用户名: 密码: 验证码:
STAT1、STAT5A基因多态性与中国荷斯坦奶牛产奶性状的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以199头中国荷斯坦奶牛为研究对象,采用PCR-SSCP的方法,系统的研究了STAT1(GeneID:510814)基因内含子1,4,10,11,18,19,25及3′UTR等十个位点与STAT5A(GeneID: AJ237937)基因外显子7~12,内含子14共17个位点的多态性,并将其与第一至三个胎次的产奶性状进行了关联分析。目的在于探索STAT1、STAT5A基因对中国荷斯坦奶牛产奶性状的影响,为今后良种奶牛的选育提供一定的理论依据。研究结果如下:
     在STAT1基因中,在内含子11 P1,P2及3′UTR 3个位点发现了多态性,其余位点在所研究的群体中未发现多态性;在STAT5A基因中,只在内含子9和内含子14两处发现多态,其余位点均没有多态性。各多态位点的突变情况及不同基因型与产奶性状的相关性如下所示:
     1. STAT1基因内含子11 P1基因多态性及其与产奶性状的相关性
     以中国荷斯坦奶牛基因组DNA为模板,用自行设计的引物P1对STAT1基因的内含子11进行PCR扩增,产物长度为369bp。经聚丙烯酰胺凝胶电泳后发现,该位点存在3种基因型,分别命名为AA,AB,BB;基因型频率分别为0.442,0.462,0.096。经测序发现,突变产生在28739碱基处,为G转换为A。3种基因型与产奶性状的关联分析表明:BB基因型个体第一、二胎次乳蛋白率均显著高于AA型和AB型个体(P<0.05);3种基因型对各胎次产奶量及乳脂率均没有显著影响(P>0.05),但呈现出BB>AB>AA的趋势。
     2. STAT1基因内含子11 P2基因多态性及其与产奶性状的相关性
     由引物P2扩增出的片段,经聚丙烯酰胺凝胶电泳分型发现,在该扩增片段存在三种基因型,分别命名为CC,CD,DD,基因型频率分别为0.331,0.196,0.473。经测序发现,3种基因型由28873碱基处发生G颠换为C而产生。3种基因型与产奶性状的关联分析表明:DD型个体的第三胎次的产奶量显著高于CC型个体(P<0.05),DD型个体的第二胎次的乳蛋白率显著高于CC和CD型个体(P<0.05),3种基因型对各胎次乳脂率均没有显著影响(P>0.05)。
     3. STAT1基因3′UTR基因多态性及其与产奶性状的相关性
     本试验对3′UTR不同位置自行设计了3对引物,结果仅在引物1的扩增片段中发现多态性。该位点存在3种基因型,分别命名为TT,CT,CC,基因型频率分别为0.437,0.116,0.447。测序结果表明,突变发生在141930碱基处,为C转换T。3种基因型与产奶性状的关联分析表明:基因型CC,CT个体的第一、二胎次产奶量均显著高于TT型个体(P<0.05);CC型个体的第一、三胎次乳蛋白率均显著高于TT型个体(P<0.05)。三种基因型对三个胎次乳脂率的影响差异均不显著(P>0.05),但呈现出CC>CT>TT的趋势。
     4. STAT5A基因内含子9基因多态性及其与产奶性状的相关性
     用自行设计的引物对STAT5A基因外显子10进行扩增,经聚丙烯酰胺凝胶电泳分型发现了三种基因型,分别命名为GG,AA ,GA,基因型频率分别为0.112,0.138,0.75。经测序后序列比对发现,突变产生在内含子9,为9501碱基处发生G转换为A的突变。与产奶性状的关联分析表明:AA型个体的第三胎次产奶量极显著高于GA和GG型个体(P<0.01) ,GG型个体第二、三胎次乳蛋白率显著高于AA和GA型个体(P<0.05);GG,GA型个体第一、三胎次乳脂率显著高于AA型个体(P<0.05)。
     综上所述,STAT1,STAT5A基因对中国荷斯坦奶牛的产奶性状的影响均达到了显著水平,因此可以将这2个基因作为荷斯坦奶牛分子标记辅助选择的候选基因。
The polymorphisms of seventeen sites which were intron 1,4,10,11,18,19,25, and 3′UTR of STAT1gene(GeneID:510814)and exon7-12, intron 14 of STAT5A gene(GeneID: AJ237937)were detected in 199 Chinese Holstein cattle with PCR-SSCP , and the association between the polymorphisms and milk production traits of three birth orders were analyzed. The aim was to choose perfect markers which can provide theoretical base for breeding in dairy cattle. The results were as follows:
     Only three sites existed polymorphism in STAT1 gene and two sites in STAT5A gene, which were intron11 (P1and P2), 3′UTR of STAT1 gene and intron9, 14 of STAT5A gene. The analysis of association between different genotypes and milk traits were showed as follows:
     1. The association between polymorphism of intron11 (P1) of STAT1 gene and milk production traits
     Primer designed by primer5.0 were used to amplify the DNA of ChineseHolstein cattle, the length of product was 369 bp. Three genotypes AA,AB andBB were identified after PCR-SSCP, the frequency of each genotype was: 0.442,0.462,0.096.The sequencing results showed that the mutation was chage of G→A in position 28739.the analysis between different genotypes and milk production traits showed that : cows with genotype BB had significantly higher protein percent (P%) in the first and second birth orders than that of genotype AA and AB(P<0.05); there were no significant differences among three genotypes on 305 days milk yield, and fat percent (F%) of all birth orders, while the tendency of BB>AB>AA was showed.
