用户名: 密码: 验证码:
工业气流床水煤浆气化炉的建模、控制与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以GE气流床水煤浆气化炉为研究对象,深入了解气化反应过程机理,围绕工业气化炉的建模、控制与优化等方面的问题与技术进行了研究。分别建立了工业气化炉的热力学模型和动力学模型,考察了煤质组成和操作条件等工艺参数的变化对气化性能的影响,并以此为基础建立气化炉的动态模型,研究了过程的动态特性和系统控制结构的控制性能,采用智能优化算法进行了气化炉的操作优化,为实现工业气流床气化过程的优化与控制提供了新的技术指导。主要内容总结如下:
     1.建立了可预测碳转化率的三级气化炉平衡模型,采用热力学平衡假设,通过引入参与水煤气变换反应中H20的平衡分率来表征参与非均相气化反应的碳的数量,该方法克服了以往热力学模型需事先指定碳转化率的缺点,通过与实验数据和文献中的模型结果对比发现,该模型对气化过程关键指标具有较高的预测精度。研究了不同煤质组成对气化性能的影响,以煤中H/C、O/C摩尔比和灰分含量作为表征煤质的成分指标,通过模型计算发现,有效合成气产率随着氧元素相对摩尔量的增多而降低,随着氢元素相对摩尔量的增多而升高。随着灰分质量分数的增加,有效气产率降低,而比氧耗升高。作为气流床煤气化炉的原料,煤中的氧元素相对摩尔量越低,则气化炉气化性能越好,当原料煤中灰分质量分数发生变化时,应当调整气化操作参数使得气化过程能够高效稳定运行。
     2.通过对气化炉内流体流动的简化处理,综合考虑煤焦的气固非均相反应动力学,提出了一种简化的气化炉一维综合模型,沿气化炉内物流流动方向将气化炉分为裂解燃烧反应区和气化反应区,采用智能优化算法对焦炭气化反应、水煤气变换反应和重整反应的动力学参数进行了优化校正,获得了符合工业装置和特定煤种特性的气化反应过程模型。针对上述模型不能表征气化炉内物料回流的影响,通过流程模拟软件,在上述一维模型的基础上,结合气化炉内的流场分布,开发了考虑炉内回流的基于反应器网络方法的分区模型,与一维模型相比,该模型可更加准确的描述炉内的温度场和组分分布。根据模型研究了包含水煤浆浓度和氧煤比在内的操作参数对气化温度和出口合成气组成、碳转化率、有效合成气收率和比氧耗的影响,结果表明对于给定的煤浆浓度,存在不同的氧煤比使得有效合成气收率最大或比氧耗最小,应根据实际需求和装置操作特性对氧煤比进行优化和调整,该模型为开发过程的动态模型和操作优化提供了良好的基础。
     3.工业气流床气化炉操作变量存在着各种各样的和不同程度的波动、干扰以及操作条件的变化,同时气化过程具有停留时间短、反应速度快、各影响因素相互耦合、强非线性等特点,实际装置的运行是一个动态变化的过程。在稳态模型的基础上,建立了气流床气化过程的动态模型,并根据工业实际情况建立气化炉控制系统,研究了系统操作参数发生阶跃扰动时对过程动态特性的影响。根据工业气化炉现有的检测装置和控制现状,提出了一种新的控制系统,该控制系统以氧气流量作为负荷调节手段,气化温度由煤浆流量调节。通过阶跃扰动测试,结果表明该控制系统与原控制系统相比,在负荷出现变化时,气化温度和合成气收率的波动小,稳定时间短,提高了过程变负荷操作的安全性和经济性,为工业气化过程的稳定高效运行提供了理论基础。
     4.提出了一种改进的自适应多目标差分进化算法(CSADE),将混沌操作算子引入到差分进化算法的局部搜索功能中,以增加该算法的局部搜索功能。同时,算法控制参数的自适应调整功能加速了算法的收敛速度。标准测试函数的仿真结果表明,与文献中的优化算法相比,新算法对最优可行边界解的搜索能力强,在提高算法收敛速度的同时保持了解的分布性。然后,从现场气化炉操作优化的需求出发,结合气化过程的工艺操作约束,将本文提出的优化算法应用于水煤浆气化炉的操作优化中。结果表明,通过操作优化,工业气化炉可实现在提高有效合成气收率的同时降低比氧耗,对装置优化运行有较好的指导意义。
Gasification technology is being widely developed in the chemical and energy processes as a practical coal-utilizing technology using coal more efficiently and cleanly. Based on the mechanism models, research on gasification process modeling, control and optimization are conducted in this study. Thermal model and kinetic model are both established to give deep insiht of behaviors for the industrial entrained flow coal gasifier. Effects of feed coal composition and operating conditions on gasification performances have been investiged in light of the developed models. Dynamic models are set up to analyse the transient dynamic reponses and evaluate the effectivenesses of control structures. Furthermore, the operation optimization for the gasifier is carried out by using the proposed new intelligence alrorithm. All these provide a new technical guidance for optimization and control in the industrial gasification process. The main contents of this paper are summarized as follows:
     1. A novel three stage equilibrium model which can be used to predict carbon conversion, is developed for coal gasification on the basis of thermal equilibrium theory. The model is divided into three stages including pyrolysis and combustion stage, char gas reaction stage, and gas phase reaction stage. Steam participation ratio expressed as a function of temperature is introduced to estimate carbon conversion by assuming that only part of the water produced in the pyrolysis and combustion stage is involved to react with the unburned carbon in the second stage. The model overcomes the shortcome of the troditional themal model which need a specified carbon conversion in advance. Model results show a high prediction accuracy compared with published experimental data and models found in literatures. Effects of the amount of element C, H, O and ash in dry coal on the performance of gasifier are investigated by means of changing H/C and O/C molar ratios and ash content. The simulation results show that at the same operating temperature, the syngas productivity and oxygen consumption increase with the O/C molar ratio. However, with the increase of H/C molar ratio, the syngas productivity increases slightly and oxygen consumption remains unchanged. The relative amount of element O in coal has a more significant effect on the performance of gasifier. The syngas productivity reduces and the oxygen consumption raises with the increase of ash content. The above simulation results indicate the effects of major constituents of coal, i.e. C, H, O and ash on the performance of gasifier should be concerned and operating parameters need be adjusted in the industrial operating to optimize the production process and enhance the economic benefits.
