用户名: 密码: 验证码:
松花湖流域水土侵蚀和水体富营养化综合防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊储存着地球上丰富的淡水资源,具有供水、灌溉、调蓄、水运、发电、旅游、养鱼以及维持生物多样性和生态平衡等多种功能,是人类赖以生存和经济社会发展的基础。随着人们对农产品的需求日益增长,为了提高农产品产量,耕地大量开发、化肥施用量和农药施用量的增加,导致地表水水质变差,湖泊尤甚,水体中的TN、TP严重超标,富营养化现象严重,给环境带来了巨大的压力。保护湖泊水资源,确保生活、生产、生态用水安全已成为当前研究的热点课题,开展吉林省湖泊水库的水环境污染特别是面源污染的研究具体有重要的现实意义。
     松花湖流域位于吉林省中南部,跨13个市县区,约占全省总面积的22.7%。松花湖流域生态环境现状影响到全流域综合功能。多年来,由于未统筹考虑生态保护、环境治理和综合开发工作,使得流域内资源破坏严重,生态平衡失调,水土流失现象加剧,入湖泥沙及污染物排放量呈逐年增加趋势,水质污染加重。本研究结合多种理论技术和方法,以遥感与地理信息系统为技术支撑,参照多年水质监测数据,基于Landsat TM/ETM+遥感数据,开展松花湖流域水土流失及湖泊富营养化的综合防治研究。
     在广泛收集国内外相关文献资料的基础上,结合研究区实际情况,通过信息整合,开展了如下研究:
     首先,针对流域内自然环境、社会经济现状,分别评估了点源和面源污染贡献率,筛选了主要污染源和污染限制因子,确定各区域污染现状。研究表明,松花湖流域点源污染贡献率为21.31%,面源污染贡献率为78.69%,污染主要集中在松花湖区,同时,点源和面源污染贡献率在此区内最大。
     松花湖上游内两条支流辉发河和蛟河,是松花湖的重要污染来源,辉发河较蛟河对松花湖区间的污染贡献率较大,具体表现在工业污染源数量、废水总排放量和四类污染物总排放量等三个方面。
     其次,基于松花湖流域内存在不同程度的水土流失,加速了夏季降水对农药、化肥、畜禽粪便等污染物带入河流影响水质的影响。利用3S (RS、GIS、GPS)技术进行水土流失监测,并运用中国坡面水蚀预报模型RKLSGCP进行松花湖流域水土流失量计算,结合土壤侵蚀模数估算土壤营养物质流失量,对比分析了各分区N、P流失原因,筛选土壤营养物质损失的影响因素。结果表明,全流域大部分为微度侵蚀,强度侵蚀面积小且集中,松花江流域土壤侵蚀介于-192~5561.14t/(hm2·a),松花湖流域内土壤侵蚀呈现出自东南向西北逐渐加重的分布格局,且强度侵蚀集中在辉发河入湖口的中部地区。在侵蚀区域中,土壤侵蚀情况以微度侵蚀和轻度侵蚀为主,其面积分别占松花湖流域的65.72%和33.83%;土壤侵蚀量亦以微度侵蚀和轻度侵蚀为主,分别占侵蚀总量的15.90%和81.87%,中度侵蚀占2.15%,而强度侵蚀仅占0.07%。松花江源头区和辉发河区具有较高的N、P流失量,对松花湖流域富营养化影响较大。
     再次,选取合理的富营养化反演模型,收集松花湖流域2001~2010年的ETM+/TM影像数据,利用ENVI、ArcGIS软件反演近10年松花湖流域的富营养化因子(叶绿素、总氮、总磷、COD、透明度),反演结果可以看出松花湖、红石湖、白山湖是以中度富营养化为主。
     最后,主要从污染物总量控制、加强城乡垃圾和污水处理、防治农业面源污染、完善监测和执法体系四个方面提出了松花湖流域面源污染综合整治措施。
     本文将多源空间信息,利用RS和GIS技术手段相结合,构造了以栅格数据为单元的数字环境模型,同时开展基于空间技术的水土流失评价与基于监测数据的富营养化评价相结合,分析流域水生态环境现状。本文在反映松花湖流域水土流失现状、湖泊富营养化现状等方面有重要意义,研究结果为松花湖流域富营养化的科学治理提供了充足科学依据。
Lakes as one of the most important freshwater resources on the earth, have thefunctions of water supply, irrigation, regulation and storage, transportation, powergeneration, tourism, fishing, maintaining biodiversity and ecological balance andmany other features at the same time, which were the important basis for sustainabledevelopment and survival in the watershed areas. With the growing demand foragricultural products, large number of cultivated land, excessive application of thechemical fertilizers and pesticides in order to increase agricultural production,resulting in surface river water quality deterioration, eutrophication has broughtgreat pressure to the environment which was caused by total N and total P exceeded.Thus protecting the existing water supply sources to ensure the safety of residentsliving water has become an important subject of the current study, which hasfar-reaching practical significance by systematic study on non-point source pollutionin Jilin Province.