     2. The association between polymorphism of intron11 (P2) of STAT1 gene and milk production traits
     The product amplified by primer P2 was analyzed by PCR-SSCP. There were three genotypes: CC, CD and DD, the frequency of each genotype was: 0.331, 0.196, 0.473. The sequencing results showed that three genotypes were caused by the mutation of G→C in position 28873. the analysis between different genotypes and milk production traits showed that: cows with genotype DD had significantly higher milk yield in the third birth order than that of genotype CC (P<0.05), cows with genotype DD had significantly higher protein percent (P%) in the second birth order than that of genotype CC,CD (P<0.05), there were no significant differences among three genotypes on fat percent (F%) of all birth orders(P>0.05).
     3. The association between polymorphism of 3′UTR of STAT1 gene and milk production traits
     Three primers were designed to amplify different segments in 3′UTR, while only one segment was found polymorphism. There were three genotypes: TT, CT and CC, the frequency of each genotype was: 0.437, 0.116, 0.447. The sequencing results showed that the mutation was C→T in position 141930. the analysis between different genotypes and milk production traits showed that: Cows with genotype CC or TT had significantly higher 305 days milk yield in the first and second birth orders; and cows with genotype CC had significantly higher protein percent (P%) than genotype TT in the first and third birth orders; there were no significant differences among three genotypes on fat percent (F%).
     4. The association between polymorphism of intron9 of STAT5A gene and milk production traits
     Exon 10 was amplified by one primer, the segment was analyzed by PCR-SSCP, three genotypes GG, AA and GA were found, and the frequency of each genotype was: 0.112, 0.138, and 0.75. The sequencing results showed that the mutation was in intron 9, which were G→A in position 9501. the analysis between different genotypes and milk production traits showed that : Cows with genotype AA had significantly higher 305 days milk yield than genotype GA and GG in the third birth orders(P<0.01), Cows with genotype GG had significantly higher protein percent (P%) than genotype AA and GA in the second and third birth orders(P<0.05), Cows with genotype GG and GA had significantly higher fat percent (F%) than genotype AA in the first and third birth orders(P<0.05).
     We could conclude that the effect of STAT1 gene and STAT5A gene on milk trait was obviously, so these two genes could be used as candidate genes for MAS of Chinese Holstein cattle.
引文
[1] 张雅丽. 陕西畜牧业发展思路及对策[J]. 陕西农业科学,2002(1):23~25.
