用户名: 密码: 验证码:
化学热回收两段组合式气化炉的实验及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以化学热回收两段组合式气化炉为研究对象,采用实验与数值模拟相结合的方法,对两段炉冷态实验装置内的流场特征进行了研究,并且研究了热态实验装置内二段固定床的气化反应性和显热回收效果。此外,还比较了二段水煤浆进料对原有多喷嘴对置式(OMB)气化炉气化效率的影响,并且考察了不同的操作条件对一种上吹式多喷嘴两段式(TS-OMB)气化炉工艺指标的影响。主要内容如下:
     1.在冷态两段炉内,随着Reynolds数和床层高度的增加二段床层的压降增加,并且空隙率越小,二段床层的压降越大。Montiller公式相比于经典的Ergun方程,能够更加准确地预测炉内的二段床层压降。当单喷嘴顶喷时,随着二段床层高度的增加,中心气速在床层上表面的冲击区内衰减越快。在轴向速度的径向分布中,中心气速最大并且衰减最快,在r=0.5R径向位置处,由于回流的存在导致轴向速度呈先增大后减小的变化趋势,管流区在喷嘴平面下方2.9D处形成。当四喷嘴对喷时,在喷嘴平面的上方和下方形成两股径向射流,径向射流的中心气速从喷嘴平面上的零值增加到最大值后,呈射流衰减变化,向下的径向射流达到管流区所需的轴向距离约为1.1D。在四喷嘴对喷的条件下,平均停留时间随着表观气速和床层压降的增加而减小。采用部分短路Gamma分布数学模型能够与停留时间密度函数的实验值吻合较好。通过模型参数的分析得出,在四喷嘴对喷的条件下炉内几乎不存在短路现象,随着表观气速的减小和床层阻力的增加,炉内气体的流型以及混合程度趋近于全混流。平推流部分的影响程度随着表观气速以及二段床层阻力的增加变得显著。
     2.对冷态两段炉建立了三维模型,采用Realizable κ-ε模型模拟一段气体的湍流流动,多孔介质模型模拟二段固定床。模拟结果表明,当单喷嘴顶喷时,中心气速沿轴向逐渐衰减,并在喷嘴下方2.7D处形成管流区。在射流基本段的外围近壁面处形成了与中心速度相反的回流,回流比沿着轴向位置,呈先增大后减小的变化规律。当四喷嘴对喷时,中心轴向速度在喷嘴平面的上方和下方速度呈现先增加后减小的变化趋势,最大径向速度的位置距离喷嘴平面约为0.21L。在径向射流的外围形成了回流,并且喷嘴平面上方的回流比大于喷嘴下方。相比于单喷嘴顶喷的条件,四喷嘴对喷所形成的回流更为明显。在四喷嘴对喷的条件下,随着二段床层高度的增加,中心气速在床层上表面的冲击区内衰减加快,随着一段气量的增加和喷嘴直径的减小,最大径向射流速度增加,而最大径向射流的位置基本不变。回流比和回流区域的大小随着床层高度的增加以及一段喷嘴直径的减小而显著增加。一段气量的增加,提高了炉内的回流量,但是回流比和回流区域的大小不发生改变。
     3.在热态两段炉内,粒径范围为15-20mm的冶金焦,其气化反应性优于10-15mm和20-25mm,与初始的一段气体相比,其二段平均有效气浓度提高了2.52%,平均低热值(LHV)增加了2.27%,CO2转化率为8.9%,最终碳转化率为32.4%。当一段氧油比最大时(1.92m3·kg-1),二段冶金焦的气化反应性最好,平均有效气浓度增加了7.43%,平均LHV增幅为5.26%,CO2转化率为18.1%,最终碳转化率为41.7%。在内蒙褐煤中添加5%的硝酸钾或者硝酸钙,均能有效地提高气化反应速率。5%硝酸钾的催化效果优于5%的硝酸钙。当添加5%的钾时,二段出口处的平均有效气浓度提升了3.43%,平均LHV提高了4.72%,CO2转化率为9.3%,二段块煤的碳转化率为85.5%。二段块煤的气化反应性随着钙添含量的增加而增加。当钙的添加量大于5%时,才能起到显著的催化作用。当二段添加8%的钙时,催化效果最为明显,平均有效气浓度提高了3.74%,平均LHV增幅4.95%,CO2转化率为9.4%,二段内蒙褐煤的碳转化率为90.8%。
     4.对小型的两段炉热态实验装置,建立了固定床气化反应模型,模拟结果与实验数据吻合良好。当高温合成气流通二段固定床区域时,气体速度增加,气体温度显著降低,并且合成气中C02和H20的含量减小,有效组分CO和H2增加。随着反应的进行,气化反应中心从煤层的上层逐渐向下层转移,气体组分和温度在煤层中的变化亦逐渐减小。二段煤量的减少使得块煤的升温速率增加,导致有效气浓度和气固反应速率在反应初期较高,而最终的碳转化率随着煤量的增加而降低。二段块煤粒径的减小提高了有效气浓度、气固反应速率和碳转化率,并且使得气固反应率先进行,有利于二段块煤的气化反应。一段合成气中C02和H20含量的增加,提高了二段块煤的气固反应速率和碳转化率,并且一段气体温度的升高,使得二段块煤的升温速率和气化反应温度增加,加速了脱挥发分速率和气固反应速率,有利于二段气化反应的进行。
     5.建立了OMB气化炉的三维模型,模拟结果与实际测量值吻合良好。研究结果表明在OMB气化炉的撞击区和径向射流区域气化反应显著。在OMB-staged气化炉中,二段额外喷入的水煤浆降低了整个气化炉内的温度,并且降低了炉内的气化反应速率和碳转化率。TS-OMB气化炉与OMB相比,有效气产率提高了31.1Nm3·h-1,冷煤气效率和碳转化率均有所提高,表明了将原有的OMB气化炉进行TS-OMB形式的改进是提高气化效率的一种潜在方式。在所提出的上吹式TS-OMB气化炉的典型工况下,出口气体温度为1353.5K,冷煤气效率达到77.47%,碳转化率为96.25%。随着二段给煤比的增加,炉膛温度和碳转化率降低,而有效气浓度和冷煤气效率均存在一个峰值。随着一段氧煤比的提高,炉膛温度和碳转化率增加,有效气浓度和冷煤气效率呈先增加后减小的趋势。随着水煤浆浓度的增加,炉膛温度、碳转化率、有效气浓度和冷煤气效率均呈现逐渐增加的趋势。
Experimental research and numerical simulation are conducted to investigate the flow field characteristic in the cold-state experimental scale combined gasifier, and the gasification reactivity and heat recovery effect are also studied in a hot-state experimental scale device. Furthermore, the gasification efficiency of coal water slurry (CWS) injecting from the second stage burner in the opposed multi-burner (OMB) gasifier is assessed and compared with original OMB gasifier. Also the influence of various operating conditions on the gasification indicators in a novel updraft two-stage gasifier modified from the OMB (TS-OMB) gasifier is analyzed.
