用户名: 密码: 验证码:
超细含能材料结晶品质的超临界控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今战场环境变化的日新月异,对含能材料性能提出了越来越高的要求,提高含能材料的结晶品质变得至关重要。目前提高含能材料结晶品质的控制与研究有很多不足之处,而新兴的超临界流体技术发展方兴未艾,展现出了优异的特性和广阔的空间。因此,将超临界流体技术应用于控制含能材料结晶品质具有重要意义。本论文通过挖掘超临界条件下控制晶体成核和生长以及晶体形态的机理,以及研究多种溶剂在超临界CO2(SC-CO2)中的溶解特性和变化规律,利用超临界流体技术对含能材料的结晶品质进行了控制,并对影响含能材料结晶品质的各因素进行了更为深入的探讨,以实现得到理想晶型为基本目标,对理想晶型的样品做了较为系统的表征和性能测试,为其进一步工程化研究打好基础。主要工作如下:
     1.测定常用有机溶剂在SC-CO2中的溶解度。过饱和度是晶体成核和生长的推动力,通过调节过饱和度可以控制晶体粒度和粒度分布,需要对有机溶剂在SC-CO2中的溶解特性进行研究。在温度308.15K、318.15K、328.15K,压力8-15MPa的范围内,测定了丙酮、乙酸乙酯、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、环己酮和N-甲基吡咯烷酮(NMP)共7种有机溶剂在SC-CO2中的溶解度,表现出如下规律:温度相同时,溶解度随压力的升高先增大后减小;在相同压力下,高于转变压力时,温度越高,溶解度越大;低于转变压力时,温度越低,溶解度越大。这为进一步地确定和研究溶剂及不同工艺过程中的温度和压力对含能材料结晶品质的控制作用提供了良好的数据及理论支持。
     2. SEDS法(超临界流体增强溶液扩散技术)对RDX超细结晶品质的控制和扩试研究。溶剂是影响晶体形貌重要的因素,溶剂的性质不同得到了RDX的形貌不同。通过选用多种不同的有机溶剂一一进行试验对比,最终确定DMF是制备出粒状RDX的理想溶剂。在此基础上,研究了影响SEDS法制备超细RDX结晶品质的主要因素,如压力、CO2流速、溶液流速和温度等,结果表明:RDX颗粒状所占的比例随着压力升高而降低,粒度也相应减小和粒度分布变窄;温度的升高不利于得到粒度小且分布窄的RDX结晶。为制得超细结晶品质良好的RDX,做了扩试实验,扩试工艺条件为:RDX/DMF浓度26.7%、温度35℃、压力9.0MPa、溶液流速2ml/min和CO2流速6kg/h,萃取时间为15min。在最佳工艺条件下所得RDX晶体边缘光滑、形貌规则趋于球形,且粒度减小到1μm左右、粒度分布均匀,流散性良好,1h内可处理32g。SEDS法制备出的超细RDX与原料RDX相比,表现出较低的表观热分解活化能,机械感度有显著地降低。其中,特性落高值、摩擦爆炸概率和冲击波感度分别下降了67.3%、56.7%和45.6%,静电安全性合格。
     3. SEDS法和GAS法(超临界反溶剂法)对HMX结晶品质的控制。HMX是多晶型化合物,其中以β-HMX的综合性能最好、为理想晶型,因此,成功制备出对β-HMX是控制HMX结晶品质的关键。综合考虑到溶剂和工艺对HNIW晶型的作用,研究了SEDS法和GAS法工艺中多种溶剂对HMX晶型的影响,结果表明:SEDS法不能成功制得β-HMX,大都为γ-HMX结晶;当以丙酮或DMSO为有机溶剂时,在合适的工艺条件下GAS可得到β-HMX;环己酮或乙腈为溶剂时GAS工艺制得的HMX为γ-型,NMP作溶剂时为δ-型。同时,研究了溶剂和工艺对HMX形貌、粒度及粒度分布的影响,结果表明:SEDS法制得的HMX粒度小且粒度分布窄,部分可达到亚微米级,但其形貌复杂,压力升高、温度降低和浓度增大均有助于得到粒度小而形貌趋于粒状的HMX粒子;GAS法制得的HMX结晶几乎全为粒状,但粒度分布宽,有的粒度达到了30μm及以上,压力是影响HMX粒度的最主要因素。对GAS法丙酮制得的β-HMX做了性能测试,其热分析、机械感度和冲击波感度与原料相差不大。
     4. SEDS法、GAS法及“优化”SAS法对HNIW结晶品质的控制。结晶条件决定着含能材料的结晶品质,研究了不同工艺和有机溶剂对HNIW结晶品质的控制作用,结果表明:SEDS法和“优化”SAS法制备出的HNIW样品颗粒表面光滑、粒度小且分布均匀、形状规整、球形度高、纯度高;但是不能成功制得理想的ε-HNIW;分别以丙酮、乙酸乙酯为溶剂,采用GAS法可制得ε-HNIW。性能测试结果表明,GAS法以乙酸乙酯和丙酮制备出的HNIW的分解峰温较原料HNIW提前了4.29和2.93℃,放热量分别提高了647.7和357.7J/g;机械感度和冲击波感度降低,其以乙酸乙酯为有机溶剂的特性落高、爆炸概率和隔板厚度分别约降低了50.0%、30.0%和47.7%;以丙酮为有机溶剂的分别降低了约47.6%、21.7%和41.6%,静电安全性符合要求。
Battlefield environment never-ending changes and improvements, all kinds of applicationsin reality require higher and higher performance on energetic materials. So it is critical toimprove crystallization quality of the energetic materials. There are many deficiencies in thecontrol and study on enhancing crystallization quality of the energetic materials. But thenewly born supercritical fluids technology which has developed rapidly in recent years in theworld, exhibit fantastic properties and lead to an even more diverse range of applications.Therefore, it has very important significance in applying supercritical fluids technique intoenhancing crystallization quality of the energetic materials.