    [2] 丁荣.全营养食品牛奶.山东食品科技,2002(3): 21
    [3] 李国平.正确评价牛奶的营养价值. 南京职业技术学院学报,2005,10 (2):22~24
    [4] 翟明霞,李自强等[J].牛奶及其制品营养分析。山东食品科技,2004(12):20
    [5] Botstein D, et al.construction of a genetic linkage map in man using restriction fragment length polymorphism [J].Hum Genet,1980, 32: 314~331.
    [6] Mullis K, et al. specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction [J].Methods Enzgmol, 1985, 155: 338~350.
    [7] Lander E S, Botsten D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics, 1989, 121:185~199.
    [8] Hartmut R K, Ian K M , Ack I E, et al. Fish species identification in canned tuna by PCR-SSCP validation by a collaborative study and investigation of intra species variability of the DNA patterns[J].Food Chemistry,1999,64: 263~268.
    [9] Jeffreys A, et al. Hyper variable minisatellite region in human DNA[J]. Nature, 1985, 314: 67~73.
    [10] Skinner D M, et al. The sequence of a hermit crab satellite DNA is (TAGG) n- (ATCC)n[J].Biochemistry, 1984,13:3930~3937.
    [11] Schafer M, et al, Three random loci in human genome with base pair change polymorphisms [J].Cytogenet cell genet, 1982,32 : 314~315.
    [12] Epplen T T, et al. A simple repeated GATA/GACA sequence in animal genome [J]. Heredity, 1988, 79: 409~416.
    [13] Nakamura Y, et al. Variable number of tandem repeat markers for human gene maping[J].Science, 1987, 235: 1616~1622.
    [14] Vassar G,et al, A sequence in 13 phages detects hypyer variable minisatellites I human and animal DNA [J]. Science, 1987, 235: 683~684.
    [15] Orita M K, Suzuki Y K, et al. Rapid and sensitive detection of mutations and DNA polymorphisms using the polymerase chain reaction[J]. Genomics, 1989, 5: 8741.
    [16] Willians J G, et al, DNA polymorphisms amplified by arbitrary primers are useful genetic markers [J]. Nucl Acid Res, 1990, 18: 6513~6535.
    [17] Zabeau M G, Vos P, et al. European patent 0535858, AI:1993-03-31.
    [18] Guptu M, chyi Y S. Amplification of DNA markers from evolutionary diverse genome using single primers of simple-sequence repeats[J].Theor Appl Genet,1994, 89: 998~1006.
    [19] Ziethiewisz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeats (SSR) anchored polymerase chain reaction amplification [J]. Genomics, 1994, 20: 176~183.
    [20] Martinez A Z, Delgado J V, Rodero A, et al. Genetic structure of the Iberian pig breed using microsatellites [J].Anim Genet, 2000, 31: 295~301.
    [21] Welsh J, Chada K, Dalal S S, et al. Arbitrarily primed PCR finger printing of RNA[J].Nucleic AcidRes , 1992, 20: 4965~4970.
    [22] Caetano A. DNA amplification finger printing using very short arbitrary oligonucleotide primers[J]. Biotechnology, 1991, 9: 553~557.
    [23] Yiping zhang, John R, Stommel. Development of SCAR and CAPs markers linked to the beta-gene in tomato [J]. Crop science, 2001, 41: 1602~1607.
    [24] Paran I, Michelmore R W. Development of PCR-based markers linked to downy mildew resistance in lettuce [J]. Theor Appl Genet, 1993, 85(3): 985~993.
    [25] Primmer C R, Borge T, Lindell J and Saetre G. P. Single nucleotide polymorphism characterization in species with limited available sequence information: hiGH nucleotide diversity revealed in the avian genome[J]. Molecular Ecology,2002, 11:603~612.
    [26] Hatey F,Tosser-klopp G, Clouscard martinaco C, et al. Expressed sequence tags for genes: a review [J].Genet Sel Evol, 1998, 30(5): 521~541.
    [27] Etscheid M, Riesner D. TGGE and DGGE. In: Karp A, Issac P. G. and Ingram D S (eds), Molecular Tools f or Screening Biodiversity. Chapman & Hall ,London , 1998, 133 ~156.
    [28] Alfons Ginel, Heinz Sedler. Plant transposable enements and gene tagging [J].Plant Mol Biol, 1992,19:39~49.
