用户名: 密码: 验证码:
腰4、5后路三种椎间融合器融合的生物力学实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1背景
     腰椎退行性病变往往需要手术治疗;手术方法常采用后路减压、椎弓根螺钉固定、间盘切除椎间植骨融合。以往对于脊柱内固定器械的生物力学评价多以模拟脊柱骨折脱位以固定器进行固定,在前屈、后伸、左侧弯、右侧弯、压缩、扭转工况下施加载荷或扭矩,以位移或扭转角的大小来进行稳定性评价。模拟腰椎退变后路椎弓根螺钉固定椎间分别以三种椎间融合器融合的应力遮挡效应等实验研究未见报道。
     2目的
     模拟腰椎4、5退变后路椎弓根螺钉固定椎间以三种椎间融合器融合后以应变电测量技术和原理、流变特性为基础理论和电子显微镜、图像分析技术等进行应力遮挡效应、内固定器固定部位松质骨密度、骨组织形态计量学指标测量和骨组织形态观察。对三种融合器的融合效果进行系统的、客观的评价。为临床腰椎退变选择合理的术式、合适的固定器械,为新型内固定器械的设计、研制提供生物力学基础。
     3方法
     3.1标本分组
     30个猪胸12-骶1标本随机分为模拟腰4、5退变后路椎弓根螺钉固定椎间植骨组、植骨笼组、植钛网组,每组10个标本。
     3.2各组标本应力遮挡效应应变电测量方法
     首先对内固定前各组标本进行应变电测量,分别在各组标本椎弓根螺钉固定螺钉孔边缘部位粘贴电阻应变片,在电子万能试验机上模拟人的生理功能在压缩、前屈、后伸、左侧弯、右侧弯载荷作用下进行静态应变电测量,通过动静态电阻应变仪测量各测点的应变值,以单向虎克定律计算各测点的应力值。内固定前各组标本应变电测量完成后,待标本恢复24小时后,去除标本上的应变片;复制腰4、5退变后路椎弓根螺钉固定、椎间分别植骨、植骨笼、植钛网模型;之后在各组标本椎弓根螺钉螺钉孔边缘部位(与标本内固定前粘贴位置相同)粘贴电阻应变片,在电子万能试验机上模拟人的生理功能在压缩、前屈、后伸、左侧弯、右侧弯载荷作用下进行静态应变电测量,通过动静态电阻应变仪测量各测点的应变值,以单向虎克定律计算各测点的应力值。
     3.3骨密度测量方法
     骨密度测量标本为做完应变电测量实验后的标本。取各组标本固定部位边缘的腰椎松质骨在美国产Norlarid公司XR-600双能X射线骨密度仪上进行骨密度测量。
     3.4骨组织学观察方法
     取做完应变电测量实验后的各组标本,在固定部位边缘同一部位松质骨取样,进行固定,脱水、不脱钙,硬组织处理,以切片机沿椎体松质骨纵向切片,厚度为8μm,不染色,以德国蔡司公司生产的扫描电子显微镜进行组织学观察。
     3.5骨组织形态计量参数测量方法
     取做完应变电测量实验后的各组标本,在固定部位边缘同一部位松质骨试样,对试样进行固定、脱钙、包埋之后以切片机切片厚度为5μm,以图像分析系统测量骨小梁表面周长、骨小梁面积、骨量、骨小梁厚度、骨小梁分离度。
     4结果
     4.1各组标本应变电测量结果表明:内固定后植骨组标本在压缩、前屈、后伸、左侧弯、右侧弯载荷作用下各测点的应变和应力均大于植骨笼组和植钛网组,差异显著(P<0.05)。内固定后植骨笼组标本在压缩、前屈、后伸、左侧弯、右侧弯载荷作用下各测点的应变和应力均大于植钛网组,差异显著(P<0.05)。
     4.2各组骨密度测量结果表明:非固定部位松质骨骨密度大于植钛网组、植骨笼组、植骨组,差异显著(P<0.05);植钛网组骨密度大于植骨笼组和植骨组,差异显著(P<0.05);植骨笼组骨密度大于植骨组,差异显著(P<0.05)。
     4.3各组松质骨骨组织学观察结果表明:非固定部位对照组松质骨骨小梁细密,纤维结构排列整齐;植钛网组1号测点边缘部位松质骨骨小梁变细、纤维结构排列有一定程度紊乱;植骨笼组1号测点边缘部位松质骨骨小梁多数变细、纤维结构排列紊乱;植骨组1号测点边缘部位松质骨骨小梁大多数变细,纤维结构排列更加紊乱、局部地方有空隙。
     4.4骨组织形态计量参数测量结果表明:非固定部位对照组骨小梁表面周长、骨小梁面积、骨量、骨小梁厚度、骨小梁分离度分别与植钛网组、植骨笼组、植骨组骨小梁表面周长、骨小梁面积、骨量、骨小梁厚度、骨小梁分离度配对t检验,有统计学意义(P<0.05)。植钛网组骨小梁表面周长、骨小梁面积、骨量、骨小梁厚度、骨小梁分离度分别与植骨笼组、植骨组骨小梁周长、骨小梁面积、骨量、骨小梁厚度、骨小梁分离度配对t检验,有统计学意义(P<0.05)。植骨笼组骨小梁周长、骨小梁面积、骨量、骨小梁厚度、骨小梁分离度与植骨组骨小梁周长、骨小梁面积、骨量、骨小梁厚度、骨小梁分离度配对t检验,有统计学意义(P<0.05)。
     5结论
     综合分析各组标本应变电测量结果、骨密度、骨组织形态观察结果、骨组织形态计量参数,可以得出以下结论:
     5.1应变电测量结果表明:植钛网组植入物边缘5、6号测点和螺钉孔边缘部位1、2、3、4号测点在压缩、前屈、后伸、左侧弯、右侧弯受力状态下应变和应力小于植骨笼组和植骨组,有统计学意义,说明植钛网组应力遮挡效应最低。植骨笼组植入物边缘5、6号测点和螺钉孔边缘1、2、3、4号测点的应变和应力小于植骨组,有统计学意义,说明植骨笼组应力遮挡效应小于植骨组。椎间植钛网、植骨笼、植骨在外力作用下具有不同的应力遮挡效应。
     5.2腰4、5植钛网融合组植入物边缘松质骨的骨密度大于植骨笼组和植骨组,有统计学意义,说明植钛网组在外力作用下,植入物边缘的松质骨的损伤小。
     5.3植钛网组骨小梁周长、骨小梁面积、骨量、骨小梁厚度大于植骨笼组和植骨组,骨小梁分离度小于植骨笼组和植骨组,有统计学意义;说明植入不同的融合器对植入物边缘松质骨损伤程度不同,植钛网组损伤最小。
     5.4植钛网组在外力作用下,螺钉孔边缘松质骨显微结构改变程度比植骨笼组、植骨组轻。
     5.5植入物边缘松质骨的骨密度和应力遮挡效应基本呈负相关,即骨密度越大,应力遮挡效应越低。
     5.6植入物边缘松质骨骨小梁周长、骨小梁面积、骨量、骨小梁厚度和植入物植入后应力遮挡效应基本呈正相关关系,骨小梁分离度和植入物植入后的应力集中和应力遮挡效应基本呈负相关关系。
     5.7腰4、5退变后路椎弓根螺钉固定椎间植钛网融合在外力作用下,具有应力集中小和应力遮挡效应小的固定效果。
Research background
     Lumbar degenerative diseases often require surgical treatment,which include posteriordecompression, pedicle screw fixation,disc removal and intervertebral bone graftfusion.Previous biomechanical researches and evaluation of spinal internal fixation deviceswere to simulate a spinal fracture and dislocation fixed with the fixation devices,then givethem the anteflexion, extension, left side bending,right side bending, compressive, torsiveloading or torque, to evaluate the stability by the displacement or the torsion Angle. There isno research of stress shield by simulation of posterior intervertebral fusion with threeintervertebral fusion devices in lumbar4、5degeneration with posterior pedicle screwfixation
     Objective
     To simulate posterior intervertebral fusion with three intervertebral fusion devices withposterior pedicle screw fixation of lumbar4、5degeneration,then measure stress shield,cancellous bone density of the fixed vertebral part, do the bone histomorphometry and bonemorphological observation on the basis of strain electrical measuring technology andprinciple, the rheological characteristics theory and with the help of electron microscopy andimage analysis technology and etc. Give an objective and system evaluation to the syncreticeffect of three kinds of intervertebral fusion devices;to provide biomechanical basis for thechoice of reasonable operation, the appropriate fixation devices of lumbar degenerationand new type of fixed equipment design and development.