     In this dissertation, the dissolution characteristic and the changing trend of a variety oforganic solvents (for example, acetone, ethyl acetate, N, N-dimethyl formamide, dimethylsulfoxide, cyclohexanone, and N-methyl pyrrolidone) in supercritical CO2(SC-CO2) wasinvestigated. And the influences of experiment parameters in different manufacturingprocesses were studied. Based on the mentioned above researches, ultra-fine energeticmaterials with good crystallization quality were prepared by a series of experiments andseveral major factors influencing their quality were investigated. In the end, samples withideal crystal form were characterized and performance testing systematically so as to make agood theoretical basis for further engineering research. The main study is as follows:
     1. The solubility of common organic solvents in SC-CO2was determined. At thetemperature of308.15K,318.15K,328.15K, the range of the pressure within8-15MPa, thesolubility in common organic solvents in SC-CO2show the following rules:(1) at the sametemperature, the solubility increases with pressure increases first and then decreases;(2) underthe same pressure which is higher than the transition pressure, with the increase of thetemperature, the solubility increases either; below the transition pressure, the lower thetemperature, the greater the solubility. That provides a good data and theoretical basis for thedifferent supercritical fluids crystallization processed to study the influences of temperatureand pressure and control crystallization quality of energetic materials.
     2. The control of RDX crystallization quality and engineering research were investigatedduring the process of solution enhanced dispersion by supercritical fluids (SEDS process). Inthe SEDS process, the solvent is the most important factor to influence the morphology ofRDX crystals. For the complex morphology of crystals obtained by SEDS process, we had chosen a variety of different organic solvents and contrasted the results one by one. Theresults show that DMF is the ideal solvent to prepare granular RDX crystals. In order tocontrol effectively particle size and particle size of RDX, we explore the effects of the mainfactors (such as pressure, CO2flow rate, solution flow rate and temperature, etc) oncrystallization quality in SEDS process. When the pressure increases, the proportion of RDXgranular decreases, the particle size reduced and particle size distribution becomes narrow. Inaddition, improving temperature is not conducive to obtain RDX with small particle size andnarrow distribution. The experiment conditions on the sea are concentration26.7%,temperature35℃, pressure9.0MPa, solvent flow rate2ml/min, CO2flow rate6kg/h andextraction time15min. The edge of fine RDX particles is smooth, and shape nearly spherical;particle size reduced to1μm; fine RDX particles have good fluidity, low mechanicalsensitivity and can be prepared32g per hour. Compared with raw material RDX, ultrafineRDX prepared by SEDS process showed the activation energy is much lower, and mechanicalsensitivity reduced remarkably. Among them, characteristic height value, friction explosionprobability and shock sensitivity decreased by67.3%,56.7%and45.6%, and the electrostaticsafety is qualified.