    [29] Vora G J, Meador C E, Stenger DA, et al. Nucleic acid amplification strategies for DNA microarray-based pathogen detection[J].Appl Environ Microbiol. 2004,70(5): 3047~3054.
    [30] Noumi T K,Mosher M E K,et al. A phenylalanine for serine substitution in the Bsubunit of Escherich iacoli F1-ATPase affects dependence of its acticity on divalenti cation [J]. Biol Chem 1984, 259: 10007.
    [31] Orita M K, Iwahana H K, et al.Detection of polymorphisms of human DNA by gel electrophoresis as singe-strand conformation polymorph ism s[J].Proc Nat1 Acad Sci USA:1989,86:27701.
    [32] Hoshino S K, Kimara A S K, et al.Polymerase chain reaction single strand conformation polymorph ismanalysis of polymorph ism in DPA1 and DPB1 genes Pasingle Keconomical and rapid method for histo compatibility testing[J].Hum Immuno, 1992, 33: 981.
    [33] Lander E S. The new genomics:global views of biology[J].Science,1996, 274,536~539.
    [34] Brookes A J. The essence of SNPs[J].Gene, 1999,234:177~186.
    [35] Wang D G, Fan J B, Siao C J, et al. Larger scale identification, mapping,and genotyping of single-nucleotide polymorphism in the human genome[J].Science,1998,280: 1077~1082.
    [36]. Syvanen A C. Accessing genetic variation: genotyping single nucleotide polymorphisms [J]. Nature Review Genetics, 2001, 2 :930~942.
    [37] Rafalski J A. Application of single nucleotide polymorphisms in crop genetics [J].Current Opinion in Plant Biology, 2002a,5 :94~100.
    [38] Rafalski J A.Novel genetic mapping tools in plants :SNP and LD2based approaches[J].Plant Science, 2002b,162 : 329~333.
    [39] See D, Kanazin V, Talbert H , Blake T. Electrophoresis detection of single nucleotide polymorphisms [J]. Biotechniques, 2000, 28 : 710~716.
    [40] 方宣钧,昊为人.唐纪良.作物 DNA 标记辅助育种[M].北京:科技出版社,2001.
    [41] 邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记[M],北京:科技出版社,2001.
    [42] 欧江涛. DNA 分子标记与动物育种[J]. 西南民族学院学报(自然科学版), 2002, 28(4) :524~529.
    [43] 戴如娟,吴常信.DNA 标记及其在家畜遗传育种中的应用[J].中国畜牧杂志.1996,32(5):55~57.
    [44] 龙继蓉. RAPD 技术及其在动物遗传育种中的应用及前景[J]. 四川畜牧兽医, 1999, 26(5)月增刊):60~62.
    [45] 李宁,吴常信,陈永福.畜禽基因图谱[J]. 高技术通讯,1996,5:59~62.
    [46] Bishop M D. A genetics linkage map for cattle[J].Genetics,1994,136:619~639.
    [47] 宋九洲,张沅. DNA 片段多态性与标记基因辅助选择(MAS) [J]. 中国畜牧杂, 1994, 30(5):49~51.
    [48] Lande R, Thompson R. Efficiency of marker-assisted in the improvement of quantitative traits[J].Genetics,1990,124:743~765.
    [49] 晏兆莉,张成忠.家畜育种中 MAS 的遗传标记与 QTL[J]. 西南民族学院学报(自然科学版),1996,22(2):206~210.
    [50] 朱庆.畜禽遗传标记辅助选择的研究与应用[J]. 四川畜牧兽医,2000,27(113):82~83.
    [51] Darnell JJ, Kerr IM, Stark, et al. Jak-STAT pathways and transcriptional activation in response to IFNs and other extra cellular signaling proteins [J]. Science, 1994, 264:1415~1421.
    [52] Darnell, J. E. STATs and gene regulation. Science, 1997, 277:1630–1635.
    [53] John J, O’Shea, Massimo Cadina, Robert D. Schreiber. Cytokine signaling in 2002: New Surprises in the Jak/STAT Pathway[J]. Cell,2002,109,S121~S131.