     Methods
     3.1group the specimens
     The thirty porcine spine specimens with T12to S1were randomly divided into threegroups, posterior intervertebral fusion with bone graft group (bone graft group), posteriorintervertebral fusion with bone cage group (bone cage group), posterior intervertebral fusion with titanium mesh group (titanium mesh group),in simulation of lumbar4、5degenerationwith posterior pedicle screw fixation,each group have10specimens.
     3.2strain electrical measuring method of stress shield effect in each group
     First measure the strain of each group before internal fixation. To simulate thebiological function of human,give the specimens compressive, anteflexion, extension, leftside bending, right side bending loading, do the strain electrical measurement of every pointof three groups after pastering of electric resistance strain gage by the help of the electronicaluniversal testing machine, calculate stress of every point by the one-way Hook’s Law. Thenmeasure the strain of each group after internal fixation.Remove the electric resistance straingage, give the specimens24hours to recover,simulate the model off posterior intervertebralfusion with three intervertebral fusion devices in lumbar4、5degeneration with posteriorpedicle screw fixation,do the same work as before.
     3.3bone density measuring method
     After strain electrical measurement of each specimen, measure the bone density byXR-600Dual-energy X-ray bone density instrument produced in America. The cancellousbone is carried from the same fringe of each fixed position of each group.
     3.4method of histological observation of the bone
     After strain electrical measurement of each specimen, carry cancellous bone from thesame fringe of each fixed position of each group,then fixed, dehydration, non-decalcification,do the section of8μm thickness,then do histological observation of the section by scanningelectron microscope produced by Zeiss company in Germany
     3.5measuring method of the cancellous bone histomorphology
     After strain electrical measurement of each specimen, carry cancellous bone from thesame fringe of each fixed position of each group,then fixed, decalcification,enbedding,do thesection of5μm thickness,measure the trabecular bone surface perimeter, trabecular bonesurface acreage, bone mass (trabecular bone), the trabecular bone thickness, degree ofseparation of the trabecular bone with the help of the image analysis systemResults
     4.1The strain electrical measuring results show that the strain and the stress of the bonegraft group is bigger than the bone cage group and the titanium mesh group under thecompressive, anteflexion, extension, left side bending, right side bending loading at everymeasuring point, which has significant difference (P <0.05),the strain and the stress of thebone cage group is bigger than the titanium mesh group under the compressive, anteflexion, extension, left side bending, right side bending loading at every measuring point, whichhas significant difference (P <0.05).
     4.2The measuring results of the bone density show that the bone density of the controllgroup is bigger than the titanium mesh group,the bone cage group and the bone graft group,which has significant difference (P <0.05), the bone density of the titanium mesh group isbigger than the bone cage group and the bone graft group, which has significant difference(P <0.05), the bone density of the bone cage group is bigger than the bone graft group,which has significant difference (P <0.05).
     4.3The histological observation of the cancellous bone show that the trabecula of thecontroll group is fine and dense,the structure is in alignment, some of the trabecula of thetitanium mesh group is thinner and the structure have a certain degree disorder, most of thetrabecula of the bone cage group is thinner and the structure is in a mess, almost all of thetrabecula of the bone graft group is thinner and the structure is in a chaos,there is gap in it.