     2. Cosidering the gas-char heterogeneous reactions kinetics, a one-dimensional partition gasifier model is proposed by simplying the flow behaviours in coal gasifier. The gasifier is divided into pyrolysis-combustion zone and gasification zone along the flow direction. The pyrolysis-combustion zone is modeled using the stoichiometry method. Detailed investigation was carried out on the gasification reaction rates in the reduction zone. The particle swarm optimization technique is introduced in this paper to address the lack of heterogeneous reaction kinetic parameters based on the random pore model for the specific feed Shenfu coal, and the huge deviation of the industrial product gas composition from the theoretical composition at equilibrium state. With the evaluated optimum kinetic parameters, robust agreement is achieved between the model outputs and the industrial data. Since the materials recirculation is not considered by one dimensional model, an equivalent compartment model (CM) is presented using the Aspen Plus process simulator. The CM blocking is established based on gasifier flow field analysis, using a number of compartments. A simple configuration of these compartments involving material recirculation should be able to simulate the main flow and provide the temperature and gas component distributions. The model predictions exhibit good agreement with industrial data in the model validation. The influences of the oxygen-to-carbon ratio (ROC) and the coal slurry concentration on the gasification performance are discussed. According to the intended final use, however, choosing a reasonable ROC to obtain a higher efficient syngas yield and lower oxygen consumption can be flexible.
     3. A dynamic model derived from the steady state model mentioned above is constructed for evaluating different control structures based on the disturbances rejection capabilities. From the sensitivity analysis, the optimal oxygen to coal ratio is obtained. The selection of an appropriate control structure is the most important decision when designing gasification control systems. In industrial practice, the gasifier is controlled by gasifier temperature, which manipulates the oxygen to coal ratio. The temperature is controlled at a suitable value slightly higher than the melting temperature of feed coal so that the operation can accomplish the slag discharge target. Two control structures are studied. The first control structure (CS1) uses the coal feed rate as the throughput manipulator (TPM). The other control structure (CS2) uses the oxygen feed rate as the TPM. The dynamic responses for feed flow rate and composition disturbances are evaluated in the two control structures. Although both control structures can handle the disturbances and hold the gasification temperature very close to the specified value, the results show that the the CS2control structure solve the disturbance issues effectively with smaller deviations.
     4. Since entrained flow gasification is such widely used, even a slight improvement in the operation of the gasifier can increase the economic benefits significantly. Different goals are to be reached depending on the downstream demands. Hence the objective of the operation optimization of the gasification process is to maximize the yield rates of efficient syngas and the H2product rate as well as minimizing the oxygen consumption. However, the three optimization objectives cannot be achieved simultaneously because of conflicts between them. An Chaos self-adaptive multi-objective differential evolution (CSaDE) algorithm is proposed to solve this multi-objective problem. In order to overcome the problems of premature convergence and falling into the local optimum, a chaotic migrate operator is introduced to the SaDE algorithm to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on various benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Multi-objective optimization problem of an entrained flow coal gasifier is then solved using the proposed CSaDE algorithm. Many sets of operating conditions that will yield such an end result are provided. Operating under the conditions predicted will enhance productivity and reduce the consumption and thereby increase profit. Since the CSADE method is a general algorithm, the described procedure is suitable for maximizing the benefits of any operating industrial gasification plant.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报.2008,42(3):345-359
    [2]倪维斗,李政,薛元.以煤气化为核心的多联产能源系统——资源/能源/环境整体优化与可持续发展[J].中国工程科学.2000,2(8):59-68
    [3]于遵宏,王辅臣.煤炭气化技术[M].北京:化学工业出版社.2010