     Songhua Lake watershed is located in central and southern Jilin Province,across13cities and counties, accounting for22.7%of the total area of the province,its natural runoff accounted for81.7%of the total surface water resources for thesecond Songhua River Basin, accounting for38.7%of the total surface waterresources in Jilin Province. The eco-environment of Songhua Lake watershed wasgreat relevance to the integrated function of the whole whtershed. Over the years,lacking in combining consideration for ecological protection and environmentalmanagement and development of watershed resources, which caused the destructionof ecological balance and soil erosion, the more sediment and pollutants were putinto the lake, the heavier water pollution. Therefore, various theories and methodswhich combining multi-source remote sensing data and years of water qualitymonitoring data were used in this paper to lauch the system research on soil erosionand eutrophication of the Songhua Lake watershed.
     Through the extraction of useful information from the extensive collection ofrelevant literature data, then combined with the actual situation of the study area,what follows were the mainly research in this paper.
     First of all, in connection with the socio-economic and environmental status ofthe Songhua Lake watershed, and separate analysis of point sources and surfacesources of pollution, through the assessment for the contribution rate of the pointsource and point source pollution, then screening of the major sources of pollutionand pollution of the Songhua Lake watershed limiting factor to determine theexisting pollution state of survey region. Studies have shown that the contribution tothe point source pollution of the Songhua Lake watershed was21.31%, surfacesource pollution contribution was78.69%, the contribution rate of point source andsurface source pollution was the maximum since the pollution were concentrated inSonghuahu segment. Songhua Lake was serious affected by Huifa River and Jiaohe,Huifa River and Jiaohe is the two important sources of pollution in the SonghuaLake, compared with Jiaohe, the pollution contribution rate of Huifa river wasbigger, numbers of industrial pollution sources, the total quantity of wastewater andfour types of pollutant emissions came first, and thus cause pollution of SonghuaLake watershed. The reason for the lowest rate of point source contribution inRedstone segment was the pollution of rural life lightest where the rural populationwas smallest. Chemical fertilizers and loss of volume was concentrated in theSonghua Lake interval, in which the nitrogen fertilizer was applied frequently.
     Secondly, based on the memory of the Songhua Lake watershed in varyingdegrees of soil erosion, accelerated summer rainfall pesticides, fertilizers, manureand other pollutants into rivers affecting water quality.3S technology for monitoringsoil erosion and use of the Chinese Water Erosion Prediction model RKLSGCPSonghua Lake watershed soil erosion calculation, calculation of the loss of soilnutrients according to soil erosion modulus, and comparative analysis of the Districtof N, P loss reasons to determine the The influencing factors of soil nutrient loss.The results show that the Songhua Lake watershed soil erosion showing a gradualincrease from southeast to northwest trend, the lightest of the Songhua River, the source, the intensity of erosion is concentrated in the central region of HuifaEstuaries. The majority of the whole basin slightly eroded, the intensity of theerosion area of small and focused, the Songhua River Basin soil erosion in the range-192~5561.14t/(hm2h a) the. In the region of erosion, soil erosion to slightlyeroded and slight erosion-based, the area accounted for65.72%and33.83%of theSonghua Lake watershed; the amount of soil erosion is slightly eroded, and slighterosion were accounted for erosion of the total15.90%and81.87%moderateerosion accounted for2.15%, while the intensity of erosion accounted for only0.07%. From the watershed of each river system partition angle comparison analysis,the Songhua River, the source and Huifa River District of the N and P loss are veryhigh, this result makes the range of White Lake and the mouth of the Huifa theupper reaches of the Songhua Lake N-P content increased, exacerbate eutrophicationrisk.