     4.4The measuring results of the cancellous bone histomorphology show that thetrabecular bone surface perimeter, trabecular bone surface acreage, bone mass (trabecularbone), the trabecular bone thickness, degree of separation of the trabecular bone of thecontroll group pairs respectively with the titanium group, the bone cage group,the bone graftgroup, the matching t-test has statistical significance (P <0.05). The measuring results of thecancellous bone histomorphology show that the trabecular bone surface perimeter, trabecularbone surface acreage, bone mass (trabecular bone), the trabecular bone thickness, degree ofseparation of the trabecular bone of the titanium mesh group pairs respectively with the bonecage group,the bone graft group, the matching t-test has statistical significance (P <0.05).The measuring results of the cancellous bone histomorphology show that the trabecular bonesurface perimeter, trabecular bone surface acreage, bone mass (trabecular bone), thetrabecular bone thickness, degree of separation of the trabecular bone of the bone cage grouppairs with the bone graft group, the matching t-test has statistical significance (P <0.05).Conclusions
     5.1The strain electrical measuring results show that the strain and the stress of thetitanium mesh group is smaller than the bone cage group and the titanium mesh group underthe compressive, anteflexion, extension, left side bending, right side bending loading atevery measuring point, which has significant difference (P <0.05), which illustrate that thestress shield of the titanium mesh group is the lowest. The strain and the stress of the bonecage group is smaller than the bone graft group under the compressive, anteflexion, extension, left side bending, right side bending loading at every measuring point, whichhas significant difference (P <0.05), which illustrate that the stress shield of the bone cagegroup is lower than the bone graft group. The titanium mesh group,the bone cage group andthe bone graft group has different stress shield.
     5.2The measuring results of the bone density show that the bone density of the titaniummesh group is bigger than the bone cage group and the bone graft group, which hasstatistical difference (P <0.05), which illustrate the cancellous bone’s injury of the titaniumis smallest under the loading.
     5.3The measuring results of the cancellous bone histomorphology show that thetrabecular bone surface perimeter, trabecular bone surface acreage, bone mass (trabecularbone), the trabecular bone thickness, degree of separation of the trabecular bone of thecontroll group pairs respectively with the titanium group, the bone cage group,the bone graftgroup, the matching t-test has statistical significance (P <0.05), which illustrate thecancellous bone’s injury of the titanium is smallest under different loading.
     5.4The histological observation of the cancellous bone show that the change of thetrabecula structure in the titanium mesh group is gentle.
     5.5The measuring results of the bone density show that the bone density was inverselyassociated with the stress shield effect, the greater of the bone density, the lower of the stressshield effect
     5.6The measuring results of the cancellous bone histomorphology show that thetrabecular bone surface perimeter, trabecular bone surface acreage, bone mass (trabecularbone), the trabecular bone thickness and stress shield are positive correlation, degree ofseparation of the trabecular bone and stress shield are negative correlation.
     5.7Posterior intervertebral fusion with titanium mesh in lumbar4、5degeneration withposterior pedicle screw fixation has a small stress concentration and stress shield effect.
引文
[1]梁春红,丁亮华,吴采荣等.Dynesys动态稳定系统与腰椎退变性疾病[J].国际骨科学杂志,2009,30(5):320-322.
    [2]陈仲强,于泽生.脊柱内固定技术的现状与发展[J].中华医学杂志,2006,86(25):1279-1281.
    [3] Hilibrand AS, Carlson GD, Palumbo MA, et al. Radiculopathy and myelopathy atsegments adjacent to the site of a previous anterior cervical arthrodesis. J Bone JointSurg Am,1999,81(4):519-528.
    [4] Kaiser MG, Haid RW, Subach BR, et al. Anterior cervical plating enhancesarthrodesis after discectomy and fusion with cortical allograft. Neurosurgery,2002,50(2):229-236.
    [5] Ghiselli G, Wang JG, Bhatiu NN, et al. Adjecent segment degeneration in the lumbarspine. J Bone joint Surg Am,2004,86(6):1497-1503.
    [6] Zucherman JF. Hsu KY, Hartjen CA, et al. A prospective randomized multi-centerstudy for the treatment of lumbar spinal stenosis with the X STOP interspinousimplant:1-year results. Eur Spine J,2004,13(1):22-31.
    [7] Gamer MD, Wolfe SJ, Kuslich SD. Development and preclinical testing of a newtension-band device for the spine: the loop system. Eur Spine J,2002,11(2):186-191.
    [8] Othman S, Uhich B, Thomas M, et al. Posterior dynamic stabilization system:DYNESYS. Orthop Clia N Am,2005,36(2):363-372.