    [4]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社.2006
    [5]Simbeck D, Korens D R, Biasca F E.Coal Gasification Guidebook:Status, Applications, and Technologies[R]. Palo Alto, Calif.:Electric Power Research Institute (EPRI),1993
    [6]王亦飞,于广锁,龚欣,王辅臣,刘海峰,代正华,周志杰.自主知识产权多喷嘴对置式煤气化技术的工业应用新进展[J].全国造气技术通讯.2012,3:2-7
    [7]Higman C, Van der Burgt M. Gasification[M]. Gulf Professional Publishing.2011
    [8]王辅臣,于广锁,龚欣,刘海峰,王亦飞,梁钦峰.大型煤气化技术的研究与发展[J].化工进展.2009,28(2):173-180
    [9]Breault R W. Gasification Processes Old and New:A Basic Review of the Major Technologies[J]. Energies.2010,3 (2):216-240
    [10]Minchener A J. Coal gasification for advanced power generation[J]. Fuel.2005,84 (17): 2222-2235
    [11]于广锁,龚欣,刘海峰,王亦飞,王辅臣,于遵宏.多喷嘴对置式水煤浆气化技术[J].现代化工.2004,24(10):46-49
    [12]许世森,王保民.两段式干煤粉加压气化技术及工程应用[J].化工进展.2010,29(1):290-294
    [13]龚欣,于遵宏.水煤浆气化技术在中国的应用及其发展[J].节能与环保.2001,(5):21-23
    [14]Silaen A K. Comprehensive modeling and numerical investigation of entrained-flow coal gasifiers[D]. New Orleans:University of New Orleans,2010
    [15]Solomon P, Fletcher T, Pugmire R. Progress in coal pyrolysis[J]. Fuel.1993,72 (5): 587-597
    [16]Solomon P R, Serio M A, Suuberg E M. Coal pyrolysis:experiments, kinetic rates and mechanisms [J]. Progress in Energy and Combustion Science.1992,18 (2):133-220
    [17]Duan L, Zhao C, Zhou W, Qu C, Chen X. Investigation on coal pyrolysis in CO2 atmosphere[J]. Energy & Fuels.2009,23 (7):3826-3830
    [18]Park D K, Kim S D, Lee S H, Lee J G. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor[J]. Bioresource Technology.2010,101 (15): 6151-6156
    [19]Kobayashi H, Howard J, Sarofim A F. Coal devolatilization at high temperatures[C]. Symposium (International) on Combustion.1977,16:411-425
    [20]杨海平,陈汉平,鞠付栋,王静,王贤华,张世红.热解温度对神府煤热解与气化 特性的影响[J].中国电机工程学报.2008,28(8):40-45
    [21]王鹏,文芳,步学朋,刘玉华,边文,邓一英.煤热解特性研究[J].煤炭转化.2005,28(1):8-13
    [22]Smoot L D, Smith P J. Coal combustion and gasification[M]. New York:Plenum Press. 1985
    [23]Badzioch S, Hawksley P G. Kinetics of thermal decomposition of pulverized coal particles[J]. Industrial & Engineering Chemistry Process Design and Development. 1970,9 (4):521-530
    [24]Anthony D, Howard J, Hottel H, Meissner H. Rapid devolatilization of pulverized coal[C]. Symposium (International) on Combustion.1975,15:1303-1317
    [25]Grant D M, Pugmire R J, Fletcher T H, Kerstein A R. Chemical model of coal devolatilization using percolation lattice statistics [J]. Energy & Fuels.1989,3 (2): 175-186
    [26]Solomon P R, Hamblen D G, Carangelo R, Serio M, Deshpande G. General model of coal devolatilization[J]. Energy & Fuels.1988,2 (4):405-422
    [27]鞠付栋.煤气化反应机制及其过程的实验和模拟研究[D].华中科技大学,2010
    [28]Cousins A, Paterson N, Dugwell D, Kandiyoti R. An investigation of the reactivity of chars formed in fluidized bed gasifiers:The effect of reaction conditions and particle size on coal char reactivity [J]. Energy & Fuels.2006,20 (6):2489-2497
    [29]Sharma A, Kadooka H, Kyotani T, Tomita A. Effect of microstructural changes on gasification reactivity of coal chars during low temperature gasification[J]. Energy & Fuels.2002,16(1):54-61
    [30]Messenbock R, Paterson N, Dugwell D, Kandiyoti R. Factors governing reactivity in low temperature coal gasification. Part 1. An attempt to correlate results from a suite of coals with experiments on maceral concentrates [J]. Fuel.2000,79 (2):109-121
    [31]Lemaignen L, Zhuo Y, Reed G, Dugwell D, Kandiyoti R. Factors governing reactivity in low temperature coal gasification. Part Ⅱ. An attempt to correlate conversions with inorganic and mineral constituents [J]. Fuel.2002,81 (3):315-326
    [32]Wen C. Noncatalytic heterogeneous solid-fluid reaction models[J]. Industrial & Engineering Chemistry.1968,60 (9):34-54
    [33]Schmal M, Monteiro J L F, Castellan J L. Kinetics of coal gasification[J]. Industrial & Engineering Chemistry Process Design and Development.1982,21 (2):256-266
    [34]Miura K, Aimi M, Naito T, Hashimoto K. Steam gasification of carbon:Effect of several metals on the rate of gasification and the rates of CO and CO2 formation[J]. Fuel.1986,65 (3):407-411
    [35]Zhang L, Huang J, Fang Y, Wang Y. Gasification reactivity and kinetics of typical Chinese anthracite chars with steam and CO2[J]. Energy & Fuels.2006,20 (3): 1201-1210
    [36]肖新颜,李淑芬,柳作良.未反应芯模型在煤焦水蒸汽气化反应中的应用[J].煤气与热力.1990,4:4-8
    [37]李淑芬,刘厚斌.未反应芯收缩模型用于煤焦与CO2加压气化反应的研究[J].煤气与热力.1993,13(5):3-9
    [38]林荣英,张济宇.低活性无烟煤二氧化碳催化气化动力学——热天平等温热重法[J].化工学报.2005,56(12):2332-2341
    [39]林荣英,张济宇,陈峰,季春晗.低活性无烟煤固定床二氧化碳催化气化反应动力学研究[J].燃料化学学报.2005,33(6):677-682