     Again, select a reasonable the eutrophication inversion model to collect theSonghua Lake watershed2001to2010, ETM/TM image data using the ENVI, theArcGIS software inversion nearly10years of eutrophication in Songhua Lakewatershed factors (chlorophyll, total nitrogen, of COD, total phosphorus,transparency), from the perspective of the Songhua Lake interval analysis, due toHuifa River into more pollutants, causing the upper reaches of the Songhua Lakewater quality is inferior to the downstream, the more the better downstream waterquality, water quality in the best of the fullness of the reservoir.
     Finally, the main control from the total amount of pollutants, strengthen urbanand rural sewage and garbage disposal, prevention and control of agriculturalnonpoint source pollution, improve monitoring and enforcement system of fourpoint source pollution of the Songhua Lake watershed improvement measures.
     In this paper, multi-source spatial information, the use of RS and GIStechniques, digital environment model of tectonic units of raster data, thecombination of soil erosion assessment based on space technology andeutrophication assessment based on monitoring data, the study lakes and water ecology of the surrounding watershed, the study methods and study area certainlyinnovative. In this study reflect the Songhua Lake watershed soil erosion status, lakeeutrophication status is important to provide a scientific basis for the scientificmanagement of the Songhua Lake watershed eutrophication.
引文
Ann Bateson, Brian Curtiss. A Method for Manual Endmember Selection andSpectral Unmixing[J]. Remote Sensing of Environment,2003,11(55):229-243
    Baban S I. Detecting water quality parameters in the Norfolk Broads, U K, usingLandsat imagery [J]. International Journal of Remote Sensing,1993,14(7):1247-1267
    Bagheri S Remote sensing of near-shore water quality using bio-optical modelingand retrieval techniques [J]. International Journal of Remote Sensing,1990,11(2):289-292
    Carpenter,D.J. and Carpenter,S.M. Modeling inland water quality using Landsatdata[J].Remote Sensing Environment,1983,13:342~352.
    Chander G,Markham B L, Helder D L, Summary of current radiometric calibrationcoefficients for Landsat MSS、TM、ETM+、and EO-1ALI sensors[J].RemoteSensing of Environment,2009,113:893~903.
    CHEN C Q, SHIP, ZHAN H G. A local algorithm for estimation of yellowsubstance(gelbst-off) in coastal waters from SeaWiFS data: Pearl River estuary,China [J].International Journal of Remote Sensing,2003,24(5):1171-1176
    Dekker A G, Peters S W. The use of the Thematic Mapper for the analysis ofeutrophic lakes A case study in the Netherland [J]. International Journal ofRemote Sensing,1993,14(5):799-821
    Donald C. Rundquist, Luoheng Han, John F. Schalles, et al. Remote Measurementof Algal Chlorophyll in Surface Waters: The Case far the First Derivative ofReflectance Near690nm[J]. Photogram metric Engineering and RemoteSensing,1996,62(2):195-200
    Flink P, Lindell T, Ostlund C.Statistical analysis of hyperspectral data fromtwoSwedish lakes [J].The Science of the Total Environment,2001,268:155-169
    G. Dekker. R. T. Vos. S. W. M. Peters. Analytical algorithms for lake water TSMestimation for retrospective analyses of TM and SPOT sensor data[J],International Journal of Remote Sensing,2002,23(1):15-30
    Gitelson A, Garbuzov G. Quantitative remote sensing methods for real-timemonitoring of inland waters quality [J]. International Journal of RemoteSensing,1993,14(7):1269-1295
    Herut B, Tibor G, Yacobi Y Z, et al. Synoptic measurements of chlorophyll a andsuspended particulate matter in a transitional zone from polluted to clean seawater utilizing airborne remote sensing and ground measurements, Haifa Bay[J].Marine Pollution Bulletin,1999,38(9):762-772
    Hugh Hammond Bennett. Soil Conservation. New York1938
    Kondratyev K Ya. Water quality remote sensing in the visible spectrum[J]. RemoteSensing,1998,19(5):957~979.
