
    [25]李言涛.海上溢油的处理与回收.海洋湖沼通报.1996,(1):73-83
    [26]Zengel S A, Michel J. Environmental effects of in situ burning of oil spills in inland and upland habitat. Spill Science & T echnology Bulltin.2003,8(4):373-377
    [27]Lessard R R, DeMarco G. The significance of oil spill dispersants. Spill Science &Technology Bulletin.2000,6(1):59-68
    [28]赵玉慧,张友篪,孙培艳.化学消油剂在溢油污染控制中的应用及其今后发展方向.海洋环境科学.2006,25(增刊):97-100
    [29]李世珍,侯正田.沿海地区溢油污染防治技术研究.海洋技术.1995,14(3):105-114
    [30]陈国华,王洪申,楼涛.羧酸系列集油剂的水面集油性能.石油化学学报.2006,22(2):81-86
    [31]易少金,向兴发,肖稳发.海面浮油的生物处理技术.油气田环境保护.2002,12(2):4-6
    [32]张青田.生物技术在海上溢油处理中的应用.海洋信息.2005(2):14-16
    [33]中国海湾志编纂委员会.中国海湾志第十四分册.北京:中国海洋出版社,1993
    [34]齐红燕,范德江,徐琳,等.长江口及邻近海域表层沉积物pH、Eh分布及制约因素.沉积学报.26(5):820-827
    [35]李占海,陈沈良,张国安.长江口崇明东滩水域悬沙粒径组成和再悬浮作用特征.海洋学报(中文版).2008,30(6):154-161
    [36]刘晓艳,钟成林,王珍珍,等.吴淞口近岸沉积物中油类污染物分布特征.上海大学学报(自然科学版).2010(6):13-14
    [37]Poirier O A, Thiel G A. Deposition of free oil by sediments settling in seawater. Bulletin of the American Association of Petroleum Geologists.1941,25(12),2170-2180
    [38]Delvigne G A L, Sweeney C E. Natural dispersion of oil. Oil & Chemical Pollution. 1988,4(4):281-310
    [39]Omotoso O E, Munoz V A, Mikula R J. Mechanisms of crude oil-mineral interactions. Spill Science & Technology Bulletin.2002,8(1):45-54
    [40]Sassen R. Biodegradation of crude oil and mineral deposition in a shallow Gulf Coast salt dome. Organic Geochemistry.1980,2(3-4):153-166
    [41]韩德刚,高执棣,高盘良.物理化学.北京:高等教育出版社,2009
    [42]Angle C W, Dabros T, Hamza H A. Predicting sizes of toluene-diluted heavy oil emulsions in turbulent flow. Part 1-Application of two adsorption kinetic models for in two size predictive models. Chemical Engineering Science.2006,61(22):7309-7324
    [43]Mousavichoubeh M, Shariaty-Niassar M, Ghadiri M. The effect of interfacial tension on secondary drop formation in electro-coalescence of water droplets in oil. Chemical Engineering Science.2011,66(21):5330-5337
    [44]Ozkan A, Aydogan S, Yekeler M. Critical solution surface tension for oil agglomeration. International Journal of Mineral Processing.2005,76(1-2):83-91
    [45]Wanli K, Yi L, Baoyan Q, Guangzhi L, et al. Interactions between alkali/surfactant/ polymer and their effects on emulsion stability. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2000,175(1-2):243-247
    [46]Ortiz D P, Baydak E N, Yarranton H W. Effect of surfactants on interfacial films and stability of water-in-oil emulsions stabilized by asphaltenes. Journal of Colloid and Interface Science.2010,351(2):542-555
    [47]Ikeda N, Krustev R, Muller H J. Thermodynamic consideration on single oil in water emulsion film stabilized by cationic surfactant. Advances in Colloid and Interface Science. 2004,108-109(0):273-286
    [48]Christov N C, Ganchev D N, Vassileva N D, et al. Capillary mechanisms in membrane emulsification:oil-in-water emulsions stabilized by Tween 20 and milk proteins. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2002,209(1):83-104
    [49]章莉娟,郑忠.胶体与界面化学(第二版).广州:华南大学出版社,2006
    [50]Hong A C, Fane A G, Burford R. Factors affecting membrane coalescence of stable oil-in-water emulsions. Journal of Membrane Science.2003,222(1-2):19-39
    [51]姚淑华,石中亮,王传胜.乳化液膜稳定性的研究.沈阳化工学院学报,2002,4:254-256
    [52]Vander K J, Schramm L L, Shelfantook B. The influence of bituminous froth components on water-in-oil emulsion stability as determined by the micropipette technique. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2001,192(1-3):15-24