    [40]Bhatia S, Perlmutter D. A random pore model for fluid-solid reactions:Ⅰ. Isothermal, kinetic control[J]. AIChE Journal.1980,26 (3):379-386
    [41]Bhatia S, Perlmutter D. A random pore model for fluid-solid reactions:Ⅱ. Diffusion and transport effects[J]. AIChE Journal.1981,27 (2):247-254
    [42]Zhang Y, Hara S, Kajitani S, Ashizawa M. Modeling of catalytic gasification kinetics of coal char and carbon[J]. Fuel.2010,89 (1):152-157
    [43]Kajitani S, Suzuki N, Ashizawa M, Hara S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier[J]. Fuel.2006,85 (2):163-169
    [44]Kajitani S, Hara S, Matsuda H. Gasification rate analysis of coal char with a pressurized drop tube furnace[J]. Fuel.2002,81 (5):539-546
    [45]Liu G-s, Tate A, Bryant G, Wall T. Mathematical modeling of coal char reactivity with CO2 at high pressures and temperatures[J]. Fuel.2000,79 (10):1145-1154
    [46]Chodankar C, Feng B, Klimenko A. Gasification kinetics of Australian bituminous coal in CO2 environment:Unification approach of reactivity[C].2010,2007:82-85
    [47]Struis R, Von Scala C, Stucki S, Prins R. Gasification reactivity of charcoal with CO2. Part Ⅰ:Conversion and structural phenomena[J]. Chemical Engineering Science.2002, 57 (17):3581-3592
    [48]PWJ Struis R, Von Scala C, Stucki S, Prins R. Gasification reactivity of charcoal with CO2. Part Ⅱ:Metal catalysis as a function of conversion[J]. Chemical Engineering Science.2002,57 (17):3593-3602
    [49]Ni Q, Williams A. A simulation study on the performance of an entrained-flow coal gasifier[J]. Fuel.1995,74 (1):102-110
    [50]Smith W R, Missen R W. Chemical reaction equilibrium analysis:theory and algorithms[M]. Wiley New York.1982
    [51]Watkinson A, Lucas J, Lim C. A prediction of performance of commercial coal gasifiers[J]. Fuel.1991,70 (4):519-527
    [52]孙钟华,代正华,周志杰,于广锁.灰含量及助熔剂对气流床粉煤气化炉性能的影响[J].中国电机工程学报.2011,30(20):7-12
    [53]汪洋,代正华,于广锁,于遵宏.运用Gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化.2004,27(4):27-33
    [54]Dai Z, Gong X, Guo X L, Liu H, Wang F C, Yu Z. Pilot-trial and modeling of a new type of pressurized entrained-flow pulverized coal gasification technology [J]. Fuel. 2008,87 (10-11):2304-2313
    [55]Ravikiran A, Renganathan T, Pushpavanam S, Voolapalli R K, Cho Y S. Generalized Analysis of Gasifier Performance using Equilibrium Modeling[J]. Industrial & Engineering Chemistry Research.2011,51 (4):1601-1611
    [56]Yoshida H, Kiyono F, Tajima H, Yamasaki A, Ogasawara K, Masuyama T. Two-stage equilibrium model for a coal gasifier to predict the accurate carbon conversion in hydrogen production[J]. Fuel.2008,87 (10-11):2186-2193
    [57]Wen C, Chaung T. Entrainment coal gasification modeling[J]. Industrial & Engineering Chemistry Process Design and Development.1979,18 (4):684-695
    [58]Govind R, Shah J. Modeling and simulation of an entrained flow coal gasifier[J]. AIChE Journal.1984,30 (1):79-92
    [59]Vamvuka D, Woodburn E T, Senior P R. Modelling of an entrained flow coal gasifier.1. Development of the model and general predictions [J]. Fuel.1995,74 (10):1452-1460
    [60]Vamvuka D, Woodburn E T, Senior P R. Modelling of an entrained flow coal gasifier.2. Effect of operating conditions on reactor performance [J]. Fuel.1995,74 (10): 1461-1465
    [61]Liu G S, Rezaei H, Lucas J, Harris D, Wall T. Modelling of a pressurised entrained flow coal gasifier:the effect of reaction kinetics and char structure[J]. Fuel.2000,79 (14): 1767-1779
    [62]Kasule J S, Turton R, Bhattacharyya D, Zitney S E. Mathematical Modeling of a Single-Stage, Downward-Firing, Entrained-Flow Gasifier[J]. Industrial & Engineering Chemistry Research.2012,51 (18):6429-6440
    [63]Chen C, Horio M, Kojima T. Numerical simulation of entrained flow coal gasifiers. Part I:modeling of coal gasification in an entrained flow gasifier[J]. Chemical Engineering Science.2000,55 (18):3861-3874
    [64]Chen C, Horio M, Kojima T. Numerical simulation of entrained flow coal gasifiers. Part II:effects of operating conditions on gasifier performance[J]. Chemical Engineering Science.2000,55 (18):3875-3883
    [65]Vicente W, Ochoa S, Aguillon J, Barrios E. An Eulerian model for the simulation of an entrained flow coal gasifier[J]. Applied Thermal Engineering.2003,23 (15):1993-2008
    [66]Watanabe H, Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier[J]. Fuel.2006,85 (12-13):1935-1943
    [67]Wu Y X, Smith P J, Zhang J S, Thornock J N, Yue G X. Effects of Turbulent Mixing and Controlling Mechanisms in an Entrained Flow Coal Gasifier[J]. Energy & Fuels. 2010,24:1170-1175