    [54] Timothy Hoey, Ulrike Schindler. STAT structure and function in signaling[J]. Genetics and Development, 1998,(8):582~587.
    [55] Zhang T, Kee W H, Seow K T, et al. The coiledcoil domain of STAT3 is essential for its SH2 domainmediated receptor binding and subsequent activation induced by epidermal growth factor interleukin-6 [J]. Mol Cell Biol, 2000, 20:7132~7139.
    [56] McBride K M, McDonald C, Reich NC, Nuclear export signal located within the DNA-binding domain off the STAT1 transcription factor[J]. EMBO Journal, 2000,19:6196~6206.
    [57] Chen X, Vinkemeier U, Zhao Y, et al. Crysal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA [J].Cell,1998,93:827~839.
    [58] 王俐. STAT调空机制研究进展.现代免疫学,2005,25(1):78~81.
    [59] 侯一峰. STAT家族与细胞因子的信号转导.[J]国外医学、生理、病理科学与临床分册,2000,20(5):351~353.
    [60] 李清刚. 细胞因子受体介导的信号传递JAK2STAT 研究新进展[J].国外医学免疫学分册,2000,23(1): 26~29.
    [61]王蓉. 细胞因子信号传导JAK/ STAT 途径的调控[J].微生物学免疫学进展,2001,29(2):86~88.
    [62] Akira, S. Functional roles of STAT family proteins: Lessons from knockout mice [J]. Stem Cells, 1999, 17:138~146.
    [63] Kisseleva T, Bhattachary S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges[J].Gene,2002,285:1~24.
    [64] Band, M. R., J. H. Larson, M. Rebeiz, C. A. Green, D. W. Heyen, J.Donovan, R. Windish, C. Steining,P. Mahyuddin, J. E. Womack, and H. A. Lewin. An ordered comparative map of the cattle and human genomes [J]. Genome Res. 2000, 10:1359~1368.
    [65] O. Cobanoglu, I. Zaitoun, Y. M. Chang, G. E. Shook, and H. Khatib. Effects of the Signal Transducer and Activator of Transcription (STAT1) Gene on Milk Production Traits in Holstein Dairy Cattle [J]. Dairy Sci, 2007, 89:4433~4437.
    [66] Boutinaud, M., and H. Jammes. Growth hormone increases Stat5 and Stat1 expression in lactating goat mammary gland: A specific effect compared to milking frequency [J]. Domest. Anim. Endocrinol, 2004, 27:363~378.
    [67] Stewart, W. C., R. F. Morrison, S. L. Young, and J. M. Stephens. Regulation of signal transducers and activators of transcription (STATs) by effectors of adipogenesis: Coordinate regulation of STATs1, 5A, and 5B with peroxisome proliferator-activated receptor-γ and C/AAAT enhancer binding protein-α[J]. Biochim. Biophys. Acta, 1999, 1452:188~196.
    [68] Watson, C. J. Stat transcription factors in mammary gland development and tumorigenesis [J]. Mammary Gland Biol. Neoplasia, 2001, 6:115~127.
    [69] Goldammer T , Meyer L , Seyfert H M , et al .STAT5A encoding gene maps to chromosome 19 incattle and goat and chromosome 11 in sheep [ J ] .Mammal Genome , 1997 , 8 : 705~706.
    [70] Molenaar A , Wheeler TT , McCracken J Y, et al .The STAT3 encoding gene resides within the 40kbgap between the S TA T5A and S TAT5B encodinggenes in cattle [J ] . Anim Genet , 2000 , 31 : 333~346.
    [71] Schmitt-Ney, M., W. Doppler, R. K. Ball, and B. Groner. Beta-caseingene promoter activity is regulated by the hormone-mediated relief of transcriptionalrepression and a mammary-specific nuclear factor. Mol. Cell.Biol.1991,11:3745~3755.
    [72] Schmitt-Ney M, Happ B, Hofer P, Hynes NE & Groner B Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis. Molecular Endocrinology1992,6: 1988~1997.