     1. The pressure drop of second stage fixed-bed shows an increased trend with the increase of Reynolds number and bed height. A smaller porosity for the bed layer turns to be a larger pressure drop. Compared with the classical Ergun equation, the Montiller empirical formula can predict the pressure drop in the combined gasifier more accurately. With the form of top-burner, an impacting zone is formed above the second stage fixed bed, and a faster central velocity decay in the impacting zone for a higher bed height. Among the axial velocity of radial distribution, the central velocity turns to be the largest and decays fastest. In the position of r=0.5R, the axial velocity increases firstly and then decreases due the presence of recirculation flow in the furnace. The velocity has been the form of plug flow in the distance of2.9D below the burner plane. With the form of four-burner, impinging-jet flows are formed above and below the burner plane. The velocity of impinging-jet flow increases from nil to the maximum velocity, and then decays with the axial position. The distance for the downward impinging-jet flow to be plug flow is1.1D. In the condition of four-burner, the average residence time shows a decreasing tendency with the increase of superficial gas velocity and bed layer residence. The mathematical model of Gamma distribution shows good agreement with the experimental data for fitting the residence time density function. By analyzing the model parameters, almost no short-circuit is existed in the furnace. With the increase of superficial gas velocity and decrease of bed layer resistance, the flow pattern in the furnace is close to complete mixing flow. The influence of plug flow becomes more significant with the increase of superficial gas velocity and bed layer resistance.
     2. A3-dimensional model is established for the cold-stage two-stage gasifier, in which the Realizable k-ε model is adopted for the turbulent flowing of first stage, and a porous media model for the second stage fixed-bed. With the form of top-burner, the central velocity decays gradually with the axial position, and the plug flow is formed below the burner plane of2.7D. The recirculation flow with the opposite direction from the central is formed surrounding the jet flow, and the reflux ratio turns to be an increasing firstly and then decreasing trend. With the form of four-burner, the central velocity above and below the burner plane shows decreasing trend after first increasing. The position of maximum impingping-jet velocity is located at about0.21L. The recirculation flows are also formed surround the impinging-jet flows, in which the reflux ratio above the burner plane is much larger than that below the burner plane. The recirculation formed by four-burner is much more remarkable than that by top-burner. In the condition of four-burner, with the increase of bed layer height the velocity decays faster in the impacting zone, and the reflux ratio and recirculation zone becomes larger. With the increase of gas velocity at burner outlet, the maximum velocity of impinging-jet flow increases and then shows a faster decaying rate, while its position has almost no change. The reflux ratio and recirculation flow zone increases for a higher bed layer height and smaller burner diameter, while unchanged with the gas flow rate.
     3. As for the hot-state two-stage gasifier, the metallurgical coke of15-20mm shows a better gasification reactivity than10-15mm and20-25mm. Compared with the initial syngas from first stage, the average effective gas concentration (EGC) of second stage increased by2.52%,2.27%for average low heat value (LHV) and8.9%for CO2conversion. The final carbon conversion is32.4%after a three-hour reaction time. When the oxygen/diesel ratio reaches the highest (1.92m3-kg-1), the average EGC and LHV increased by7.43%and5.26%, respectively, and18.1%for the CO2conversion. The final carbon conversion of coke is41.72%. The gasification reaction rate can be improved effectively after adding5%potassium nitrate or calcium nitrate in Inner Mongolia lignite, and the catalytic effect of5%potassium nitrate is better than calcium nitrate. When adding5%potassium, the average EGC increases by3.43%, LHV by4.72%, and CO2conversion by9.3%. The final carbon conversion of Inner Mongolia lignite is85.5%after a three-hour reaction time. With the increase of calcium loading in the lump coal, the gasification reactivity becomes better. When the calcium loading is larger than5%, catalytic effect for the gasification reaction is much more significant. When the calcium loading of lump coal is8%, the average EGC is increased by3.74%, LHV by4.95%, and CO2conversion by9.4%. The final carbon conversion of8%calcium loading is90.8%.