    [53]Bastrzyk A, Polowczyk I, Sadowski Z, et al. Relationship between properties of oil/water emulsion and agglomeration of carbonate minerals. Separation and Purification Technology. 2011,77(3):325-30
    [54]Tsugita A, Takemoto S, Mori K, et al. Studies on O/W emulsion stabilized with insoluble montmorillonite-organic complexes. Journal of Colloid and Interface Science.1983,95(2): 551-560
    [55]Nonomura Y. Kobayashi N. Phase inversion of the Pickering emulsionsstabilized by plate-shapedclay particles. Journal of Colloid and Interface Science.2009,330(2):463-466
    [56]Mousavichoubeh M, Ghadiri M, Shariaty-Niassar M. Electro-coalescence of an aqueous droplet at an oil-water interface. Chemical Engineering and Processing:Process Intensification.2011,50(3):338-344
    [57]Rayat K, Feyzi F. Estimation of the electric field strength required for breaking the water-in-oil emulsion:A thermodynamic approach considering droplets deformation and the effect of interfacial tension. Fluid Phase Equilibria.2012,316(0):156-163
    [58]Li Y H, Schoonmaker J E. Chemical Composition and Mineralogy of Marine Sediments. Treatise on Geochemistry.2004,7:1-35
    [59]金相灿.沉积物污染化学.北京:中国环境科学出版社,1992
    [60]Moss A K, Jing X D, Archer J S. Wettability of reservoir rock and fluid systems from complex resistivity measurements. Journal of Petroleum Science and Engineering.2002, 33(1-3):75-85
    [61]Schrader M E, Yariv S. Wettability of clay minerals. Journal of Colloid and Interface Science.1990,136(1):85-94
    [62]Sayyouh M H, Dahab A S, Omar A E. Effect of clay content on wettability of sandstone reservoirs. Journal of Petroleum Science and Engineering.1990,4(2):119-125
    [63]Ajijolaiya L O, Hill P S, Khelifa A, et al. Laboratory investigation of the effects of mineral size and concentration on the formation of oil-mineral aggregates. Marine Pollution Bulletin.2006,52(8):920-927
    [64]Allen R W, Wheelock T D. Effects of pH and ionic strength on kinetics of oil agglomeration of fine coal. Minerals Engineering.1993,6(1):87-97
    [65]Fischer H B, List E J, Koh R C, et al. Mixing in inland and coastal waters. London: Academic Press.1979
    [66]Khelifa A, Hill P S, Lee K. A comprehensive numerical approach to predict oil-mineral aggregate (OMA) formation following oil spills in aquatic environments. Proceedings of the 2005 International Oil Spill Conference.2005
    [67]Eow J S, Ghadiri M, Sharif A O, et al. Electrostatic enhancement of coalescence of water droplets in oil:a review of the current understanding. Chemical Engineering Journal.2001, 84(3):173-192
    [68]Mousavichoubeh M, Ghadiri M, Shariaty-Niassar M. Electro-coalescence of an aqueous droplet at an oil-water interface. Chemical Engineering and Processing:Process Intensification.2011,50(3):338-344
    [69]Ata S, Pugh R J, Jameson G J. The influence of interfacial ageing and temperature on the coalescence of oil droplets in water. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2011,374(1-3):96-101
    [70]Yan Y, Masliyah J H. Sedimentation of solid particles in oil-in-water emulsions. International Journal of Multiphase Flow.1993,19(5):875-86
    [71]Ajijolaiya L O, Hill P S, Khelifa A, et al. Laboratory investigation of the effects of mineral size and concentration on the formation of oil-mineral aggregates. Marine Pollution Bulletin.2006,52(8):920-927
    [72]Hill P S, Khelifa A, Lee K. Time scale for oil droplet stabilization by mineral particles in turbulent suspensions. Spill Science & Technology Bulletin.2002,8(1):73-81.