    [73] Liu, X., G. W. Robinson, F. Gouilleux, B. Groner, and L. Hennighausen. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc. Natl. Acad. Sci, 1995,USA 92:8831~8835.
    [74] Liu, X., G. W. Robinson, K. U. Wagner, L. Garrett, A. Wynshaw- Boris, and L. Hennighausen. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev,1997,11:179~186.
    [75] Gouilleux, F, C. Pallard, I. Dusanter-Fourt, H. Wakao, L. Haldosen, G. Norstedt, D. Levy, and B. Groner. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO[J], 1995, 14:2005~2013.
    [76] Gouilleux, F., H. Wakao, M. Mundt, and B. Groner. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO [J], 1994, 13:4361~4369.
    [77] Ball RK, Friis RR, Schoenenberger CA, Doppler W & Groner B Prolactin regulation of β-casein gene expression and of a cytosolic 120 KD protein in a cloned mouse mammary epithelial cell line.EMBO Journal[J], 1988,7 :2089~2095.
    [78] Lee C S, Kim K, Yu D Y & Lee K K Pretreatment with glucocorticoid is essential for lactogenic induction of the bovine_-casein/CAT expression in HC11 cells. Endocrine Research[J], 1998,24 :65~77.
    [79] Wyszomierski SL, Yeh J & Rosen JM Glucocorticoid receptor/signal transducer and activator of transcription 5 (STAT5) interactions enhance STAT5 activation by prolonging. STAT5 DNA binding and tyrosine phosphorylation. Molecular Endocrinology[J],1999, 13 :330~343.
    [80] Stewart WC, Morrison RF, Young SL & Stephens JM Regulation of signal transducers and activators of transcription (STATs) by effectors of adipose: coordinate regulation of STATs1,5A, and 5B with peroxisome proliferator-activated receptor-γand C/AAAT enhancer binding protein-α. Biochimica et Biophysica Acta [J], 1999, 1452 :188~196.
    [81] Davey HW, Wilkins RJ & Waxman DJ Human Genetics ’99: Sexual development; STAT5 signaling in sexually dimorphic gene expression and growth patterns. American Journal of Human Genetics [J], 1999,65: 959~965.
    [82] J. Yang, J. J. Kennelly, and V. E. Baracos. The activity of transcription factor Stat5 responds to prolactin, growth hormone, and IGF-I in rat and bovine mammary explant culture1 J. Anim. Sci. 2000, 78:3114~3125.
    [83] Waxman DJ, Frank SJ Growth hormone action: signaling via a JAK/STAT-coupled receptor. In: Conn PM, Means AR, eds. Principles of molecular regulation. Totowa, NJ: Humana Press; 2000, 55~83
    [84] Zhu T, Goh ELK, Graichen R, Ling L, Lobie PE Signal transduction via the growth hormone receptor. Cell Signaling[J],2001, 13:599~616.
    [85] Bauman, D. E., and R. G. Vernon. 1993. Effects of exogenous bovine somatotropin on lactation. Annu. Rev. Nutr. 13:437~461.
    [86] Krzysztof Flisikowski, Lech Zwierzchowski.Single strand conformation polymorphism with exon 7 of the bovine STAT5A gene .[J]Animal Science Papers and Reports,2002,2(20):133~137
    [87] J Mao, A J Molenaar1, T T Wheeler1 and H-M Seyfert. STAT5 binding contributes to lactational stimulation of promoter III expressing the bovine acetyl-CoA carboxylase-encoding gene in the mammary gland. Journal of Molecular Endocrinology ,2002, 29, 73~88.
    [88] Alexander V. Kazansky, Brian Raught, Shannon M. Lindsey,Yu-fen Wang, and Jeffrey M. Rosen. Regulation of Mammary Gland FactorBtat5a During Mammary Gland Development. Downloaded from mend.endojournals.org by on December 25, 2006.
    [89] 曹新,王强. 牛催乳素基因组极其 cDNA 全长序列的分子克隆和分析[J]. 遗传学报,2002,29(9):768~773.
    [90] Cowan C M, Dentine M R, Ax R L, et al. Structural variation around prolactin gene linked to quantitative traits in an elite Holstein sire family. Theor Appl Genet, 1990, 79: 577-582.