     4. Based on the former hot-state experimental scale two-stage gasifier, a fixed-bed gasification reaction model is established. The simulated result shows a good agreement with the experimental data. When the high temperature syngas flows through the bed layer, the gas velocity increases and the gas temperature reduces significantly. The content of CO2+H2O in the syngas is reduced, and the effective content of CO+H2is increased due to the gasification reaction. With the proceeding of gasification reaction, the reaction zone shows a moving down trend from the upper to the bottom in the coal layer, and the varying of gas composition and temperature becomes smaller. With the decrease of coal amount in the fixed-bed, it turns to be a faster heating rate in the initial stage, which will take the lead of devolatilization and gasification reaction. The final carbon conversion decreases with the increase of coal amount. With the decrease of coal particle size, the EGC, reaction rate and carbon conversion are enhanced, as well as a leading gasification reaction, which is propitious to the gasification reaction. The gasification reaction rates and carbon conversion are also enhanced with the increase of CO2+H2O content of syngas. Furthermore, the heating rate and reaction temperature of fixed-bed coal layer are enhanced with the increase of syngas temperature, which results in a faster devolatilization rate and gasification rate, and is propitious to the second stage gasification reaction.
     5. A3-dimensional numerical model for an OMB gasifier is established, and the simulated results show good agreement with practical values. The gasification reaction in the impinging and impinging-jet flow zones turns to be significant in OMB gasifier. As for OMB-staged gasifier, the injecting of additional CWS in the second stage reduces the temperature in the whole furnace, resulting in a relative low reaction rate and carbon conversion. As for TS-OMB gasifier, the productivity of effective gas increases by31.1Nm3·h-1, and a slight higher cold gas efficiency (CGE) and carbon conversion compared with OMB gasifier, which shows that a two-stage modified for the gasifier is a potential way to improve the gasification efficiency. In the typical condition of updraft TS-OMB gasifier, the cold gas efficiency reaches77.47%with the outlet gas temperature of1353.5K, and final carbon conversion of96.25%. With the increase of coal distribution in the second stage, the average temperature and carbon conversion are reduced, and the EGC and CGE turn to be peak values. With the increase of oxygen/coal ratio in the first stage, the average temperature and carbon conversion are enhanced, while the EGC and CGE show decreasing trends after the increasing. With the increase of CWS concentration, the average temperature, EGC, CGE and carbon conversion are all increased, which is propitious to the gasification reaction.
引文
[1]中国国家统计局.vww.stats.gov.cn.2014.
    [2]Liu H, Ni W, Li Z, et al. Strategic Thinking on IGCC Development in China[J]. Energy Policy.2008,36(1):1-11.
    [3]黄戒介,房倚天,王洋.现代煤气化技术的开发与进展[J].燃料化学学报.2002,30(5):385-389.
    [4]王辅臣.大规模高效气流床煤气化技术基础研究进展[J].中国基础科学.研究进展.2008,3:4-6.
    [5]William E P. The Texaco Gasification Process in 2000 Startups and Objectives[C]. Presented at the Gasification Technologies Conference. San Francisco, California,2000.
    [6]Vlaswinkel E, Posthuma. S, Zuideveld P. The Shell Gasification Technology Offers Clean Solutions for Refineries and Utility Companies[M]. Institution of chemical engineers symposium series,1997.
    [7]Ni J J, Liang Q F, Zhou Z J, et al. Numerical and Experimental Investigations on Gas-particle Flow Behaviors of the Opposed Multi-Burner Gasifier[J]. Energy Conversion and Management.2009,50(12):3035-3044.
    [8]于遵宏,刘海峰,王辅臣等.煤基两段组合式气化工艺装置[P].中国,00111437.9,2000-08-09.
    [9]Yu Z H, Wang Y F, Yu G S, et al. Two-stage Gasification Apparatus Coupled with Heat Recovery and Washing and Its Applications[P]. U. S.,20080148634,2010-09-14.
    [10]于遵宏,王亦飞,于广锁等.两段气化并耦合热量回收和洗涤于一体的气化装置和应用[P].中国,200610119514.4,2007-07-11.
    [11]Lowe E. GE's Gasification Experience in China[C]. Gsification Technologies Conference.2007.
    [12]汪家铭.Shell粉煤气化技术在我国的应用概况[C].全国中氮情报协作组第28次技术交流会论文集.三明,2009.
    [13]Council G T. World Gasification Database.2014.
    [14]Breault R W. Gasification Processes Old and New:A Basic Review of the Major Technologies[J]. Energies.2010,3 (2):216-240.
    [15]Higman C, Burgt M V. Gasification (Second Edition)[M]. Elsevier:Gulf Professional Publishing,2008.
    [16]David A B, Brian F T, Maohong F. Coal Gasification and Its Applications (First Edition)[M]. Elsevier:Gulf Professional Publishing,2011.
    [17]Osamu S A, Yoshinori K. The Development of Advanced Energy Technologies in Japan IGCC:A Key Technology for the 21st Century[J]. Energy Conversion and Management. 2002,43(9-12):1221-1233.
    [18]于广锁,龚欣,刘海峰等.多喷嘴对置式水煤浆气化技术[J].现代化工.2004,24(10):46-51.
    [19]许世森,王保民.两段式干粉煤加压气化技术及工程应用[J].化工进展.2010,29(S1):290-294.
    [20]蒋甲金,宋羽,路文学等.多喷嘴对置式水煤浆气化技术及其优越性[J].化学设备与装备.2011,2:108-109.
    [21]于广锁,刘海峰,王亦飞等.多喷嘴对置式水煤浆气化技术的应用进展[C].全国中氮情报协作组第29次技术交流会论文集.2010.
    [22]Amick P.2006 E-Gas TM Technology Update[C]. Gasification Technology Conference. Washington,2006.