    [73]Bai J, Zhang T, Fan W. The synergetic effect between heavy oil components and emulsifier in heavy oil-in-water emulsion. Journal of Petroleum Science and Engineering. 2009,69(3-4):189-192
    [74]Khelifa A, Stoffyn-Egli P, Hill P S, et al. Characteristics of oil droplets stabilized by mineral particles:Effects of Oil Type and Temperature. Spill Science & Technology Bulletin. 2002,8(1):19-30
    [75]Khelifa A, Stoffyn-Egli P, Hill PS, et al. Effects of salinity and clay type on oil-mineral aggregation. Marine Environmental Research.2005,59(3):235-254
    [76]Le F S, Guyomarch J, Merlin F X, et al. The influence of salinity on oil-mineral aggregate formation. Spill Science and Technology Bulletin.2002,8(1):65-71
    [77]Khelifa A. Effects of chemical dispersants on oil-SPM interaction. Savannah, Georgia: Proceedings of the International Oil Spill Conference.2007
    [78]Guyomarch J, Le F S, Merlin F X. Effect of suspended mineral load, water salinity and oil type on the size of oil-mineral aggregates in the presence of chemical dispersant. Spill Science & Technology Bulletin.2002,8(1):95-100
    [79]Sterling J M C, Bonner J S, Ernest A N S, et al. Chemical dispersant effectiveness testing: influence of droplet coalescence. Marine Pollution Bulletin.2004,48(9-10):969-977
    [80]Li Z, Kepkay P, Lee K, et al. Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves. Marine Pollution Bulletin.2007,54(7): 983-993
    [81]Delvigne G A L. Physical appearance of oil in oil-contaminated sediment. Spill Science & Technology Bulletin.2002,8(1):55-63
    [82]Szymonski M, Kolodziej J, Such B, et al. Nano-scale modification of ionic surfaces induced by electronic transitions. Progress in Surface Science.2001,67(1-8):123-138
    [83]Shi T, Shao M, Zhang H, et al. Surface modification of porous poly(tetrafluoroethylene) film via cold plasma treatment. Applied Surface Science.2011,258(4):1474-1479
    [84]Rotshtein V P, Proskurovsky D I, Ozur G E, et al. Surface modification and alloying of metallic materials with low-energy high-current electron beams. Surface and Coatings Technology.2004,180-181(0):377-381
    [85]Prakash S, Karacor M B, Banerjee S. Surface modification in microsystems and nanosystems. Surface Science Reports.2009,64(7):233-54
    [86]Govender S, Swart P. Surfactant formulations for multi-functional surface modification. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2008,331(1-2):97-102
    [87]曲燕,张超杰,周琪.有机改性沸石去除有机污染物的研究.工业水处理,2008,28(3):17-19
    [88]Li Z, Todd B, Bowman R S. Sorption of ionizable organic solutes by surfactant-modified zeolite. Environmental Science and Technology.2000,34(17):3756-3760
    [89]Benkli Y E, Can M F, Turan M, et al. Modification of organo-zeolite surface for the removal of reactive azo dyesin fixed-bed reactors. Water Reasearch,2005,39(2-3):487-493
    [90]Zhang H, Kin Y, Dutta P K. Controlled release of paraquat form surface-modified zeolite Y. Micorpoorus and Mesoporous Materials.2006,88 (1-3):312-318
    [91]王俊岭,冯萃敏,龙莹洁,等.改性石英砂过滤除磷试验研究.工业水处理.2008,28(5):60-64
    [92]Kodama S, Habaki H, Sekiguchi H, et al. Surface modification of adsorbents by dielectric barrier discharge. Thin Solid Films.2002,407(1-2):151-155
    [93]Abdel-Aal S E, Gad Y H, Dessouki A M. Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater. Hazardous Materials.2006,129(1-3): 204-215