    [9]邓明高,徐盛明,王新伟.脊柱内固定器械的生物力学评价方法[J].颈腰痛杂志,2004,25(3):211-213.
    [10] Richter M, Schmidt R. Claes L, et al. Posterior atlantoaxial fixation: biomechanicalin vitro comparison of six different techniques [J]. Spine,2002,27(16):1724-1732.
    [11] Kostuik JP, Valdevit A, Chang HG, et al. Biomechanical testing of the lumbosacralspine[J]. Spine,1998,23(16):172-1728.
    [12] Louis R. Fusion of the lumbar and sacral spine by internal fixation with screw plates[J]. Clin Orthop,1986,203:18-33.
    [13] Lupue ER. Interpedicular segmental fixation [J]. Clin Orthop,1986,203:54-57.
    [14] Kornblatt M. Casey MP. Jacobs RR. Internal fixation in lumbosacral spine fusion. Abiomechanical and clinical study [J]. Clin Orthop,1986,40(3):141-150.
    [15] Rapoff AJ, O'Brien TJ, Zdeblick, TA. Biomechanical comparison of plates and rodsin the unstable thoracic spine [J]. J Spinal Disord,1999,12(2):115-119.
    [16] Richter M, Wilke HJ, Kluger P, et al. Biomechanical evaluation of a new modularrodscrew implam system for posterior instrumentation of the occipito-cervical spine:in-vitro comparison with two established implant systems [J]. Eur Spine J,2000,9(5):417-425.
    [17] Contrel Y, Dubousset J, Guillaumant M. New universal instrumentation in spinalsurgery. Clin Orthop Rel Res,1988,27(1):10-14。
    [18]邹国耀.椎弓根钉内固定系统与椎弓根螺钉断裂的临床问答[J].中国组织工程研究与临床康复,2009,13(14):3315-3318.
    [19] Shono Y, Kaneda K. Stability of posterior spinal instrumentation and its effects onadjacent motion segments in the lumbosacral spine [J]. spine,1998,23(14):1550-1558.
    [20] Chow Dh, Luk KD, Evans JH, et al. Effects of short anterior lumbar interbody fusionon biomechanics of neighbouring unfused segments [J]. Spine,1996,21(5):549-555.
    [21] Lee Ck. Accelerated degeneration of the segment adjacent to a lumbar fusion [J].Spine,1988,13(3):375-7.
    [22] Goel VK, Lim TH, Gwon J, et al. Effects of rigidity of an internal ixation device: acomprehensive biomechanical investigation [J]. Spine,1991,16(3): S155-161.
    [23] Kanayama M, Cunningham Tm, Weis BC, et al. Maturation of the posterolateralspinal fusion and its effect on load-sharing of spinal instrumentation. An in vivosheep model [J]. J Bone Joint Surg Am,1997,79(11):1710-1720.
    [24] Scifert JL, Sairyo K, Goel Vk, et al. Stability analysis of an enhanced load sharingposterior fixation device and its equivalent conventional evice in a calf spine mode[J]. Spine,1999,24(21):2206-2213.
    [25] Gibson Jn, Grant IC, Waddell G. The Cochrane review of surgery for lumbar diseprolapsed and degenerative lumbar spondylosis [J]. Spine,1999,24(17):1820-1825..
    [26] Eck JC, Humphreys SC, Hodges SD. Adjacent-segment degeneration after lumbarfusion: a review of clinical, biomechanical, and radiologic studies [J]. Am J Orthop,1999,28(6):336-340.
    [27] Lee CK. Accelerated degeneration of the segment adjacent to a lumbar fusion [J].Spine,1988,13(3):375-377.
    [28] Schlegel JD, Smith JA, Schleuener RL. Lumbar motion segment pathology adjacentto thoracolumbar, lumbar, and lumbosacral fusions [J]. Spine,1996,21(8):970-981.
    [29] Freudiger S, Dubois G, Lorrain M. Dynamic neutralization of the lumbar spineconfirmed on a new lumbar spine simulator in vitro [J]. Arch Orthop Trauana Surg,1999,119(3):127-132.