    [68]Wu Y X, Zhang J S, Smith P J, Zhang H, Reid C, Lv J F, Yue G X. Three-dimensional simulation for an entrained flow coal slurry gasifier[J]. Energy & Fuels.2010,24 (2): 1156-1163
    [69]Kumar M, Ghoniem A F. Multiphysics Simulations of Entrained Flow Gasification. Part I:Validating the Nonreacting Flow Solver and the Particle Turbulent Dispersion Model[J]. Energy & Fuels.2011,26 (1):451-463
    [70]Kumar M, Ghoniem A F. Multiphysics Simulations of Entrained Flow Gasification. Part Ⅱ:Constructing and Validating the Overall Model[J]. Energy& Fuels.2011,26 (1): 464-479
    [71]Sun Z, Dai Z, Zhou Z, Guo Q, Yu G. Numerical Simulation of Industrial Opposed Multiburner Coal-Water Slurry Entrained Flow Gasifier[J]. Industrial & Engineering Chemistry Research.2012,51 (6):2560-2569
    [72]李超.气流床气化炉内颗粒流动模拟及分区模型研究[D].上海:华东理工大学,2013
    [73]王辅臣,龚欣,代正华,周志杰,于遵宏Shell粉煤气化炉的分析与模拟[J].华东理工大学学报:自然科学版.2003,29(2):202-205
    [74]Monaghan R F D, Ghoniem A F. A dynamic reduced order model for simulating entrained flow gasifiers:Part I:Model development and description[J]. Fuel.2012,91 (1):61-80
    [75]Monaghan R F D, Ghoniem A F. A dynamic reduced order model for simulating entrained flow gasifiers. Part Ⅱ:Model validation and sensitivity analysis[J]. Fuel.2012, 94 (0):280-297
    [76]Pedersen L S, Breithauptb P, Kim D A M J, Weber R. Residence time distributions in confined swirling flames[J]. Combustion Science and Technology.1997,127 (1-6): 251-273
    [77]Pedersen L, Glarborg P, Dam-Johansen K, Hepburn P, Hesselmann G. A chemical engineering model for predicting NO emissions and burnout from pulverised coal flames[J]. Combustion Science and Technology.1998,132 (1-6):251-314
    [78]Gazzani M, Manzolini G, Macchi E, Ghoniem A. Reduced order modeling of the Shell-Prenflo entrained flow gasifier[J]. Fuel.2012:
    [79]Yang Z, Wang Z, Wu Y, Li Z, Ni W. Use of a reactor network model in the design and operation of a new type of membrane wall entrained flow gasifier[J]. Energy & Fuels. 2013:
    [80]Li C, Dai Z, Sun Z, Wang F. Modeling of an Opposed Multiburner Gasifier with a Reduced-Order Model[J]. Industrial & Engineering Chemistry Research.2013,52 (16): 5825-5834
    [81]许寿泽,于广锁,梁钦锋,牛苗任,于遵宏.四喷嘴对置式气化炉停留时间分布的随机模型[J].燃料化学学报.2006,1:008
    [82]Lang Y, Zitney S E, Biegler L T. Optimization of IGCC processes with reduced order CFD models[J]. Computers & Chemical Engineering.2011,35 (9):1705-1717
    [83]赵锦超,龚欣,代正华,郭晓镭,盛新,韩启元,卞修荣.用BP神经网络对气流床粉煤气化炉的预测[J].华东理工大学学报:自然科学版.2009,35(5):688-692
    [84]孙漾.面向水煤浆气化装置的过程建模与操作优化技术[D].上海:华东理工大学,2012
    [85]韩志明,李政,倪维斗.Shell气化炉的动态建模和仿真[J].清华大学学报:自然科学版.1999,39(3):111-114
    [86]Yang Z, Wang Z, Wu Y, Wang J, Lu J, Li Z, Ni W. Dynamic Model for an Oxygen-Staged Slagging Entrained Flow Gasifier[J]. Energy & Fuels.2011,25 (8): 3646-3656
    [87]Sun B, Liu Y, Chen X, Zhou Q, Su M. Dynamic modeling and simulation of shell gasifier in IGCC[J]. Fuel Processing Technology.2011,92 (8):1418-1425
    [88]Monaghan R F D, Ghoniem A F. Simulation of a Commercial-Scale Entrained Flow Gasifier Using a Dynamic Reduced Order Model[J]. Energy & Fuels.2011,26 (2): 1089-1106
    [89]吴科.联产系统煤气化过程的建模和控制研究[D].南京:东南大学,2010
    [90]Robinson P J, Luyben W L. Simple dynamic gasifier model that runs in Aspen Dynamics[J]. Industrial & Engineering Chemistry Research.2008,47 (20):7784-7792
    [91]徐敏,俞金寿.软测量技术[J].石油化工自动化.1998,(2):1-3
    [92]王学武,王冬青,陈程,顾幸生,孙自强.基于混沌RBF神经网络的气化炉温度软测量系统[J].化工自动化及仪表.2006,33(5):48-50
    [93]王新刚,侍洪波.一种改进的FNN及其在德士古炉温软测量中的应用[J].工业控制计算机.2006,19(3):9-11
    [94]陈帅,朱建宁,潘俊,侍洪波.最小二乘支持向量机的参数优化及其应用[J].华东理工大学学报:自然科学版.2008,34(2):278-282
    [95]钟伟民,李杰,程辉,孔祥东,钱锋.基于FCM聚类的气化炉温度多模型软测量建模[J].化工学报.2012,63(12):3951-3955
    [96]徐越,吴一宁,危师让.基于Shell煤气化工艺的干煤粉加压气流床气化炉性能研究[J].西安交通大学学报.2003,37(11):1132-1136
    [97]王艳玲,马素霞.Texaco气化炉合成气的影响因素及优化[J].煤炭转化.2011,34(2):31-35
    [98]于海龙,赵翔,周志军,周俊虎,刘建忠,岑可法.煤浆浓度对水煤浆气化影响的数值模拟[J].动力工程.2005,25(2):217-220
    [99]Slezak A, Kuhlman J M, Shadle L J, Spenik J, Shi S. CFD simulation of entrained-flow coal gasification:Coal particle density/sizefraction effects[J]. Powder Technology.2010, 203(1):98-108
    [100]贺根良,门长贵.气流床气化炉操作温度的探讨[J].煤化工.2007,4:8-11
    [101]孙漾,顾幸生.水煤浆气化装置操作优化技术及其应用[J].化工学报.2012,63(9):2799-2804
    [102]张亚坤.多目标三层文化智能优化算法及其在德士古气化炉操作优化中的应用[D].上海:华东理工大学,2013
    [103]Sarker R, Mohammadian M, Yao X. Evolutionary optimization[M]. Springer.2002
    [104]Goldberg D. Genetic Algorithms in optimization, search and machine learning[J]. Addison Wesley, New York Eiben AE, Smith JE (2003) Introduction to Evolutionary Computing Springer Jacq J, Roux C (1995) Registration of non-segmented images using a genetic algorithm Lecture notes in computer science.1989,905:205-211