    [94]Huang J, Huang K, Liu S, et al. Synthesis, characterization, and adsorption behavior of aniline modified polystyrene resin for phenol in hexane and in aqueous solution. Colloid and Interface Science.2008,317(2):434-441
    [95]Margot A. Llosa T, David A, et al. Preparation of porous chelating resin containing linear polymer ligand and the adsorption characteristics for harmful metal ions. Reactive & Functional Polymers.2002,53:91-101
    [96]Senkal B F, Bildik F, Yavuz E, et al. Preparation of poly(glycidyl methacrylate) grafted sulfonamide based polystyrene resin with tertiary amine for the removal of dye from water. Reactive & Functional Polymers.2007,67:1471-1477
    [97]Masquee N, Marcee R M, Borrull F. New polymeric and other types of sorbents for solid-phase extraction of polar organic micropollutants from environmental water. Trends in Analytical Chemistry.1998,17(6):384-394
    [98]Pan B, Chen X, Pan B, et al. Preparation of an aminated macroreticular resin adsorbent and its adsorption of p-nitrophenol from water. Journal of Hazardous Materials.2006,137(2): 1236-1240
    [99]张颖心,张天胜.膨润土在环境污染治理方面的研究进展.工业水处理.2002,22(10):9-11
    [100]时小兵,曹吉林.膨润土及膨润土改性在废水处理中的应用.中国非金属矿业导刊.2005,46(2):47-49
    [101]Alther G R. Organically modified clay removes oil from water. Waste Management. 1995,15(8):623-628
    [102]Zhang H P, Khatibi M, Zheng Y, et al. Investigation of OMA formation and the effect of minerals. Marine Pollution Bulletin.2010,60(9):1433-1441
    [103]Reed M, Turner C, Odulo A. The role of wind and emulsification in modelling oil spill and surface drifter trajectories. Spill Science & Technology Bulletin.1994,1(2):143-157
    [104]Reed M, Johansen O, Brandvik PJ, et al. Oil spill modeling towards the close of the 20th century:overview of the state of the art. Spill Science & Technology Bulletin.1999,5(1): 3-16
    [105]J. Lehr W, Simecek-Beatty D. The relation of langmuir circulation processes to the standard oil spill spreading, dispersion, and transport algorithms. Spill Science & Technology Bulletin.2000,6(3-4):247-253
    [106]Fitzpatrick M, Warren R, Ekrol N. South arne field development:an environmental impact assessment of oil spills. Spill Science & Technology Bulletin.2000,6(2):133-143
    [107]Al-Rabeh A H, Cekirge H M, Gunay N. A stochastic simulation model of oil spill fate and transport. Applied Mathematical Modelling.1989,13(6):322-329
    [108]Venosa A D, Zhu X. Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Science & Technology Bulletin.2003,8(2):163-178
    [109]Margesin R, Schinner F. Biodegradation of diesel oil by cold-adapted microorganisms in presence of sodium dodecyl sulfate. Chemosphere.1999,38(15):3463-3472
    [110]Hozumi T, Tsutsumi H, Kono M. Bioremediation on the shore after an oil spill from the Nakhodka in the sea of Japan. I. Chemistry and characteristics of heavy oil loaded on the Nakhodka and biodegradation tests by a bioremediation agent with microbiological cultures in the laboratory. Marine Pollution Bulletin.2000,40(4):308-314
    [111]Hii Y S, Law A T, Shazili N A M, et al. Biodegradation of Tapis blended crude oil in marine sediment by a consortium of symbiotic bacteria. International Biodeterioration & Biodegradation.2009,63(2):142-150