    [30] Schwarzenbaseh O, Berlemann U. Stoll T. Posterior dynamic st lisation systems:DYNESYS [J]. Orthop Clin N Am,2005,36(3):363-372.
    [31] Dubois G. Dynamic stabilization with the Dynesys system and the dynamic transitionoption DTO implant: philosophy-concept-surgical technique [J]. Interact Surg,2008,3(4):239-244.
    [32] Esses SI, Bednar DA. The spinal pedicle screw: techniques and systems. Orthop Rev,1989,18(4):676-682.
    [33] Ugur HC, Attar A, Tekdemir I, et al. Surgical anatomic evaluation of the cervicalpedicle and adjacent neural structures. Neurosurgery,2000,47(5):1162-1168.
    [34] Hilibrand AS, Garlson GD, Palumbo MA, et al. Radiculopathy and myelopathy atsegments adjacent to the site of a previous anterior cervical arthrodesis. J Bone JointSurg Am,1999,81(3):519-528.
    [35] Kaiser MG, Haid RW, Subach BR, et al. Anterior cervical plating enhancesarthrodesis after discectomy and fusion with cortical allograft, Neurosurgery,2002,50(2):229-236.
    [36] Ghiselli G, wang JG, Bhatia NN, et al. Adjacent segment degeneration in the lumbarspine. J Bone Joint Surg Am,2004,86(6):1497-1503.
    [37] Zucherman JF, Hsu KY, Hartjen CA, et al. A prospective randomized nulti-centerstudy for the treatment of lumbar spinal stenosis with the X STOP interspinousimplant:1-year results. Eur Spine J,2004,13(1):22-31.
    [38] Gamer MB wolfe SJ, Kuslich SD. Development and preclinical testing of a newtension-band device for the spine: the loop system. Eur Spine J,2002,11Suppl2:186-191.
    [39] Othmar S. Uhich B, Thomas M, et al. Posterior dynamic stabilization system:DYNESYS. Orthop Clin N Am,2005,36:363-372.
    [40] Stephen DC, Jose B, Miguel R, et al. Lumbosacral fixation using expandable pediclescrews: an alterntive in reoperation and osteoporosis. Spine,2001,42(1):109-114.
    [41] Heini PF. The current treatment-a survey of osteoporotic fracture treatment.Osteoporotic spine fractures: the spine surgeon's perspective. Osteoporos lnt,2005,16(10:85-92.
    [42]尹飚,权日,吴增晖等.Dynalok脊柱内固定系统治疗腰椎滑脱症[J].临床骨科杂志,2006,9(3):225-226.
    [43]邹德威,海涌,马华松,等.重度腰椎滑脱的治疗[J].中华骨科杂志,1998,18(5):259-262.
    [44] Umehara S, Zindrick MR, Patwardhan AC, et al. The biomechanical effect ofpostoperative hypolordosis in instrumented lumar fusion on instrumented andadjacent spinal segments [J]. Spine,2000,25(13):1617-1624.
    [45] Okuyam a O, Ebe E, Suzuki T, et al. Can insertional torque predict screw looseningand related ailures [J]. Spine,2000,25(7):858-864.
    [46] Dubousset J Treatment of spondylolysis and spondylolis-thesis in chiklren andadolescents [J]. Clin Orthop Relat Res,1997,33(1):77-85.
    [47]郭晓东,张建湘,杨庆国,等.撑开复位固定系统及不减压治疗峡部裂型腰椎滑脱[J].临床骨科杂志,2002,5(2):103-105.
    [48] Kanayama M, Cunnigham BW, Sefter JC, et al. Does spinal instrumentation influence the healing process of posterolateral fusion [J]. Spine,1999,24(11):1058-1065.
    [49]黄继锋,朱有青,钟世镇.5种后路脊柱内固定器械的生物力学评价[J].中华骨科,1997,17(9):539-543.
    [50]罗亚平.3种后路脊柱固定器治疗胸腰椎椎骨折的体会[J].实用骨科,2001,7(5):346-347.
    [51]杨惠林,唐天驷,朱国良,等.椎弓根固定器对胸腰椎骨折的复位作用[J].中华骨科杂志,1992,12(3):181-183.