    [105]Fonseca C M, Fleming P J. Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization[C]. ICGA.1993,93:416-423
    [106]Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms [J]. Evolutionary computation.1994,2 (3):221-248
    [107]Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization[C]. Evolutionary Computation,1994 IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference on.1994, 82-87
    [108]Zitzler E, Thiele L. Multiobjective evolutionary algorithms:A comparative case study and the strength pareto approach[J]. Evolutionary Computation, IEEE Transactions on. 1999,3 (4):257-271
    [109]Zitzler E, Laumanns M, Thiele L. SPEA2:Improving the strength Pareto evolutionary algorithm. Eidgenossische Technische Hochschule Zurich (ETH), Institut fur Technische Informatik und Kommunikationsnetze (TIK).2001
    [110]Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. Evolutionary Computation, IEEE Transactions on.2002,6 (2): 182-197
    [111]吴亮红,王耀南,袁小芳,张剑.多目标优化问题的差分进化算法研究[J].湖南大学学报:自然科学版.2009,36(2):53r57
    [112]Chang C, Xu D, Quek H. Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system[C]. Electric Power Applications, IEE Proceedings-.1999,146:577-583
    [113]敖友云,迟洪钦.多目标差分演化算法研究综述[J].计算机科学与探索.2009,3(3):234-243
    [114]Abbass H A, Sarker R, Newton C. PDE:a Pareto-frontier differential evolution approach for multi-objective optimization problems[C]. Evolutionary Computation, 2001 Proceedings of the 2001 Congress on.2001,2:971-978
    [115]Xue F, Sanderson A C, Graves R J. Pareto-based multi-objective differential evolution[C]. Evolutionary Computation,2003 CEC'03 The 2003 Congress on.2003,2: 862-869
    [116]龚文引,蔡之华.基于ε占优的正交多目标差分演化算法研究[J].计算机研究与发展.2009,46(4):655-666
    [117]Santana-Quintero L V, Hernandez-Diaz A G, Molina J, Coello Coello C A, Caballero R. DEMORS:A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems[J]. Computers & Operations Research. 2010,37 (3):470-480
    [118]Zhang M, Geng H, Luo W, Huang L, Wang X. A hybrid of differential evolution and genetic algorithm for constrained multiobjective optimization problems[M]. Simulated Evolution and Learning. Springer.2006:318-327
    [119]Abbass H A. The self-adaptive pareto differential evolution algorithm[C]. Evolutionary Computation,2002 CEC'02 Proceedings of the 2002 Congress on.2002,1:831-836
    [120]Qian W. Adaptive differential evolution algorithm for multiobjective optimization problems[J]. Applied Mathematics and Computation.2008,201 (1):431-440
    [121]徐斌.基于差分进化算法的多目标优化方法研究与应用[D].上海:华东理工大学,2013
    [122]Abbass H A. A memetic pareto evolutionary approach to artificial neural networks[M]. AI2001:Advances in Artificial Intelligence. Springer.2001:1-12
    [123]Alatas B, Akin E, Karci A. MODENAR:Multi-objective differential evolution algorithm for mining numeric association rules[J]. Applied Soft Computing.2008,8 (1): 646-656
    [124]Qian B, Wang L, Huang D-X, Wang X. Scheduling multi-objective job shops using a memetic algorithm based on differential evolution[J]. The International Journal of Advanced Manufacturing Technology.2008,35 (9-10):1014-1027
    [125]Kukkonen S, Lampinen J. Mechanical component design for multiple objectives using Generalized Differential Evolution[M]. Adaptive Computing in Design and Manufacture VI. Springer.2004:261-272
    [126]Babu B, Gujarathi A M, Katla P, Laxmi V. Strategies of multi-objective differential evolution (MODE) for optimization of adiabatic styrene reactor[C]. Proceedings of the international conference on emerging mechanical technology:macro to nano (EMTMN-2007).2007,243
    [127]Babu B, Chakole P G, Syed Mubeen J. Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor[J]. Chemical Engineering Science.2005, 60 (17):4822-4837
    [128]Gujarathi A M, Babu B. Optimization of adiabatic styrene reactor:a hybrid multiobjective differential evolution (H-MODE) approach[J]. Industrial & Engineering Chemistry Research.2009,48 (24):11115-11132
    [129]Wang Z, Tang K, Yao X. Multi-objective approaches to optimal testing resource allocation in modular software systems[J]. Reliability, IEEE Transactions on.2010,59 (3):563-575
    [130]Wang X, Tang L. Multiobjective Operation Optimization of Naphtha Pyrolysis Process Using Parallel Differential Evolution[J]. Industrial & Engineering Chemistry Research. 2013,52(40):14415-14428
    [131]Xu B, Qi R, Zhong W, Du W, Qian F. Optimization of p-xylene oxidation reaction process based on self-adaptive multi-objective differential evolution[J]. Chemometrics and Intelligent Laboratory Systems.2013,127 (15):55-62