     3. The control of HMX crystallization quality was investigated during SEDS process andGAS process (Gas Supercritical Anti-solvent). Change rule of crystal morphology and particlesize and size distribution were studied using variety of organic solvent by SEDS process andGAS process, respectively. The morphology of HMX particle prepared by SEDS process iscomplex, but the particle size is small and size distribution is narrow. In other words, theybelong to ultra-fine particle and some reaches submicron-size. Pressure increases, temperaturedecreases or concentration augments is helpful to get granular and small size HMX particles.HMX particles obtained by GAS process are almost all the granular, but have a wide particlesize distribution. Pressure is the most important factor influencing the particle size of HMX.When the other conditions are the same, the morphology and particle size varies with organicsolvent changes. Under the suitable process conditions, using GAS process can obtainβ-HMX when acetone or DMSO as organic solvent. Performance test were performed on theβ-HMX particles crystallized from acetone by GAS process. The results show that the thermalanalysis, the mechanical sensitivity and shock sensitivity tend to raw HMX.
     4. The control of HNIW crystallization quality was investigated during SEDS process, GAS process and "optimization" SAS process. Compared with "optimization" SAS processand GAS process, the HNIW particles obtained by SEDS process has smooth surface, smallsize, uniform distribution, regular shape, high sphericity, and high purity. But ε-HNIW cannotbe prepared successfully which is mainly attributed to the SEDS process. While using GASprocess, ε-HNIW can be obtained when acetone as solvent. The performance test results showthat compared with raw HNIW, the peak temperature ahead of4.29and2.93℃; heat outputincreased647.7and357.7J/g when ethyl acetate and acetone as solvent respectively.Mechanical sensitivity and shock sensitivity reduced, the drop height, the explosionprobability and the plate thickness were reduced by50%,30%and47.7%when ethyl acetateas solvent; when acetone as solvent they reduced approximately by47.6%,21.7%and41.6%;the electrostatic safety is qualified.
引文
[1]聂福德.高品质炸药研究[J].含能材料,2010,18(5):481-482.
    [2]姜夏冰.高品质ε-HNIW结晶及其降感研究[D].北京:北京理工大学.2013.
    [3]Coffey, C. Initiation by shock or impact, the effect of particle size. Paper presented atPhysics of Explosives, Technical Exchange Meeting, Berchtesgarden, Germany,1997.
    [4]刘玉存,王建华,安崇伟,等.RDX粒度对机械感度的影响[J].火炸药学报,2004,27(2):7-9.
    [5]Lee B. M., Kim, D. S., Lee Y. H. et al. Preparation of submicron-sized RDX particles byrapid expansion of solution using compressed liquid dimethyl ether. Journal ofSupercritical Fluids,2011,57:251-258.
    [6]Ulbricht Teipel. Energetic Materials[M].欧育湘.北京:国防工业出版社,2009.
    [7]王泽山.含能材料概论[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [8]炸药理论编写组.炸药理论[M].北京:国防工业出版社,1982.
    [9]潘功配,杨硕.烟火学[M].北京:北京理工大学出版社,1997.
    [10]邓延平,张景林,张伟.炸药晶体品质表征技术概述[J].山西化工,2013,33(4):27-30.
    [11]宋小兰.微纳米含能材料分形特征对其感度的影响研究[D].南京:南京理工大学.2009.
    [12]任务正,王泽山.火炸药理论与实践[M].北京:中国北方化学工业总公司,2001.
    [13]张杏芬.国外火炸药原材料性能手册[M].北京:兵器工业出版社,1991.
    [14]钟一鹏,胡雅达,江宏志.国外炸药性能手册[M].北京:兵器工业出版社,1990.
    [15]欧育湘,刘进全.高能量密度化合物[M].北京:国防工业出版社.2005.
    [16]L bbecke S., Bohn M. Thermal behavior and stability of HNIW(CL-20)[J]. Energeticmaterials-Production, processing and characterization,1998:145-1.
    [17]Borne L., Mory J., Schlesser F.. Reduced Sensitivity RDX (RS-RDX) in PressedFormulations: Respective Effects of Intra-Granular Pores, Extra-Granular Pores andPore Sizes[J]. Propellants, Explosives, Pyrotechnics,2008,33(1):37-43.
    [18]花成,黄明,黄辉,等. RDX/HMX炸药晶体内部缺陷表征与冲击波感度研究[J].含能材料,2010,18(2):152-156.
    [19]田龙,吴晓青,郑主宜,等.粒度对炸药感度影响的研究进展[J].四川化工,2013(1):28-30.
    [20]Borne L., Patedoye J. C. Quantitative characterization of internal defects in RDXcrystals[J]. Propellants, Explosive, Pyrotechnics,1999,24:255-259.