    [52] Freudiger S, Dubois G, Lorrain M. Dynatmic neutralization of the lumbar spineconfumed on a new lumbar spine simulator in vitro. Arch Orthop Traama surg,1999,119(3-4):127-132.
    [53] Grob D, Benini A, Junge A, et al. Clinical experience with the Dynesys sermirigidfixation system for the lumbar spme: surgical and patient-oriented outcome in50cases after an average of2years. Spine (Phila Pa1976),2005,30(3):324-331.
    [54] Meyers K, Tauber M, Sudin Y, et al. The use of instrumented pedicle screws toevaluate load sharing in posterior dynamic stabilization systems. Spine J,2006,8(6):926-932.
    [55]潭荣,邹德威.世界脊柱非融合功能重建学会第七届年会会议纪要.中国脊柱脊髓杂志,2007,17(7):555-556.
    [56] Stoll TM, Dubois G, Schwarzenbach O. The dynamic neutralization system for thespine: a multi-center study of a novel non-fusion system, Eur Spine J,2002,11(supp12): S170-S178.
    [57] Schmoelz W, Huber JF, Nydegger T. Dynamic stabilization of the lumbar spine andits effects on adjacent segments: an in vitro experiment [J]. Spine,2003,28(10):418-423.
    [58] Christina A, Niosi QA, Zhu DC. Biomechanical characterization of thethree-dimensional kinematic behavior of the Dynesys dynamic stabilization system:an in vitro study [J]. Eur Spine,2006,15(6):913-922.
    [59] Cakir B, Carazzo C, Schmidt R, et al. Adjacent segment mobility after rigid andsemirigid instrumentation of the lumbar spine. Spine (Phila Pa1976),2009,34(12):1287-1291.
    [60] Mulholland RC, Sengupta DK Rationale, principles and experimental evaluation ofthe concept of soft stabilization. Eur Spine J,2002,11(Supp12): S198-S205.
    [61] Schaeren S, Eroger L, Jeannerct B. Minimum four-year follow-up of spinal stenosiswith degenerative spondylolisthesis treated with decompression and dynamicstabilization. Spine (Phila Pa1976),2008,33(18):363-372.
    [62] Beastall J, Karadirnas E, Siddingui M, et al. The Dynesys lumbar spinal stabilizationsystem: a prelizminary report on positional magnetic resonance imaging findings,Spine (Phila Pa1976),2007,32(6):685-690.
    [63]张延硩,朴成东,李鹏.定量分析钢板及椎弓根钉固定脊柱骨折脱位后的应力松弛[J].中国组织工程研究与临床康复,2009,13(9):1626-1623.
    [64]朴成东,张延硩,两种固定器固定脊柱骨折脱位的生物力学分析[J].中国组织工程研究与临床康复,2009,13(52):10279-10282.
    [65] Rohlmann A, Burra NK, Zander T, et al. Comparison of the effects of bilateralposterior dynarnic and rigid fixation devices on the lceds in the lumbar spine: a finiteclement analysis. Eur spine J,2007,16(8):1223-1231.
    [66] Niosi CA, Wilson DC, Zhu QA, et al. The effect of dynamic posterior stabilization onfacet joint contact forces: an in vitro investigation. Spine (Phila Pa1976),2008,33(1):19-26.
    [67] Nohara H, Kanaya F. Biomechanical study of adjaoent intervertebral motion afterlumbar spinal fusion and flexible stabilization using polyethylene terephthalate bands.J Spinal Disord Tech,2004,17(8):215-219.
    [68]章筛林,石志才.腰椎非融合植入物及其植入技术.中国组织工程研究与临床康复,2008,12(17):3333-3336.
    [69]于博,靳安民,方磊等.腰椎u型弹性内固定棒的有限元分析[J].中国组织工程研究与临床康复,2009,13(4):643-646.
    [70]薛俭,靳安民,于博等.腰形生物弹性内固定器的生物力学评价[J].南方医科大学学报,2009,29(2):239-241.
    [71]孙铭.骨的功能适应性与应力遮挡探讨[J].北京生物医学工程,1995,14(3):178-179.