    [132]Sharma S, Rangaiah G P. An Improved Multi-objective Differential Evolution with a Termination Criterion for Optimizing Chemical Processes[J]. Computers & Chemical Engineering.2013,56 (13):155-173
    [133]代正华,龚欣,王辅臣,于广锁,谭可荣,于遵宏.气流床粉煤气化的Gibbs自由能 最小化模拟[J].燃料化学学报.2005,33(2):129-133
    [134]Nguyen T D B, Lim Y I, Song B H, Kim S M, Joo Y J, Ahn D H. Two-stage equilibrium model applicable to the wide range of operating conditions in entrained-flow coal gasifiers[J]. Fuel.2010,89 (12):3901-3910
    [135]Liu X J, Zhang W R, Park T J. Modelling coal gasification in an entrained flow gasifier[J]. Combustion Theory and Modelling.2001,5 (4):595-608
    [136]Li X, Grace J R, Watkinson A P, Lim C J, Ergudenler A. Equilibrium modeling of gasification:a free energy minimization approach and its application to a circulating fluidized bed coal gasifier[J]. Fuel.2001,80 (2):195-207
    [137]Prins M J, Ptasinski K J, Janssen F J J G. From coal to biomass gasification: Comparison of thermodynamic efficiency [J]. Energy.2007,32 (7):1248-1259
    [138]傅维镳.煤燃烧理论及其宏观通用规律[M].北京:清华大学出版社.2003
    [139]岑可法.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社.1998
    [140]De Souza-Santos M. Comprehensive modelling and simulation of fluidized bed boilers and gasifiers[J]. Fuel.1989,68 (12):1507-1521
    [141]Di Blasi C. Combustion and gasification rates of lignocellulosic chars[J]. Progress in Energy and Combustion Science.2009,35 (2):121-140
    [142]Man M F, Usman M R, Kusakabe K. Coal gasification in CO2 atmosphere and its kinetics since 1948:a brief review[J]. Energy.2011,36 (1):12-40
    [143]Zhang Y, Ashizawa M, Kajitani S, Miura K. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars[J]. Fuel.2008,87 (4-5):475-481
    [144]Roberts D, Harris D. A kinetic analysis of coal char gasification reactions at high pressures[J]. Energy & Fuels.2006,20 (6):2314-2320
    [145]Liu G S, Tate A G, Bryant G W, Wall T F. Mathematical modeling of coal char reactivity with CO2 at high pressures and temperatures [J]. Fuel.2000,79 (10): 1145-1154
    [146]Merrick D. Mathematical models of the thermal decomposition of coal:1. The evolution of volatile matter[J]. Fuel.1983,62 (5):534-539
    [147]李政,王天骄.Texaco煤气化炉数学模型的研究-建模部分[J].动力工程.2001,21(2):1161-1165
    [148]Kennedy J. Particle swarm optimization[M]. Encyclopedia of Machine Learning. Springer.2010:760-766
    [149]Liu B, Yang X, Song W, Lin W. Process simulation of formation and emission of NO and N2O during coal decoupling combustion in a circulating fluidized bed combustor using Aspen Plus[J]. Chemical Engineering Science.2012,71 (26):375-391
    [150]Damartzis T, Michailos S, Zabaniotou A. Energetic assessment of a combined heat and power integrated biomass gasification-internal combustion engine system by using Aspen Plus(?)J]. Fuel Processing Technology.2012,95 (1):37-44
    [151]Abdelouahed L, Authier O, Mauviel G, Corriou J P, Verdier G, Dufour A. Detailed Modeling of Biomass Gasification in Dual Fluidized Bed Reactors under Aspen Plus[J]. Energy & Fuels.2012,26 (6):3840-3855
    [152]De Kam M J, Vance Morey R, Tiffany D G. Biomass Integrated Gasification Combined Cycle for heat and power at ethanol plants[J]. Energy Conversion and Management. 2009,50 (7):1682-1690
    [153]Sudiro M, Pellizzaro M, Bezzo F, Bertucco A. Simulated moving bed technology applied to coal gasification[J]. Chemical Engineering Research & Design.2010,88 (4A):465-475
    [154]Maxim V, Cormos C C, Cormos A M, Agachi S. Mathematical modeling and simulation of gasification processes with Carbon Capture and Storage (CCS) for energy vectors poly-generation[J]. Computer Aided Chemical Engineering.2010,28:697-702
    [155]Cormos C C, Starr F, Tzimas E, Peteves S. Innovative concepts for hydrogen production processes based on coal gasification with capture[J]. International Journal of Hydrogen Energy.2008,33 (4); 1286-1294
    [156]Baratieri M, Baggio P, Bosio B, Grigiante M, Longo G. The use of biomass syngas in IC engines and CCGT plants:a comparative analysis[J]. Applied Thermal Engineering. 2009,29 (16):3309-3318
    [157]Biagini E, Bardi A, Pannocchia G, Tognotti L. Development of an entrained flow gasifier model for process optimization study[J]. Industrial & Engineering Chemistry Research.2009,48 (19):9028-9033
    [158]于遵宏,沈才大.水煤浆气化炉气化过程的三区模型[J].燃料化学学报.1993,21(1):90-95
    [159]杨志伟,王哲,李政,倪维斗.水煤浆水冷壁气化炉的反应器网络模型[J].清华大学学报:自然科学版.2013,(4):514-519
    [160]Syred N, Beer J. Combustion in swirling flows:a review[J]. Combustion and Flame. 1974,23 (2):143-201
    [161]Loison R, Chauvin R. Pyrolyse rapide du charbon[J]. Chimie et Industrie.1964,91 (3): 269-275
    [162]Jazbec M, Sendt K, Haynes B S. Kinetic and thermodynamic analysis of the fate of sulphur compounds in gasification products[J]. Fuel.2004,83 (16):2133-2138