    [91]Udina I G,et al. Polymorphisms of bovine prolactin gene, mireosatellite, PCR-RFLP[J].Genetics,2001,37(4):511~516.
    [92] 张佳兰,昝林森. 牛催乳素受体(PRLR)基因HinfⅠ多态性与奶牛生产性能相关性研究[J].畜牧兽医学报,2007,38(9):888~892.
    [93] OC Wallis, YP Zhang, and M Wallis. Molecular evolution of GH in primates: characterisation of the GH genes from slow loris and marmoset defines an episode of rapid evolutionary change , Journal of Molecular Endocrinology, 1976,26(3): 249~258.
    [94] 宋成义,经荣斌. 畜禽 GH 基因多态性与生产性能相关研究进展[J].国外畜牧科技,2000, 27(2):25~27.
    [95] Di Stasio L, Saratore S, Alberta A. Lack of association of GHI and POU1F1 gene variation and meat production traits in Piedmontese cattle[J].Animal Genetics,2002,33:61~64.
    [96] Reichenmiller KM, Mattern C, Ranke MB, et al. IGFs, IGFBPs, IGF-Binding Sites and Biochemical Markers of Bone Metabolism during Differentiation in Human Pulp Fibroblasts[J].Horm Res,2004, 62(1):33~39.
    [97] Chung E R, Kim W T ,Kim Y S ,Hwang S W,Lee C S. PCR-SSCP genotype effects of growth prolactin and insulin-like growth factor-1 genes on milk yield in Korean cattle (Hanwoo) [C] .Asian-Australian Journal of Animal Science , 2000, Supplement :223.
    [98] Chen H, Leibenguth F. Studies on multilocus fingerprints RAPD markers and mitochondrial DNA of a gynogenetic fish (carassius auratus gibelio)[J]. Biochem Genet, 1995,33: 297~306.
    [99] Flint D J, Knight C H. Interactions of prolactin and growth hormone (GH) in the regulation of mammary gland function and epithelial cell survival [J]. Mammary Gland Biol , 1997 , 2 :41~48.
    [100] Udina I G, Turkova S O , Kostiuchenko M V , et al .Polymorphism of cattle prolactin gene : microsatellites , PSR2RFL P[J ] . Genetika , 2001 ,37 (4) : 511~516.
    [101] Ojala M, Thomas R, Famula, et al. Effect s of milk protein genotypes on the variation for milk produtiont rait s of Holstein and J ersey cows in California [J].J Dairy Sci , 1997 ,80 :1776~1785.
    [102] Bobe G, Beitz D C, Freeman A E, et a. Effect of milk protein genotypes on milk protein composition and it s genetic parameter estimates [J]. J Dairy Sci , 2006 , 89 (9) : 3296~3305.
    [103] Di Stasio L, Saratore S, Alberta A. Lack of association of GHI and POU1F1 gene variation and meat production traits in Piedmontese cattle[J].Animal Genetics,2002,33:61~64.
    [104] Malveiro E, Pereira M, Marques P X, et al.Polymorphisms at the five exons of the growth hormone gene in the algarvia goat: possible association with milk traits[J].Small Ruminant Research ,2001, 41:163~170.
    [105] Boutinaud M, Rousseau C, Keisler DH, et al. Growth hormone and milking frequency act differently on goat mammary gland in late lactation[J].J Dairy Sci,2003 ,86(2): 509~20.
    [102] Brym P, Kaminski S. New SSCP polymorphism within bovine STAT5A gene and its associations with milk performance traits [J]. Appl Genet , 2004 , 45(4) : 445~452.
    [106] Jang G W , Cho K H , Kim T H , et al . Association of Candidate genes with production traits in Korean dairy Proven and Young bulls [J]. Asian2Aust JAnim Sci , 2005 , 18 (2) : 165~169.
    [107] 何峰, 孙东晓俞英,王雅春,张沅.荷斯坦奶牛STAT5A 基因的SNPs 检测及其与产奶性状的关联分析[J].畜牧兽医学报,2007 ,38 (4) :326~33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700