    [23]Hara S, Hamamatsu T, Ishikawa H, et al. Development of Air-blown Pressurized Entrained Bed Coal Gasification Technologies-Test Results of a 2T/D Gasifier and Analysis [C]. Barton, ACT:Institution of Engineers, Australia,1990.
    [24]Hara S, Inumaru J, Ashizawa M et al. A Study on Gasification Reactivity of Pressurized Two-stage Entrained Flow Coal Gasifier[J], JSME International Journal, Series B: Fluids and Thermal Engineering.2002,45(3):518-522.
    [25]许世森,任永强,夏军仓.两段式干煤粉加压气化技术的研究开发[J].中国电力.2006,39(6):30-32.
    [26]张东亮,许世森,任永强等.两段式加压粉煤气化技术[J].煤化工.2005,5:19-21.
    [27]许世森,夏军仓,许世森,徐越.两段式干煤粉加压气化技术及工程化最新进展[C].2010年中国煤化工产业技术、市场、信息交流暨发展战略研讨会.重庆,2010.
    [28]于遵宏等.化工过程开发[M].上海:华东理工大学出版社,1996.
    [29]Becker H A, Hottel H C, Williams G C. Ninth Synposium (International) on Combustion[M]. New York:Academic Press,1963.
    [30]Thring M W, Newby M P. Combustion Length of Enclosed Turbulent Jet Flames[C]. Fourth Symposium on Combustion,1953.
    [31]Craya A, Curtet R. On the Spreading of a Confined Jet[J]. Physics of Fluids.1988,10: 3137-3144.
    [32]伍沅.撞击流反应器-原理和应用[M].北京:化学工业出版社,1996.
    [33]Champion M, Libby P A. Reynolds Stress Description of Opposed and Impinging Turbulent Jets[J]. Physics of Fluids.1993,5:203-215.
    [34]龚欣,于建国,肖克俭等.德士古气化炉冷态流场测试[J].华东化工学院学报.1993,19(2):128-133.
    [35]刘海峰,刘辉,龚欣等.大喷嘴间距对置撞击流径向速度分布[J].华东理工大学学 报.2000,26(2):168-172.
    [36]Ogawa N, Maki H. Studies on Opposed Turbulent Jets (Influences of a Body on the Axis of Opposed Turbulent Jet)[J]. Bulletion of JSEM.1986,29:2872-2877.
    [37]李伟锋,孙志刚,刘海峰等.小间距两喷嘴对置撞击流场的数值模拟与实验研究[J].化工学报.2008,59(1):46-52,
    [38]代正华,刘海峰,于广锁等.四喷嘴对置式撞击流的数值模拟[J].华东理工大学学报.2004,30(1):65-68.
    [39]张建胜,吕俊复,岳光溪.分级气流床气化炉内停留时间分布的实验测量[C].第十八届全国大型合成氨装置技术年会.宁波,2007.
    [40]Nadeau P, Berk D, Munz R. J. Measurement of Residence Time Distribution by Laser Absorption Spectroscopy [J]. Chemical Engineering Science.1996,51(11):2607-2612.
    [41]王辅臣,龚欣,吴韬等.射流携带床气化炉内宏观混合过程研究:停留时间分布[J].化工学报.1997,48(2):200-207.
    [42]王玉琴,代正华,程宏等.自热转化炉停留时间分布[J].化学工程.2010,38(5):38-41.
    [43]Guell A J, Kandiyoti R. Development of a Gas-sweep Facility for the Direct Capture of Pyrolysis Tars in a Variable Heating Rate High-pressure Wire-mesh Reactor[J]. Energy & Fuels.1993,7:943-952.
    [44]Gibbins J R, Kandiyoti R. Experimental Study of Coal Pyrolysis and Hydropyrolysis at Elevated Pressures Using a Variable Heating Rate Wire-Mesh Apparatus [J]. Energy & Fuels.1989,3 (6):670-677.
    [45]Gibbins J R, Kandiyoti R. The Effect of Variations in Time-Temperature History on Product Distribution from Coal Pyrolysis[J]. Fuel.1989,68 (7):895-903.
    [46]Griffin T P, Howard J B, Peters W A. Pressure and Temperature Effects in Bituminous Coal Pyrolysis:Experimental Observations and a Transient Lumped-Parameter Model[J]. Fuel.1994,73 (4):591-601.
    [47]Niksa S, Russel W B, Saville D A. Time-Resolved Weight Loss Kinetics for the Rapid Devolatilization of a Bituminous Coal[J]. Symposium (International) on Combustion. 1982,19(1):1151-1157.
    [48]李登新,Makino M,张建胜等.弱粘煤和不粘煤的快速热解及其团聚研究[J].燃烧科学与技术.2003,9(5):426-429.
    [49]Cai H Y, Guell A J, Chatzakis I N, et al. Combustion Reactivity and Morphological Change in Coal Chars:Effect of Pyrolysis Temperature, Heating Rate and Pressure[J]. Fuel.1996,75 (1):15-24.
    [50]Anthony D B, Howard J B. Coal Devolatilization and Hydrogasification[J]. AIChE Journal.1976,22(4):625-656.
    [51]Liu Q R, Hu H Q, Zhou Q, et al. Effect of Inorganic Matter on Reactivity and Kinetics of Coal Pyrolysis[J]. Fuel.2004,83:713-718.
    [52]杨会民,王美君,张玉龙等.添加物对宁夏煤热解气相产物生成的影响[J].煤炭学报.2010,35(8):1364-1368.