    [21]徐瑞娟,康彬,黄辉等. HMX晶体颗粒球形度的定量表征[J].含能材料,2006,14(4):280-282,289.
    [22]宗和厚,张伟斌,戴斌等. HMX和RDX晶体微细结构μCT表征[J].含能材料,2010,18(5):514-517.
    [23]李志万.药物晶型的分析方法[J].中国兽药杂志,2006,40(1):45-48.
    [24]郑丽莉.药物多晶型对药物质量的影响[J].中国药师,2008,11(3):347-349.
    [25]钱新明,王鹏飞.聚乙烯醇缩丁醛包覆氯酸钾及其安全性研究[J].含能材料,2008,16(5):606~608.
    [26]崔庆忠,焦清介,任慧,等.黑火药的防潮包覆技术研究[J].含能材料,2007,15(2):114-117.
    [27]陈鲁英,赵省向,杨培进,等. CL-20炸药的包覆钝感研究[J].含能材料,2006,14(3):171-173.
    [28]王保国,陈亚芳,张景林.亚微米HMX/FPM2602超细混合炸药的制备工艺研究[J].含能材料,2008,16(2):142-148.
    [29]孟征,欧育湘,刘进全,等.水性聚氨酯乳液破乳法包覆钝感静电的影响因素[J].含能材料,2007,15(4):387-390.
    [30]陆明,周新利. RDX的TNT包覆钝感研究[J].火炸药学报,2006,29(6):16-18.
    [31]Shine S. Microencapsulation process using supercritical Fluids.美国:英文,5766637,1998.
    [32]Subramanian B., Said S., Rajeski R. A., et al. Methods and apparatus for particleprecipitation and coating using near-critical and supercritical antisolvents[P].WO9731691,1997.
    [33]王平,刘永刚,张娟,等.超细HNS/HMX混晶的制备和性能[J].含能材料,2009,17(2):187-189.
    [34]梁逸群,张景林,姜夏冰,王保国.超细A5传爆药的制备和表征[J].含能材料,2008,16(5):515-518.
    [35]Bleich J.,Kleinebudde P.,Mller B. W. Influence of gas density and pressure onmicroparticles produced with the ASES process[J]. International Journal ofPharmaceutics,1994,106:77-84.
    [36]黄亨建,董海山,张明,习彦.高聚物改性B炸药研究(Ⅱ)[J].含能材料,2005,13(1):7-9.
    [37]邹德荣.双击推进剂用丁羟胶包覆层研制[J].含能材料,2004,12(1):52-55.
    [38]高大元.炸药的感度与安全性评价方法研究[C].全国爆炸与安全技术学术交流会,2002,116-122.
    [39]邓国栋,刘宏英.黑索金超细化技术研究[J].爆破器材,2009,38(3):31-34.
    [40]贾煜,王晶禹.含能材料细化技术展望[J].四川兵工学报,2005,2:19-22.
    [41]Rangarajan B., Lira C. T. Production of aerogels[J]. The Journal of Supercritical Fluids,1991,4(1):1-6.
    [42]日本清新株式会社.超细粉碎技术综述.中日超细粉体技术交流会论文集.南京:1993,98-102.
    [43]卢媛,吴晓青,马丽平.超细炸药制备的研究进展[J].天津化工,2010,24(5):7-9.
    [44]芮久厚,冯顺山,徐更光.直接制备超细黑索金的方法[J].北京理工大学学报,2001,21(6):786-788.
    [45]徐厚宝,盛涤伦.火工药剂细化技术评价与展望[J].火工品,2009(2).
    [46]曾贵玉,聂福德,张启戎,等.纳米含能材料研究进展[J].纳微粉体制备与应用进展——2002年纳微粉体制备与技术应用研讨会论文集,2002.
    [47]刘亚青.膨胀型红磷微胶囊阻燃剂的绿色制备研究[D].太原:中北大学,2005.
    [48]张镜澄.超临界流体萃取[M].北京:化学工业出版社,2000.
    [49]李娴,解新安.超临界流体的理化性质及应用[J].化学世界,2010,51(3):179-182.
    [50]Zabaloy M. C., Gómez M. A. Diversity of rhizobia isolated from an agricultural soil inArgentina based on carbon utilization and effects of herbicides on growth[J]. Biologyand fertility of soils,2005,42(2):83-88.
    [51]Funazukuri T., Kong C. Y., Kagei S. Predictive correlation of binary diffusion andself-diffusion coefficients under supercritical and liquid conditions[J]. The Journal ofSupercritical Fluids,2008,46(3):280-284.