    [112]杜海.表面活性剂增强生物降解柴油的基础研究.2005
    [113]谭文捷,李宗良,丁爱中,等.土壤和地下水中多环芳烃生物降解研究进展.生态 环境.2007,16(4):1310-1317
    [114]Tyagi R D, Tran F T, Chowdhury A. Biodegradation of petroleum refinery wastewater in a modified rotating biological contactor with polyurethane foam attached to the disks. Water Research.1993,27(1):91-99
    [115]Yang L, Lai C T, Shieh W K. Biodegradation of dispersed diesel fuel under high salinity conditions. Water Research.2000,34(13):3303-3314
    [116]Nyman J A, Klerks P L, Bhattacharyya S. Effects of chemical additives on hydrocarbon disappearance and biodegradation in freshwater marsh microcosms. Environmental Pollution. 2007,149(2):227-38
    [117]Lock M A, Wallace R R, Westlake D W S. Biodegradation of synthetic crude oil in two rivers of Northern Alberta, Canada. Water Research.1982,16(4):497-500
    [118]Walter U. Degradation of pyrene by Rhodococcus sp. UW1. Microbial Biotechnology, 1991,34:671-676
    [119]Law A T. Oil degradation in the Straits of Malacca:Phenanthrene degradation by AR-3. Journal of Marine Biotechnology.1997,5:162-167
    [120]Ossert I, Bartha R. The fate of petroleum in soil ecosystems Altlas R M. New York: Macmillan Publishing Corporation.1984
    121Mihelcic J R, Luthy R G. Degradation of polycyclic aromatic hydrocarbons under various redox conditions in soil-water systems. Applied Environmental Microbiology.1988,54: 1182-1187
    [122]张景来,李会爽,周磊,等.海洋石油污染物微生物降解的研究.安徽农业科学.2011,39(29):18069-18071
    [123]Getter C D, Ballou T G, Bruce K C. Effects of dispersed oil on mangroves synthesis of a seven-year study. Marine Pollution Bulletin.1985,16(8):318-324
    [124]Lee K, Weise AM, St-Pierre S. Enhanced oil biodegradation with mineral fine interaction. Spill Science & Technology Bulletin.1996,3(4):263-267
    [125]Stotzky G, Rem L T. Influence of clayminerals onmicroorganisms I.Montmorillonite and kaolinite on bacteria. Canadian Journal Microbiological.1966,12:547-563
    [126]Loosdrecht V, Lyklema M C M, Norde J, et al. Influence of interfaces on microbial activity. Microbiologial Reviews.1990,54:75-87
    [127]Sun J, Khelifa A, Zheng X, et al. A laboratory study on the kinetics of the formation of oil-suspended particulate matter aggregates using the NIST-1941b sediment. Marine Pollution Bulletin.2010,60(10):1701-1707
    [128]Gibbs R J. Coagulation rates of clay minerals and natural sediments. Journal of Sedimentary Petrology.1983:53(4):1193-1203
    [129]Sondi I, Biscan J, Pravdic V. Electrokinetics of pure clay minerals revisited. Journal of Colloid and Interface Science.1996,178:514-522
    [130]Pravdic V. Surface charge characterization of sea sediments. Limnology and Oceanography.1970,15(2),230-233
    [131]Liu J, Zhou Z, Xu Z et al. Bitumen-clay interactions in aqueous media studied by zeta potential distribution measurement. Journal of Colloid and Interface Science.2002,252: 409-418
    [132]秦宗会,谭蓉.用刚果红分光光度法测定阳离子表面活性剂.分析测试学报.2007,26(1):113-116.
    [133]潘慧,蓝咏,吴锐钊CTAB与SDS对膨润土改性的界面性质研究.华南师范大学学报(自然科学版).2008,1:88-93
    [134]Stoffyn-Egli P, Lee K. Formation and characterization of Oil-Mineral Aggregates. Spill Science & Technology Bulletin.2002,8(1):31-44
    [135]杨丞磊,罗宇维,陈平,等.石油烃降解茵的初筛及其降解性能研究.化学工程师.2010,174(3):19-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700