    [53]Badzioch S, Hawksley P G W. Kinetics of Thermal Decomposition of Pulverized Coal Particles[J]. Industrial & Engineering Chemistry Process Design and Development. 1970,9 (4):521-530.
    [54]Kobayashi H, Howard J B, Sarofim A F. Coal Devolatilization at High Temperatures[J]. Symposium (International) on Combustion.1977,16 (1):411-425.
    [55]Anthony D B, Howard J B, Hottel H C, et al. Rapid Devolatilization of Pulverized Coal[J]. Symposium (International) on Combustion.1975,15 (1):1303-1317.
    [56]Zhao Y, Serio M A, Bassilakis R, et al. A Method of Predicting Coal Devolatilization Behavior Based on the Elemental Composition[J]. Symposium (International) on Combustion.1994,25 (1):553-560.
    [57]Genetti D, Fletcher T H, Pugmire R J. Development and Application of a Correlation of 13c Nmr Chemical Structural Analyses of Coal Based on Elemental Composition and Volatile Matter Content[J]. Energy & Fuels.1998,13(1):60-68.
    [58]Niksa S. Flashchain Theory for Rapid Coal Devolatilization Kinetics.4. Predicting Ultimate Yields from Ultimate Analyses Alone[J]. Energy & Fuels.1994,8(3):659-670.
    [59]Maffei T, Frassoldati A, Cuoci A, et al. Predictive One Step Kinetic Model of Coal Pyrolysis for CFD Applications[J]. Proceedings of the Combustion Institute.2013,34: 2401-2410.
    [60]Li T, Chaudhari K, Van E D. Computational Fluid Dynamic Simulations of a Pilot-Scale Transport Coal Gasifier:Evaluation of Reaction Kinetics[J]. Energy & Fuels.2013,27: 7896-7904.
    [61]Vascellari M, Arora R, Pollack M, et al. Simulation of Entrained Flow Gasification with Advanced Coal Conversion Submodels. Part 1:Pyrolysis[J]. Fuel.2013,113:654-669.
    [62]Wu S, Gu J, Li L, et al. The Reactivity and Kinetics of Yanzhou Coal Chars from Elevated Pyrolysis Temperatures During Gasification in Steam at 900-1200℃[J]. Process Safety and Environmental Protection.2006,84(6):420-428.
    [63]杨帆,周志杰,王辅臣等.神府煤焦与水蒸气、CO2气化反应特性研究[J].燃料化学学报,2007,35(6):660-666.
    [64]Liu G S, Tate A G, Bryant G W, et al. Mathematical Modeling of Coal Reactivity with CO2 at High Pressures and Temperature [J]. Fuel.2000,79(10):1145-1154.
    [65]Liu T F, Fang Y T, Wang Y. An Experimental Investigation into the Gasification Reactivity of Chars Prepared at High Temperatures [J]. Fuel.2008,87:460-466.
    [66]Nozaki T, Adschiri T, Fujimoto K. Coal Char Gasification under Pressurized CO2 Atmosphere[J]. Fuel.1992,71:349-350.
    [67]向银花,王洋,张建民等.加压下中国典型煤二氧化碳气化反应的热重研究[J].燃料化学学报.2002,30(5):398-402.
    [68]Kajitani S, Hara S, Matsuda H. Gasification Rate Analysis of Coal Char with a Pressurized Drop Tube Furnace[J]. Fuel.2002,81 (5):539-546.
    [69]Messenbock R C, Dugwell D R, Kandiyoti R. CO2 and Steam-gasification in a High-pressure Wire-mesh Reactor:the Reactivity of Daw Mill Coal and Combustion Reactivity of Its Chars[J]. Fuel.1999,78:781-793.
    [70]杨帆.煤焦在不同反应气氛下气化反应特性、机理及动力学研究[D].上海,华东理工大学,2008.
    [71]Koba K, Ida S. Gasification Reactivities of Metallurgical Cokes with Carbon Dioxide, Steam and Their Mixtures[J]. Fuel.1980,59:1016-1021.
    [72]Roberts D G, Harris D J. Char Gasification in Mixtures of CO2 and H2O:Competition and Inhibition[J]. Fuel.2007,86 (17-18):2672-2678.
    [73]Moilanen A, Muhlen H J. Characterization of Gasification Reactivity of Peat Char in Pressurized Conditions[J]. Fuel.1996,75(11):1279-1285.
    [74]Goyal A, Zabransky R F, Rehmat A. Gasification Kinetics of Western Kentucky Bituminous Coal Char[J]. Industrial & Engineering Chemistry Research.1989,28(12): 1767-1778.
    [75]Quyn M D, Wu H, Hayashi J I. Volatilization of Alkali and Alkaline Earth Metallic Species during the Gasification of Victorian Brown Coal in CO2[J]. Fuel Processing Technology.2005,86(12):1241-1251.
    [76]Sheth A, Yeboah Y D, Godavarty A. Catalytic Gasification of Coal Using Eutectic Salts: Reaction Kinetics with Binary and Ternary Eutectic Catalysts[J]. Fuel.2003,82(3): 305-317.
    [77]Wang J, Jiang M, Yao Y, et al. Steam Gasification of Coal Char Catalyzed by K2CO3 for Enhanced Production of Hydrogen without Formation of Methane[J]. Fuel.2009,88 (9): 1572-1579.
    [78]Zhang L X, Shinji K, Naoto T, et al. Catalytic Effects of Na and Ca from Inexpensive Materials on In-situ Steam Gasification of Char from Rapid Pyrolysis of Low Rank Coal in a Drop-tube Reactor[J]. Fuel Processing Technology.2013,113:1-7.