    [163]Dryer F, Glassman I. High-temperature oxidation of CO and CH4[C].14th Symposium (International) on Combustion.1973,14:987-1003
    [164]Westbrook C K, Dryer F L. Chemical kinetic modeling of hydrocarbon combustion[J]. Progress in Energy and Combustion Science.1984,10(1):1-57
    [165]Jones W, Lindstedt R. Global reaction schemes for hydrocarbon combustion[J]. Combustion and Flame.1988,73 (3):233-249
    [166]Bustamante F, Enick R, Killmeyer R, Howard B, Rothenberger K, Cugini A, Morreale B, Ciocco M. Uncatalyzed and wall-catalyzed forward water-gas shift reaction kinetics[J]. AIChE Journal.2005,51 (5):1440-1454
    [167]Qian F, Kong X, Cheng H, Du W, Zhong W. Development of a kinetic model for industrial entrained flow coal gasifiers[J]. Industrial & Engineering Chemistry Research. 2013,52(5):1819-1828
    [168]Muhlen H-J, van Heek K H, Juntgen H. Kinetic studies of steam gasification of char in the presence of H2, CO2 and CO[J]. Fuel.1985,64 (7):944-949
    [169]Silaen A, Wang T. Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow gasifier[J]. International Journal of Heat and Mass Transfer.2010,53 (9):2074-2091
    [170]Brown B, Smoot L, Smith P, Hedman P. Measurement and prediction of entrained-flow gasification processes[J]. AIChE Journal.1988,34 (3):435-446
    [171]Raznjevic K. Handbook of thermodynamic tables and charts[M]. Washington, DC: Hemisphere Publishing Corp.1976
    [172]Luyben W L. Design and control of the ethyl benzene process[J]. AIChE Journal.2011, 57 (3):655-670
    [173]Robinson P J, Luyben W L. Plantwide Control of a Hybrid Integrated Gasification Combined Cycle/Methanol Plant[J]. Industrial & Engineering Chemistry Research. 2011,50 (8):4579-4594
    [174]Lin Y-J, Wong D S-H, Jang S-S, Ou J-J. Control strategies for flexible operation of power plant with CO2 capture plant[J]. AIChE Journal.2012,58 (9):2697-2704
    [175]Qin J, Ye Q, Xiong X, Li N. Control of Benzene-Cyclohexane Separation System via Extractive Distillation Using Sulfolane as Entrainer[J]. Industrial & Engineering Chemistry Research.2013,52 (31):10754-10766
    [176]Yang S, Wang Y, Bai G, Zhu Y. Design and Control of Extractive Distillation System for Benzene-Acetonitrile Separation Using DMSO as an Entrainer[J]. Industrial& Engineering Chemistry Research.2013,52 (36):13102-13112
    [177]Luyben W L. Design and control of a methanol reactor/column process[J]. Industrial & Engineering Chemistry Research.2010,49 (13):6150-6163
    [178]Luyben W L. Use of dynamic simulation for reactor safety analysis[J]. Computers & Chemical Engineering.2012,40 (11):97-109
    [179]Robinson P J, Luyben W L. Integrated Gasification Combined Cycle Dynamic Model: H2\S Absorption/Stripping, Water-Gas Shift Reactors, and CO2 Absorption/Stripping[J]. Industrial & Engineering Chemistry Research.2010,49 (10):4766-4781
    [180]Storn R, Price K.Differential Evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. International Computer Science Institute, Berkeley[R]. CA,1995, Tech. Rep. TR-95-012,1995
    [181]Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization.1997,11 (4): 341-359
    [182]Das S, Suganthan P N. Differential evolution:A survey of the state-of-the-art[J]. Evolutionary Computation, IEEE Transactions on.2011,15 (1):4-31
    [183]姚俊峰,梅炽,彭小奇,胡志坤,胡军.混沌遗传算法及其应用[J].系统工程.2001, 19(1):70-74
    [184]姚俊峰,梅炽,彭小奇.混沌遗传算法(CGA)的应用研究及其优化效率评价[J].自动化学报.2002,28(6):935-942
    [185]高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学.2004,31(8):13-15
    [186]陈如清,俞金寿.混沌粒子群混合优化算法的研究与应用[J].系统仿真学报.2008,20(3):685-688
    [187]Liu B, Wang L, Jin Y-H, Tang F, Huang D-X. Improved particle swarm optimization combined with chaos[J]. Chaos, Solitons & Fractals.2005,25 (5):1261-1271
    [188]Takahama T, Sakai S. Constrained optimization by applying the a constrained method to the nonlinear simplex method with mutations [J]. Evolutionary Computation, IEEE Transactions on.2005,9 (5):437-451
    [189]Qian F, Xu B, Qi R, Tianfield H. Self-adaptive differential evolution algorithm with a-constrained-domination principle for constrained multi-objective optimization[J]. Soft Computing.2012,16 (8):1353-1372
    [190]Takahama T, Sakai S. Constrained optimization by the e constrained differential evolution with gradient-based mutation and feasible elites[C]. Evolutionary Computation,2006 CEC 2006 IEEE Congress on.2006,1-8
    [191]Qu B, Suganthan P. Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods[J]. Engineering Optimization.2011,43 (4): 403-416

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700