    [52]赵保国,刘玉存.超临界水的性质及氧化反应原理[J].山西化工,2008(4):13-17.
    [53]Yoshii N., Miura S., Okazaki S. A molecular dynamics study of dielectric constant ofwater from ambient to sub-and supercritical conditions using a fluctuating-chargepotential model[J]. Chemical physics letters,2001,345(1):195-200.
    [54]Teipel U., Gerber P., Krause H. H. Characterization of the phase equilibrium of thesystem trinitrotoluene/carbon dioxide[J]. Propellants, Explosives, Pyrotechnics,1998,23(2):82-85.
    [55]Teipel U. Formation of particles of explosives with supercritical fluids[J]. Propellants,Explosives, Pyrotechnics,1997,22:165-169.
    [56]Teipel U., Kroèber H., Krause H. H. Formation of energetic materials using supercriticalfluids[J]. Propellants, Explosives, Pyrotechnics,2001.26:168-173.
    [57]Marioth E. Screening units for particle formation of explosives using supercriticalfluids[A]. International Annual Conference of ICT.2000.31:119.
    [58]Lee B. M., Kim D. S., Lee, Y. H., et al. Preparation of submicron-sized RDX particles byrapid expansion of solution using compressed liquid dimethyl ether[J]. Journal ofSupercritical Fluids,2011,57,251-258.
    [59]Stepanov V. Production of Nanocrystalline Nitramine Energetic Materials by RapidExpansion of Supercritical Solutions[D]. New Jersey Institute of Technology, Otto H.York Department of Chemical Engineering,2003.
    [60]Ashram-Khorassani M., Taylor L. T. Solubility determination of TNT and wax and theirfractionation from an explosive material using a supercritical fluid[J]. Chem. Eng. Data1999,44,1254.
    [61]Morris J. B., Schroeder M. A. Pesce-Rodriguez R. A., et al. Army Research Laboratory,USA, Report ARL-TR-885,1995.
    [62]Morris J. B. Separation of RDX from Composition B Via a Supercritical Fluid ExtractionProcess [R].211Technical report,1997.
    [63]高兴勇.用临界液萃取技术处理复合固体推进剂的工艺研究[J],火炸药学报,2001(1):49-51.
    [64]闻利群,张同来,秦清风. TNT在超临界二氧化碳中的溶解特性[J].含能材料,2010,18(3):278-281.
    [65]闻利群,张树海,张景林.黑索今炸药在超临界二氧化碳中溶解特性的实验研究[J].含能材料,2006,14(3):178-180.
    [66]何伟强,王晶禹,宋小兰,等.超临界萃取B炸药实验研究[J].火工品,2010,6:14-16.
    [67]Wang T., Pei L., Zhang J. The study of supercritical fluids technology applied inexplosives. Proceedings of the International Autumn Seminar on Propellant, Explosivesand Pyrotechnics,China,2003.
    [68]Sunol A.K. Supercritical fluid aided coating of particulate material. U.S.Patent6,426,116,2002.
    [69]张树海,苟瑞君,张景林.硝胺炸药的超临界溶液快速膨胀包覆技术研究[J].火工品,2004,6:21-24.
    [70]柴涛,张景林.混合炸药造型粉的超临界流体反溶剂过程制备[J].华北工学院学报,2005,26(4):274-277.
    [71]朱自强.超临界流体技术原理和应用[M]北京:化学工业出版社,2003.
    [72]Agrawal P. M., Rice B. M., Sorescu D. C., et al. NPT-MC simulations of enhancedsolubility of RDX in polar-modified supercritical CO2[J]. Fluid phase equilibria,1999,166(1):1-19.
    [73]Agrawal P. M., Rice B. M., Sorescu D. C., et al. Models for predicting solubilities of2,4,6-trinitrotoluene (TNT) and1,3,5-trinitro-1,3,5-s-triazine (RDX) in supercriticalCO2: isothermal-isobaric Monte Carlo simulations[J]. Fluid phase equilibria,1999,187:139.
    [74]Agrawal P. M., Sorescu D. C., Rice B. M., et al. A model for predicting the solubility of1,3,5-trinitro-1,3,5-s-triazine (RDX) in supercritical CO2: isothermal-isobaric MonteCarlo simulations[J]. Fluid phase equilibria,1999,155(2):177-191.
    [75]Gallagher P. M., Krukonis V. J., and Coffey M. P. GAS anti-solvent recrystallization andsubsequent processing of RDX and HMX[P]. U.S. Patent NO.5,389,263.1992.