    Laher F, Ouillon S. A Three-component model of ocean color and its application inthe Ebro river Mouth area [J], Remote Sensing of Environment,2000,72:181-190
    Lathrop R G, Lillesand T M. Use of them atic mapper data to assess water quality inreen bay and Central Lake Michigan [J]. Photogrammetric Engineering andRemote Sensing,1986,52(5):671-680
    Liu, B.Y., M.A. Nearing, C. Baffaut, and J.A. ascough II.1995. Runoff and soil lossprediction by WEPP watershed version. WEPP and WEPS symposium[J]. Soiland Water Conservation Sciety. Aug.9-11,1995. Des Moines, Iowa.
    Luoheng Han. Spectral Reflectance with Varying Suspended Sedimentoncentrations in Clear and Algae-Laden Waters[J]. PhotogrammetricEngineering and Remote Sensing,1997,63(6):701-705
    M.A.Imteaz,Modellling of lake eutrophication including artificaial mixing andeffects of bubbling operations on algal bloom[D],Ph.D.Thesis,SaitamaUniversity,Japan(1997).
    OECD,Eutrophication of waters monitoring,assessment and control[C],OECDpublication,Paris,1982.
    S. Koponen, J. Pulliainen, H. Servomaa, et al. Analysis on the feasibility ofmulti-source remote sensing observations for chl-a monitoring in Finnishlakes[J]. The Science of the Total Environment,2001,268:95-106
    Sathyendranath S, Pricur I. A three-component model of ocean color and itsapplicationto remote sensing of phytoplankton pigments in coastal waters [J].International Journal of Remote Sensing,1989,10(8):1373-1394
    Song L, Sano T.Microcystin production of microcystins viridis (cyanobacteria)under different conditions[J]. Phycological Research,1998,46(1):19-21.
    Topliss B J. Almos C L, Algorithms for remote sensing of highconcentration,inorganic suspended sediment [J]. International Journal ofRemote Sensing,1990,11(6):947-966
    Wischmeier W H. Smith D D. Predicting rainfall-erosion losses from cropland andeast of the Rocky Mountains[S]. USDA, ARS, Agriculture Handbook,1965.
    Yoder Daniel, et al. The future of RUSLE: inside new Revised Universal Soil LoessEquation[J]. Soil and Water Conservation,1995,50(5):484-489.
    Zhang Y. Water Quality Retrievals From Combined Landsat TM data andERS-2SAR data in the Gulf of Finland[J].IEEE transactions on geo-science andremote sensing,2003,41(3):622~629.
    包为民,陈粗庭.中大流域水沙祸合模拟物理概念模型[J].水科学进展,1994,5(4):287-292;
    蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型[J].地理学报,1996,51(2):108-117;
    曹文洪.水土流失的坡度界限研究[J].1993,13(4):1-5.
    陈楚群,施平,毛庆文.应用TM遥感资料估算沿岸海水表层叶绿素浓度模型研究[J].环境遥感,1996.11(3):168-175
    陈法扬,王志明.通用土壤流失方程在小良水土保持试验站的应用[J],水土保持通报,1992,12(1):23-41;
    陈法扬.不同坡度对水土冲刷量影响的试验[J].中国水土保持,1985(2):18-19.
    陈明华、周伏建等.土壤可蚀性因子的研究[J].水土保持学报,1995,9(1):19-24.
    陈少莲,刘肖芳.鲢、鳙在东湖生态系统的氮、磷循环中的作用[J].水生生物学报,1991,15(1):8-21.
    陈水勇.水体富营养化的形成,危害和防治[J].环境科学与技术,1999.2:11-152.