    [79]Hippo E J, Jenkins R G, Walker P L. Enhancement of Lignite Char Reactivity to Steam by Cation Addition[J]. Fuel.1979,58(5):338-344.
    [80]杨景标,蔡宁生,李振山.几种金属催化褐煤焦水蒸气气化的实验研究[J].中国电机学报.2007,27(26):7-12.
    [81]Wen C Y. Noncatalytic Heterogeneous Solid-fluid Reaction Models[J]. Industrial & Engeering Chemistry Rearch.1968,60(9):34-54.
    [82]Bhatia S K, Perlmutter D D. A Random Pore Model for Fluid-solid Reactions:I. Isothermal, Kinetic Control [J]. AIChE Journal.1980,26(3):379-335.
    [83]Roberts D, Harris D. Char Gasification with O2, CO2, and H2O:Effects of Pressure on Intrinsic Reaction Kinetics[J]. Energy & Fuels.2000,14 (2):483-489.
    [84]Ergun S B. Kinetics of the Reaction of Carbon Dioxide with Carbon[J]. Journal of Physical Chemistry.1956,60(2):480-485.
    [85]Blackwood J D, Ingeme A J. The Reaction of Carbon with Carbon Dioxide at High Pressure[J]. Australian Journal of Chemistry.1960,13(1):194-196.
    [86]Blackwood J D, Mcgarory F. The Carbon-Steam Reaction at High Pressure[J]. Australian Journal of Chemistry.1958,11:16-33.
    [87]He C, Feng X, Chu K H. Process Modeling and Thermodynamic Analysis of Lurgi Fixed-bed Coal Gasifier in a SNG Plant[J]. Applied Energy.2013,111:742-757.
    [88]朱有健,王定标,周俊杰.固定床煤气化炉的模拟与优化[J].化工学报.2011,62(6):1606-1611.
    [89]Melgar A, Perez J F, Laget H, Horillo A. Thermochemical Equilibrium Modeling of a Gasifying Process[J]. Energy Conversion & Management.2007,48:59-67.
    [90]Ni Q, Williams A. A Simulation Study on the Performance of an Entrained-Flow Coal Gasifier[J]. Fuel.1995,74 (1):102-110.
    [91]Dai Z H, Gong X, Guo X L, et al. Pilot-Trial and Modeling of a New Type of Pressurized Entrained-Flow Pulverized Coal Gasification Technology [J]. Fuel.2008,87 (10-11):2304-2313.
    [92]Christian K, Hartmut S. Modelling, Comparison and Operation Experiences of Entrained Flow Gasifier[J]. Energy Conversion and Management.2011,52:2135-2141.
    [93]Hobbs M L, Radulovic P T, Smoot L D. Modeling Fixed-bed Coal Gasifiers[J]. AIChE Journal.1992,38(5):681-702.
    [94]Radulovic P T, Ghani M U, Smoot L D. An Improved Model for Fixed Bed Coal Combustion and Gasification[J]. Fuel.1995,74(4):582-594.
    [95]Nagpal S, Sarkar T K, Sen P K. Simulation of Petcoke Gasification in Slagging Moving Bed Reactors[J]. Fuel Processing Technology.2005,86:617-640.
    [96]Blasi C D. Dynamic Behaviour of Stratified Downdraft Gasifiers[J]. Chemical Engineering Science.2000,55(15):2931-2944.
    [97]Blasi C D. Modeling Wood Gasification in a Countercurrent Fixed-Bed Reactor[J]. AIChE Journal.2004,50(9):2306-2319.
    [98]Blasi C D, Branca C. Modeling a Stratified Downdraft Wood Gasifier with Primary and Secondary Air Entry[J]. Fuel.2013,104:847-860.
    [99]Wen C Y, Chaung T Z. Entrainment Coal Gasification Modeling[J]. Industrial & Engineering Chemistry Process Design and Development.1979,18 (4):684-695.
    [100]Govind R, Shah J. Modeling and Simulation of an Entrained Flow Coal Gasifier[J]. AIChE Journal.1984,30 (1):79-92.
    [101]Vamvuka D, Woodburn E T, Senior P R. Modelling of an Entrained Flow Coal Gasifier. 1. Development of the Model and General Predictions [J]. Fuel.1995,74 (10): 1452-1460.
    [102]Vamvuka D, Woodburn E T, Senior P R. Modelling of an Entrained Flow Coal Gasifier. 2. Effect of Operating Conditions on Reactor Performance[J]. Fuel.1995,74 (10): 1461-1465.
    [103]李超,代正华,孙钟华等.气流床气化炉综合模型及颗粒粒径对气化结果的影响研究[J].高校化学工程学报.2013,27(3):597-603.
    [104]Murgia S, Vascellari M, Cau G. Comprehensive CFD Model of an Air-blown Coal-fired Updraft Gasifier[J]. Fuel.2012,101:129-138.
    [105]Sudiro M, Pellizzaro M, Bezzo F, et al. Simulated Moving Bed Technology Applied to Coal Gasification[J]. Chemical Engineering Research and Design.2010,88:465-475.
    [106]Wu Y S, Zhang Q L, Yang W H, et al. Two-Dimensional Computational Fluid Dynamics Simulation of Biomass Gasification in a Downdraft Fixed-Bed Gasifier with Highly Preheated Air and Steam[J]. Energy & Fuels.2013,27:3274-3282.
    [107]Chen C X, Horio M, Kojima T. Numerical Simulation of Entrained Flow Coal Gasifiers. Part I:Modeling of Coal Gasification in an Entrained Flow Gasifier[J]. Chemical Engineering Science.2000,55 (18):3861-3874.