    [76]Gallagher P. M., Coffey M. P., Krukonis V. J., et al. Gas anti-solvent recrystallization ofRDX: formation of ultra-fine particles of a difficult-to-comminute explosive[J]. TheJournal of Supercritical Fluids,1992,5(2):130-142.
    [77]Gallagher P. M., Coffey M. P., Krukonis V. J., et al. Gas antisolvent recrystallization: newprocess to recrystallize compounds insoluble in supercritical fluids[C]. ACS Symp. Ser.1989,406(335):3218.
    [78]Krukonis V. J., Gallagher P. M., Coffey M. P. Gas anti-solvent recrystallization process.U.S. Patent5360478,1994.
    [79]Lim G. B.GAS anti-solvent recrystallization of molecular explosives under subcritical tosupercritical conditions[J]. Meeting on Supercritical Fluids,1998.5:271-275.
    [80]Reverchon E., De Rosa I, Della Porta G, et al. Biopolymer processing by supercriticalantisolvent precipitation: the influence of some process parameters[C]. Presented in5thConference on Supercritical Fluids and Their Applications.1999:579-584.
    [81]Krober H., Reinhard W., Teipel U. Supercritical fluid technology: a new process onformation of energetic materials[C]. Paper presented at the32th International AnnualConference of ICT, Karlsruhe, Germany.2001.
    [82]Shinichi M., O. Toshihiro O. Kiyoshi O., et al. Crystal shape control of RDX usingsupercritical carbon dioxide. Paper presented at the37th International AnnualConference of ICT, Karlsruhe, Germany.2006.
    [83]蔡建国.超临界CO2-GAS重结晶HMX过程温度对晶体形貌的影响[J].火炸药学报,2000,4:42-44.
    [84]蔡建国.超临界CO2-GAS沉析HMX制细过程的影响因素[J].火炸药学报,2003,26(4):71-73,80.
    [85]蔡建国.超临界CO2-GAS沉析HMX过程的颗粒形貌控制[J].人工晶体学报,2004,33(1):18-23.
    [86]高振明.超临界CO2法制备超细HMX颗粒[J].火炸药学报,2007,31(4):22-26.
    [87]王保民,张景林,邸运兰. GAS超临界重结晶过程中的晶形控制问题研究[J].火工品,2001,2:11-13.
    [88]王保民,张景林.炸药超临界流体细化技术研究进展[J].火工品,2002,(2):26-29.
    [89]闻利群,张景林.超临界CO2抗溶剂法重结晶AP微细颗粒的研究[J].含能材料,2006,13(5):323-326.
    [90]闻利群,张同来,秦清风.乙醇为溶剂制备超细高氯酸铵的GAS研究[J].含能材料,2010,18(2):143-147.
    [91]陈亚芳.超临界GAS的工艺条件对CL-20粒度及晶型的影响[J].火炸药学报,2010,32(3):9~13.
    [92]朱康,李国平,罗运军.超临界CO2反溶剂法制备CL-20超细微粒[J].含能材料,2012,20(4):445-449.
    [93]柴涛,张景林.混合炸药造型粉的超临界流体反溶剂过程制备[J].华北工学院学报,2005,26(4):274-277.
    [94]柴涛,周圣,张景林.超临界流体反溶剂法制备高聚物粘结炸药技术初探[J].含能材料,2005,13(4):205-207.
    [95]柴涛,王金英,张景林. HM XN TO基塑料粘结炸药的制备工艺[J].火炸药学报,1994,28(2).
    [96]王保国,陈亚芳,张景林.含超细高氯酸铵核-壳复合材料的制备[J].火炸药学报,2006,29(3):54-56.
    [97]Peng D., Robinson D.A New Two-Constant Equation of State.Ind Eng Fund.1976,15:59.
    [98]孙荣康.猛炸药的化学与工艺学[M].北京:国防工业出版社,1981.
    [99]杨继华.纳米微晶团聚长大的表面化学动力学研究[D].中北大学,2011.
    [100]王步国,施尔畏.几种极性有机晶体的生长习性与形成机理: Ⅲ.晶体的习性预测与实际形态的控制[J].人工晶体学报,1998,27(1):20-25.
    [101]Andrews T. Bakerian Lecture: On the Continuity of the Gaseous and Liquid States ofMatter[J]. Proceedings of the Royal Society of London,1869,18(114-122):42-45.