    陈一兵, K.O. Trouwborst.土壤侵蚀建模中ANSWERS及地理信息系统的应用研究[J].土壤侵蚀与水土保持学报,1997,3(2):1-13;
    陈永宗等.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988.
    范瑞瑜.黄河中游地区小流域土壤流失盘计算方程的研究[J].中国水土保持,1985(2):12-18;
    付炜.黄土丘陵沟壑区水土流失预测模型建立方法的研究[J].水土保持学报,1992,6(3):6-13.
    傅伯杰,汪西林. DEM在研究黄土丘陵沟壑区水土流失类型和过程中的应用[J].水土保持学报,1994,8(3).
    龚应安,胡秀琳.湖泊富营养化防治的研究现状与展望[J].北京水利,2005,(6)4-5.
    郭培才.黄土高原抗蚀性预报及评价方法研究[J].水土保持学报,1992,6(3):48-51,58.
    国家环保总局科技标准司编.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001,23-28,98-103.
    昊洁,钱天鸣,虞左明.西湖叶绿素a周年动态变化及藻类增长潜力试验[J].湖泊科学,2001,13(2):.
    胡世雄等.坡面土壤临界坡度问题的理论与试验研究[J].地理学报,1999,54(4):347-356.
    黄炎和等.闽东南降雨侵蚀力指标R值的研究[J].水土保持学报,1992,6(4):1-5.
    江忠善,王志强,刘志.黄土丘陵区小流域土壤表面特性变化规律研究[J].地理科学,2001,21(2):1-5.
    江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-10.
    江忠善,王志强,刘志.黄土丘陵区小流域土壤授蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1):l-9;
    江忠善,李秀英.黄土高土壤流失预报方程中降雨侵蚀力和地形因子的研究[J].中国科学院西北水土保持研究所集刊,1988,(7):40-45.
    江忠善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究[J].中国水土保持,1983(3):32-36.
    江忠善,郑粉莉,武敏.中国坡面水蚀预报模型研究[J].泥沙研究.2005(4):1~6;
    蒋火华,吴贞丽,梁德华.世界典型湖泊水质探研[J].世界环境,2000,(4):35-37.
    金刚,李钏杰,刘伙泉等.保安湖沉水植被恢复及其渔业效益[J].湖泊科学,1999.11(3):261-265.
    金相灿,刘树坤,章宗涉.中国湖泊环境(第一册)[M].北京:海洋出版社,1995.
    金争平,史培军.内蒙古半干旱地区土壤侵蚀过程的研究——以内蒙古准格尔旗为例[J],干旱区资源与环境,1987(2);
    金争平,赵焕勋,和泰等.皇甫川区小流域土壤侵蚀盘预报方程研究[J].水土保持学报,1991,5(1):8-18;
    巨任,赵满礼等.固原试验区径流观测及综合治理减沙效益的研究[C].中国科学院、水利部西北水土保持研究所集刊第12集.
    柯克比M J,摩根R P C.土壤侵蚀[M].王礼先等译.北京:水利电力出版社,1987
    李崇明.乌江黑潮现象原因及影响分析[C].第五届中国环境水力学会,2002,10.
    李柜章,景可,李风新.黄土高原多沙粗沙区侵蚀模型探讨[J].地理科学进展,1999,18(1):46-53;
    李红清.遥感技术在水环境保护中的应用初探[J].水利水电快报,2003,24(3):24-25
    李建牢,刘世德.罗玉沟流域坡面土壤侵蚀量的计算[J].中国水土保持,1989,(3):28-31;
    李全胜,王兆骞.坡面承雨强度和水土流失临界坡度的理论探讨[J].水土保持学报,1995,9(3):50-53.
    李素菊,王学军.内陆水体水质指针光谱特征与定量遥感[J].地理学与国土研究,2002,18(2):26-30
    李勇,吴钦孝等.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):1-16.
    梁建民等.树冠截留降雨的观测试验研究[J].地理集刊第12号,1980.