    [108]Chen C X, Horio M, Kojima T. Numerical Simulation of Entrained Flow Coal Gasifiers. Part Ⅱ:Effects of Operating Conditions on Gasifier Performance[J]. Chemical Engineering Science.2000,55 (18):3875-3883.
    [109]Du M, Hao Y L, Wang Y. Numerical Simulation of Coal Gasification in a lt/h Two-stage Entrained Flow Gasifier[C].2007 ASME International Mechanical Engineering Congress and Exposition. Washington, USA,2007.
    [110]Du M, Hao Y L. Numerical Investigation on Chemical Reaction in a lt/h Two-stage Entrained Flow Coal Gasifier[C]. Proceeding of the 6th International Symposium on Coal Combustion. Wuhan, China,2007.
    [111]Du M, Hao Y L. Numerical Study on the Gas-solid Two-phase Flow in a lt/h Two-stage Entrained Flow Gasifier[C]. Proceeding of the 6th International Symposium on Coal Combustion. Wuhan, China,2007.
    [112]Choi Y C, Li X Y, Park T J, et al. Numerical Study on the Coal Gasification Characteristics in an Entrained Flow Coal Gasifier[J]. Fuel.2001,80 (15):2193-2201.
    [113]Liu X J, Zhang W R, Park T J. Modelling Coal Gasification in an Entrained Flow Gasifier[J]. Combustion Theory and Modelling.2001,5 (4):595-608.
    [114]Watanabe H, Otaka M. Numerical Simulation of Coal Gasification in Entrained Flow Coal Gasifier[J]. Fuel.2006,85 (12-13):1935-1943.
    [115]Sun Z H, Dai Z H, Zhou Z J, et al. Numerical Simulation of Industrial Opposed Multiburner Coal-Water Slurry Entrained Flow Gasifier[J]. Industrial & Engineering Chemistry Research.2012,51(6):2560-2569.
    [116]Sun Z H, Dai Z H, Zhou Z J, et al. Comparative Study of Gasification Performance between Bituminous Coal and Petroleum Coke in the Industrial Opposed Multiburner Entrained Flow Gasifier[J]. Energy & Fuels.2012,26(11):6792-6802.
    [117]Luan Y T, Chyou Y P, Wang T. Numerical Analysis of Gasification Performance via Finite-rate Model in a Cross-type Two-stage Gasifier[J]. International Journal of Heat and Mass Transfer.2013,57:558-566.
    [118]Chyou Y P, Chen M H, Luan Y T, et al. Investigation of the Gasification Performance of Lignite Feedstock and the Injection Design of a Cross-Type Two-stage Gasifier[J]. Energy & Fuels.27:3110-3121.
    [119]Yang Z, Wang Z, Wu Y, et al. Dynamic Model for an Oxygen-Staged Slagging Entrained Flow Gasifier[J]. Energy & Fuels.2011,25 (8):3646-3656.
    [120]Gazzani M, Manzolini G, Macchi E, et al. Reduced Order Modeling of the Shell-Prenflo Entrained Flow Gasifier[J]. Fuel.2012,104:822-837.
    [121]Li C, Dai Z H, Sun Z H, et al. Modeling of an Opposed Multiburner Gasifier with a Reduced-Order Model[J]. Industry & Engineering Chemistry Research.2013,52: 5825-5834.
    [122]Klerk A D. Voidage Variation in Packed Beds at Small Column to Particle Diameter Ratio[J]. AIChE Journal.2003,49 (8):2022-2029.
    [123]Reghan J.Hill, Donald L.Koch and Anthony J. C. Ladd. Moderate-Reynolds-number Fows in Ordered and Random Arrays of Spheres[J]. Journal of Fluid Mechanics.2001, 448(1):243-278.
    [124]Ergun S. Fluid Flow through the Packed Columns [J]. Chemical Engineering Progress. 1952,(48):89-94.
    [125]Adam L, John R B. Pressure-drop Predictions in a Fixed-bed Coal Gasifier[J]. Fuel. 2011,90(3):917-921.
    [126]赵国庆,廖晖,李绍芬.气体温度和压力及颗粒形状对固定床压降的影响[J].化学反应工程与工艺.2000,16(1):1-6.
    [127]Montillct A, Akkari E, Comiti J. About a Correlating Equation for Predicting Pressure Drops through Packed Beds of Spheres in a Large Range of Reynolds Numbers [J]. Chemical Engineering and Processing.2007, (46):329-333.
    [128]董志勇.射流力学[M].北京:科学出版社,2005.
    [129]Albertson M L, Dai Y B, Jensen R A, et al. Diffusion of Submerged Jets[J]. Transactions ASCE.1950, (115):381-391.
    [130]龚欣,于建国,王辅臣等.冷态德士古气化炉流场与停留时间分布的研究[J].燃料化学学报.1994,22(2):189-194.
    [131]Elperin I T. Transport Processes in Opposing Jets (Gas Suspension)[M]. Minsk:Science and Technol Press,1972.
    [132]孙志刚,李伟锋,刘海峰.小喷嘴间距撞击流的径向射流速度分布[J].燃料科学与技术.2010,16(2):165-169.
    [133]龚欣,刘海峰,王辅臣等.新型(多喷嘴对置式)水煤浆气化炉[J].节能与环保.2001,6:15-17.
    [134]Ji L J, W B, Chen K, et al. Experimental Study and Modeling of Residence Time Distribution in Impinging Stream Reactor with GDB Model [J]. Journal of Industrial and Engineering Chemistry.2010,16 (4):646-650.
    [135]Wen C Y, Fan L T. Models for Flow Systems and Chemical Reactors[M]. New York: Marcel Dekker,1975.