    [102]Hannay J B, Hogarth J. On the solubility of solids in gases[J]. Proceedings of the royalsociety of London,1879,30(200-205):178-188.
    [103]Hannay J. H., Berry M. V. Quantization of linear maps on a torus-Fresnel diffraction bya periodic grating[J]. Physica D: Nonlinear Phenomena,1980,1(3):267-290.
    [104]Villard F. Note sur la presence de l'indol et de l'indican dans quelques organespathologiques[J]. Marseille med,1895,32:353-357.
    [105]牟天成,韩布兴.超临界流体的共溶剂效应和混合流体研究进展[J].化学进展,2006,18(1):19-23.
    [106]王栋.超临界萃取过程模拟及萃取釜新型结构设计[D].南京:南京工业大学,2002.
    [107]Roy B. C., Goto T. H., Navaro O., et al. Extraction Rates of Oil from Tomato Seeds withSupercritical Carbon Dioxide[J]. Journal of Chemical Engineering of Japan,1994,(27):768-772.
    [108]朱自强,姚善泾,金彰礼.流体相平衡原理及其应用[M].浙江大学出版社,1990.
    [109]赵雪峰.二氧化碳与丙酮,丙酸乙酯,碳酸二乙酯二元系统高压气液相平衡的研究
    [D].天津大学,2004.
    [110]张荣,陈静.结晶控制技术对晶体形貌的影响[J].广州化工,2011,39(003):30-31.
    [111]张杏芬.国外火炸药原材料性能手册[M].北京:兵器工业出版社,1991.
    [112]尚菲菲.超临界SEDS法制备超细CL-20的研究[D].中北大学,2013.
    [113]钟一鹏,胡雅达,江宏志.国外炸药性能手册[M].北京:兵器工业出版社,1990.
    [114]Hu R. Z., Yang Z.Q., Liang Y.J. A study of reaction between RDX and urea by a singlenon-isothermal DSC curve [J]. Thermochimica. Acta,1988,134:429-432.
    [115]Balzer J. E., Proud W.G., Walley S.M., et al. High-speed photographic study of thedrop-weight impact response of RDX/DOS mixtures [J]. Combustion and Flame,2003,135:547-555.
    [116]尚菲菲,张景林,王金英,等.超临界流体增强溶液扩散技术制备超细RDX[J].含能材料,2014(1).
    [117]孙荣康.猛炸药的化学与工艺学[M].北京:国防工业出版社,1981.
    [118]Mattos E. Da, Moreira C., Enézio D., et al. Characterization of polymer-coated RDX andHMX particles[J]. Propellants, Explosives, Pyrotechnics,2008,33,44-50.
    [119]Fan R.H., Liu H.L., Sun K.N., et al. Kinetics of thermite reaction in Al-Fe2O3system [J].Thermochimica Acta,2006,440:129-131.
    [120]Vyazovkin S., Wight C.A. Kinetics in solids[J]. Annual Review of Physical Chemistry,1997,48:125–149.
    [121]刘玉存,王建华,安崇伟,等. RDX粒度对机械感度的影响[J].火炸药学报,2004,27(2).
    [122]张宝坪,张庆明,黃风雷.爆轰物理学[M].北京:兵器工业出版社.
    [123]Khasainov B. A., Borisov A. A., Ermolaev B. S., et al. Two-phase visco-plastic modelof shock initiation of detonation in high density pressed explosives[C].7th symposium(international) on detonation, Annapolis, MD.1981:435-447.
    [124]吕春玲,张景林,王晶禹,等.亚微米炸药的冲击波起爆研究[J].含能材料,2006,13(5):319-320.
    [125]杨光成,聂福德.超细HMX的制备与表征[J].含能材料,2004,12(6):350-357.
    [126]尚菲菲,张景林.溶剂及不同超临界工艺对HMX形貌和晶型的影响[J].第二届全国危险物质与安全应急技术研讨会论文集,2013.
    [127]欧育湘.炸药分析[M].兵器工业出版社,1994.
    [128]Duverneuil P., Hiquily N., Laguerie C., et al. A comparison of the effects of somesolvents on the growth of HMX (octogene) crystals from solutions[J]. IndustrialCrystallization,1989,87:525-528.
    [129]Svensson L., Nyqvist J. O., Westling L. Crystallization of HMX from γ-butyrolactone[J].Journal of hazardous materials,1986,13(1):103-108.
    [130]高振明,蔡建国,杨雷,等.亚微米HMX微粒制备与表征[J].上海市化学化工学会2007年度学术年会论文摘要集,2007.