    林飞娜,内陆水体波谱特征分析及叶绿素a浓度遥感定量模型研究[D],北京,首都师范大学,2009.
    林素兰,黄毅等.辽北低山丘陵区坡耕地土壤流失方程的建立[J].土壤通报,1997,28(6):251-253;
    刘素媛等.辽西低山丘陵半干旱地区天然降雨雨滴特性研究初报[J].中国水土保持,1988,(2):15-17.
    娄云.富营养化浅水湖泊治理方法初探[J].吉林水利,2005,(9):34-37.
    马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境,2002,11(6):575-578.
    马荣华,孔维娟,段洪涛,等.基于MODIS影像估测太湖蓝藻暴发期藻蓝素含量[J].中国环境科学,2009,29(3):254~260.
    马修军,谢昆青.GIS环境下流域降雨侵蚀动态模拟研究—以PCRaster和LISEM模型为例[J].环境科学进展,1998,7(5):137-144;
    牟金泽,孟庆枚.降雨侵蚀土壤流失预报方程的初步研究[J].中国水土保持,1983(6):23-27.
    倪九派,谢春燕,魏朝富等.土壤侵蚀预测建模研究进展[J].中国水土保持科学.2005,3(1):66-71.
    庞博.内陆湖泊水质参数反演及富营养化评价[D].电子科技大学硕士学位论文,2010.
    秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学,2002,14(3):193-202.
    尚榆民,赵明,罗增寿.洱海可持续发展行为[J].中国湖泊富营养化及其防治研究.北京:中国环境科学出版社,2001,44-50.
    畲丰宁等.水体叶绿素含量的遥感定量模型[J].湖泊科学,1996,8(3):201-207
    史景汉,郝建忠,熊运阜等.黄丘一副区小流域暴雨洪水输沙过程预报模型[J].中国水土保持,1989,1:32-37;
    舒金华,黄文钮,吴延根.中国湖泊营养类型的分类研究[J].湖泊科学,1996,8(3):193~200.
    苏玲.水体富营养化[J].世界环境,1994,(2):23-26.
    孙立达,孙保平,陈禹等.西吉县黄土丘陵沟壑区小流域土壤流失量预报方程[J].自然资源学报,1988,3(2):141-153;
    汤立群.流域产沙模型的研究[J].水科学进展,1996,7(l):47-53;
    汪有科等.林地枯落物抗冲试验研究[J].西北水保所集刊,1991(14).
    王建平,程声通,贾海峰等.用影像进行湖泊水色反演研究的人工神经网络模型[J].环境科学,2003,24(2):73-76
    王万忠.黄土地区降雨特性与土壤流失关系的研究[J].水土保持通报,1983(4):7-13.
    王万忠等.中国降雨侵蚀R值的计算与分布[J].水土保持学报,1996,2(1):29-39.
    王佑民等.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(4):11-16.
    王玉宽.黄土丘陵沟壑区坡面径流试验研究[J].中国水土保持,1993(7):222-224.
    吴礼福.黄土高原水土流失模型及其应用[J].水土保持通报.1996,16(5):29-35.
    吴永森,张士魁,张绪琴等.海水黄色物质光吸收特性实验研究[J].海洋与湖沼,2002,33(4):402-406
    夏达英.海水黄色物质荧光特性的初步研究[J].海洋与湖沼.1999,30(6):719-725
    谢杰,王心源,张洁,等.基于TM/ETM影像分析巢湖叶绿素a浓度变化趋势[J].中国环境科学,2010,30(5):677~682.
    谢树楠,张仁,王孟楼.黄河中游黄土丘陵沟壑区暴雨产沙模型研究[C].黄河水沙变化研究论文集,第五卷,黄河水沙变化基金会,1993,238-274;
    辛树帜,蒋德麟.中国水土保持概论[M].北京:农业出版社,1982.
    严力蛟,朱顺富主编.农业可持续发展概论[M].北京:中国环境科学出版社,2001.
    杨武德,王兆鸯等.红壤坡地不同利用方式下土壤侵蚀模型研究[J].土壤侵蚀与水土保持学报,1999,5(l):52-58;
    杨宪杰,李建生,郑国权.土壤侵蚀预测模型研究进展及其在开发建设项目水土流失预测中的应用[J].广东水利水电.2006(增刊):37-39.