    [136]Johnson J L, Fan L T, Wu Y S. Comparison of Moments, S-Plane, and Frequency Response Methods for Analyzing Pulse Testing Data from Flow Systems [J]. Industrial & Engineering Chemistry Process Design Development.1971,10 (4):425-431.
    [137]纪利俊,刘海峰,王辅臣等.撞击流反应器停留时间分布[J].华东理工大学学报.2006,32(1):24-27.
    [138]于遵宏,张学刚,于建国等.德士古气化炉气化过程剖析:停留时间分布模型[J].大氮肥.1994,3:234-237.
    [139]周晓阳.数学实验与natlab[M].北京:化学工业出版社,2002.
    [140]于遵宏,龚欣,沈大才等.气化炉停留时间分布的数学模型[J].高校化学工程学报.1993,4(7):322-329.
    [141]于遵宏龚欣沈大才等.渣油气化炉停留时间分布测试与研究(Ⅰ)[J].石油学报(石油加工).1993,9(1):90-97.
    [142]王玉琴.焦炉气自热转化过程关键技术研究[D].上海:华东理工大学,2011.
    [143]Shih T H, Liou W W, Shabbir A, et al. A New k-s Eddy Viscosity Model for High Reynolds Number Turbulent Flows[J]. Computers & Fluids.1995,24(3):227-238.
    [144]Fluent 6.3 User's Guide. Fluent Inc., Lebanon, NH 2006.
    [145]岑可法,樊建人.燃烧流体力学[M].北京:水利电力出版社,1991.
    [146]戴干策,陈敏恒.化工流体力学[M].北京:化学工业出版社,2005.
    [147]Wang Y Q, Dai Z H, Cheng H, et al. Cold Modeling of a Direct Coupling Autothermal Methane Reforming Reactor[J]. Chemical Engineering Journal.2011,168:303-311.
    [148]Luo S Y, Xiao B, Hu Z Q, et al. Influence of Particle Size on Pyrolysis and Gasification Performance of Municipal Solid Waste in a Fixed Bed Reactor[J]. Bioresource Technology.2010,101:6517-6520.
    [149]Karimi A, Gray M R. Effectiveness and Mobility of Catalysts for Gasification of Bitumen Coke[J]. Fuel.2011,90(1):120-125.
    [150]Radovic L R, Walker P L, Jenkins R G Catalytic Coal Gasification:Use of Calcium versus Potassium[J]. Fuel.1984,63(7):1028-1030.
    [151]ANSYS, Inc. ANSYS FLUENT 12.0 Theory Guide; ANSYS, Inc.:Canonsburg, PA, 2009.
    [152]Syamlal M, and O'Brien T J. Computer Simulation of Bbubbles in a Fluidized Bed[J]. AIChE Symposium Series.1989,85(27):22-31.
    [153]Dallavalle J M. Micromeritics[M]. Pitman, London,1948.
    [154]Schaeffer D G Instability in the Evolution Equations Describing Incompressible Granular Flow[J]. Journal of Differential Equations.1987,66,19-50.
    [155]Gunn D J. Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds[J]. International Journal of Heat and Mass Transfer.1978,21(4):467-476.
    [156]David M. Mathematical Models of the Thermal Decomposition of Coal[J]. Fuel.1983, 62:534-539.
    [157]Maria S, Manuel P, Fabrizio B, et al. Simulated Moving Bed Technology Applied to Coal Gasification[J]. Chemical Engineering Research and Design.2010,88:465-475.
    [158]Brown B W, Smoot L D, Smith P J, et al. Measurement and Prediction of Entrained Flow Gasification Processes[J]. AIChE Journal.1988,34:435-446.
    [159]Yoon H, Wei J, Denn M M. A Model for Moving Bed Coal Gasification Reactors[J]. AIChE Journal.1978,24(5):885-903.
    [160]李伟.两段式气化工艺的热模实验研究及流程模拟[D].上海,华东理工大学,2007.
    [161]Chua L P, Lua A C. Measurements of a Confined Jet. Physics of Fluids[J].1998,10: 3137-3144.
    [162]朱炳辰.化学反应工程[M].北京:化学工业出版社,2007.
    [163]杨世铭,陶文铨.传热学第四版[M].北京:高等教育出版社,2006.
    [164]孙钟华.烟煤和石油焦为原料的气流床气化及间歇排渣系统的数值模拟[D].上海:华东理工大学,2012.
    [165]Westbrook C K, Dryer F L. Chemical Kinetic Modeling of Hydrocarbon Combusion[J]. Progress in Energy and Combustion Science.1984,10:1-57.
    [166]Jones W P, Lindstedt R P. Global Reaction Schemes for Hydrocarbon Combustion[J]. Combustion Flame.1988,73:233-249.
    [167]Mayank K C Z, Rory F D, Monaghan S L, et al. CFD Simulation of Entrained Flow Gasification with Improved Devolatilization and Char Consumption Submodels[C]. Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition. Lake Buena Vista, Florida, USA,2009.
    [168]Madhava S W R, Thomas J. O. "MFIX Documentation Theory Guide".1993, Technical Note, DOE/METC-94/1004.
    [169]龚欣,王辅臣,刘海峰等.新型撞击流气流床气化炉[J].燃气轮机技术.2002,15(2):23-24.
    [170]NETL. Destec Gasifier IGCC Base Cases. PEDIGCC-98-003,2000.
    [171]Shi S P, Zitney S E, Shahnam M, et al. Modelling Coal Gasification with CFD and Discrete Phase Method[J]. Journal of the Energy Institute.2006,79(4):217-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700