    [131]Kim C. K., Lee B. C., Lee Y. W., et al. Solvent effect on particle morphology inrecrystallization of HMX (cyclotetramethylenetetranitramine) using supercritical carbondioxide as antisolvent[J]. Korean journal of chemical engineering,2009,26(4):1125-1129.
    [132]王保民.炸药的超临界重结晶细化技术[J].火炸药学报,2003,26(3):62-64.
    [133]Jennifer J.,Michel P. Particle design using supercritical fluids:Literature and patentsurvey[J]. Supercrit. Fluids,2001,20:179-219.
    [134]尚菲菲,张景林,张小连,等.超临界流体增强溶液扩散技术制备纳米CL-20及表征[J].火炸药学报,2012,35(6):37-40.
    [135]欧育湘,刘进全.高能量密度化合物[M].北京:国防工业出版社,2005.
    [136]Lee B. M., Kim, J. S., et al. Preparation of micronized β-HMX using supercriticalcarbon dioxide as antisolvent. Ind. Eng. Chem. Re,2011,50:9107-9115.
    [137]叶毓鹏,曹欣茂,叶玲,等.炸药结晶工艺学及其应用[M].北京:兵器工业出版社,1995.
    [138]Khoshkhoo S., Anwar J. Crystallization of polymorphs: the effect of solvent[J]. Journalof Physics D: Applied Physics,1993(26): B90.
    [139]Threlfall T. Crystallization of polymorphs: thermodynamic insight into the role ofsolvent[J]. Organic Process Research&Development,2000,4(5):384-390.
    [140]Blagden N., Davey R., Lieberman H., et al. Crystal chemistry and solvent effects inpolymorphic systems Sulfathiazole[J]. Chem Soc, Faraday Trans,1998,94(8):1035-1044.
    [141]徐金江. HNIW重结晶过程中的晶型转变研究[D].绵阳:中国工程物理研究院,2012.
    [142]金韶华,雷向东,欧育湘,等.溶剂性质对六硝基六氮杂异伍兹烷晶型的作用[J].兵工学报,2006,26(6):743-745.
    [143]Foltz M. F., Coon C. L., Garcia F., et al. The thermal stability of the polymorphs ofhexanitrohexaazaisowurtzitane, Part II[J]. Propellants, Explosives, Pyrotechnics,1994,19(3):133-144.
    [144]Hamilton R. S. Crystallization of2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo-dodecane: U.S. Patent6,992,185[P].2006-1-31.
    [145]Hamilton R. S., Mancini V., Nelson C., et al. High temperature crystallization of2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo-dodecane: U.S. Patent7,288,648[P].2007-10-30.
    [146]Russell T. P.,Miller P. J.,et al. High Pressure Phase Transition in γ-CL-20[J]. Journal ofPhysico Chimica,1992,96:5509-5512.
    [147]Bouma R. H.,Duvalois W. Characterization of a commercial grade CL-20[C]. In:Proc31st int.Annual Conference of ICT,Karlsruhe,Germany,2000,105-1~105-9.
    [148]Mangin D.,Puel F.,Veesler S.Polymorphism in processes of crystallization in solution:A practical review[J]. Organic Process Research&Development,2009,13(6):1241~1253.
    [149]Croker D.,Hodnett B. K.Mechanistic features of polymorphic transformations:The roleof surfaces[J].Crystal Growth&Design,2010,10(6):2806-2816.
    [150]Lee M. H., Kim J. H., Park Y. C., et al. Control of crystal density ofε-hexanitrohexaazaisowurzitane in evaporation crystallization[J]. Industrial&Engineering Chemistry Research,2007,46(5):1500-1504.
    [151]Kim J. H., Park Y. C., Yim Y. J., et al. Crystallization behavior ofhexanitrohexaazaisowurtzitane at298K and quantitative analysis of mixtures of itspolymorphs by FTIR[J].Journal of Chemical Engineering of Japan,1998,31(3):478-481.
    [152]欧育湘,贾会平,陈博仁等.六硝基六氮杂异伍兹烷的研究进展(3)[J].含能材料,1999,7(2):49-52.
    [153]Pivkina A., Ulyanova P., Frolov Y. Nanomaterials for heterogeneous combustion [J].Propellants, Explosives,Pyrotechnics,2004,29(1):39-48.
    [154]炸药理论编写组.炸药理论[M].北京:国防工业出版社,1982.
    [155]北京工业学院八系爆炸及其作用编写组.爆炸及其作用(上册)[M].北京:国防工业出版社,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700