    杨艳生.区域性土壤流失预测方程的初步研究[J].土壤学报,1990,27(l):73-79;
    杨玉盛.不同利用方式下紫色土可蚀性研究[J].水土保持学报,1992,6(3):52-58.
    杨子生.滇东北山区坡耕地土壤流失方程研究[J].水土保持通报,1999,19(1):1-9.
    杨子生.滇东北山区坡耕地土壤流失方程研究[J].水土保持通报,1999,19(1):1-9.
    余新晓.森林植被减弱降雨侵蚀能量的数理分析[J].水土保持学报,1988(3).
    袁东海、陈明亮,鄂东南红壤水分运动参数与红壤性质的相关性[J].华中农业大学学报,1995,14(1):53-57.
    袁峻峰,章宗涉.金鱼藻对藻类的生化干预作用[J].生态学报,1993.11(l):42-53.
    袁克勤,倪九派,宫春明,等.基于GIS的土壤侵蚀预测与评价研究进展[J].水土保持应用技术.2009(1):16-20.
    詹海刚,施平,陈楚群.利用神经网络反演叶绿素浓度[J].科学通报,2000,45(17):1879-1884.
    张广军,赵晓光等,水土流失及荒漠化监测与评价[M],2005,北京:中国水利水电出版社
    张国明,李兆君,史建伟.我国土壤水蚀模型近期研究进展[J].中国水土保持.2009(2):12-14.
    张海林.武汉市湖泊富营养化遥感评价[D].中国科学院研究生院硕士学位论文,2002,5.
    张开翔.湖泊人为富营养化[J].海洋湖沼通报,1992(1):88-98.
    张亭禄,贺明霞.基于人工神经网络的一类水域叶绿素a浓度反演方法[J].遥感学报,2002,6(1):40-44
    张亭禄,贺明霞.基于人工神经网络的一类水域叶绿素浓度反演方法[J].遥感学报,2002,6(1):40-44
    张宪奎,许靖华,卢秀琴等.黑龙江省土壤流失方程的研究[J].水土保持通报,1992,12(4):1-9;
    张宪奎等.黑龙江土壤流失方程的研究[J].水土保持通报,1992,12(4):1-9.
    张玉斌,郑粉莉,贾媛媛. WEPP模型概述[J].水土保持研究.2004,11(4):146-149.
    赵冬至,曲元,张丰收等.用TM图像估算海表面叶绿素浓度的神经网络模型[J].海洋环境科学,2001,20(1):16-21
    赵金香,王兆林,刘艳青.浅析水体富营养化[J].环境科学动态,2003,(1):28~30.
    郑粉莉,王占礼,杨勤科.我国水蚀预报模型研究的现状、挑战与任务[J].中国水土保持科学.2005,3(1):7-14.
    郑国权,宋春山.遥感技术在区域水土流失研究中的应用[J].黑龙江水利科技.2006,34(3):180-181.
    中国科学院、水利部、西北水土保持研究所.欢庆新中国成立40周年略述水土保持各项研究工作的进展和成效[J].水土保持通报,1989,9(5):1-28.
    钟章成.重庆三峡库区主要生态环境问题与对策[J].重庆环境科学,1999,21(1):1-5.
    种云霄.利用沉水植物治理水体富营养化[J].广州环境科学,2005,20(3):41-43.
    周伏建,陈明华,林福兴等.福建省土壤流失预报研究[J].水土保持学报,1995,9(1):25-30.
    周伏健等.福建省天然降雨雨滴特征研究[J].水土保持学报,1995,(1)8-12.
    周佩华、王占礼.黄土高原水土流失性暴雨标准[J].水土保持通报,1987,7(1):38-44.
    朱显谟.黄土高原植被因素对于水土流失的影响[J].土壤学报,1960,8(2):110-120.
    朱显谟.我国十年来水土保持工作的成就[J].地理研究,1959,(10)..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700