    [72]刘建国,徐莘香.应力遮挡效应与骨折愈合的实验和临床研究[J].中华医学杂志,1994,74(8):483-485.
    [73]裘世静.接骨板应力遮挡作用对疏松骨结构的后期影响[J].医用生物力学,1992,7(4):202-204.
    [74]王以进.应力遮挡效应的理论基础和影响因素[J].医学生物力学,1992,7(3):187-190.
    [75]袁旬华.应力遮挡的生物效应[J].医用生物力学,1992,7(1):59-61.
    [76]戴克戎.骨折内固定应力遮挡效应[J].医用生物力学,2000,15(2):69-71.
    [77]张伟,张新,徐莘香等.应力遮挡对延长骨力学性能的影响[J].白求恩医科大学学报,1994,20(4):371-373.
    [78]王禹基,孙俊英,董天华等.表面植换和全髋关节植换股骨近段应力遮挡的比较[J].中国骨与关节损伤杂志,2008,23(3):183-185.
    [79]朱俊峰,张先龙,王成焘等.股骨假体近端应力遮挡对成骨细胞增殖和凋亡的影响[J].临床骨科杂志,2009,12(3):332-335.
    [80]曹斌,张守平,王兆林等.底应力遮挡效应交锁髓内钉的研制与生物力学研究[J].中国矫形外科杂志,2004,12(12):930-933.
    [81]王溪原,张远石,苑福生等.正常与病态股骨头应力松弛特性的对比分析[J].生物医学工程研究,2011,30(1):49-52.
    [82]钟显春,罗民,李新颖等.几种药物治疗骨质疏松模型大鼠股骨蠕变特性对比分析[J].生物医学工程研究,2012,31(3):180-183.
    [83]吴志峰,王丹丹,刘光耀等.颈椎小关节切除前后的蠕变特性[J].中国组织工程研究,2012,16(4):601-604.
    [84]吴志峰,李艳玲,刘光耀等.三种固定器械固定胫骨骨折的应力松弛实验[J].中国组织工程研究,2012,16(9):1605-1608.
    [85]罗民,李新颖,马洪顺.股骨下端松质骨横向与纵向的蠕变特性[J].生物医学工程研究,2012,31(1):24-27.
    [86]李建军,王溪原,赵宝林等.C2-3、T10-11和L3-4椎间盘段弯曲力学特性[J].北京生物医学工程,2011,30(6):314-317.
    [87]刘鸿文主编.材料力学[M].人民教育出版社,1979,29.
    [88]王义生,殷力,王卫东.采用钛网融合器治疗胸腰段光柱爆裂骨折[J].中华创伤骨科杂志,2004,6(11):1232-1234.
    [89]王文军,周江南,Jackow ski A,等.钛网在不稳定性胸腰段脊柱重建中的生物力学评价[J].中华创伤杂志,2003,19(1):31-33.
    [90]张叶松,王文军,沈合群.对钛网融合器在胸腰椎椎体重建中的临床应用医学临床研究[J].2004,21(9):1047-1048.
    [91]韩立强.自体髂骨植骨与钛网融合器在颈根前路减压融合术中作用的对比分析性研究[D].山东大学,2010.
    [92] Reitman CA, NguyenL, Fogel GR. Biomeehaniealevaluation of relationship Pofserew Pulloutstrength, insertion altorque, and bone miner aldensity intheeerviealspine JSPinalDisord Tech,2004Aug,17(4):306-311.
    [93] IshiharaH, KanamoriM, KawaguchiY, et al. Adjaeentseglnentdiseaseafteranteriorcervical interbodyfusion. SPineJ.2004Nov-Dee,4(6):624-628.
    [94] HilibrandAS, CarlsonGD,PalumboMA, et al. Radieulo Pathyandmyelo Pathyatsegmentsadjaeenttothesiteofapreviousanterioreerviealarthrodesis.JBoneJointSurgAm.1999Apr,81(4):519-28.
    [95]韦兴,侯树勋,史亚民.腰椎节段内固定后相邻下位间隙即刻运动范围的测试.中国脊柱脊髓杂志,2002,12(2):109-111.
    [96] ShinjiUM, ZindriekAG, Patwardh. Thebiomeehanicaleffeet of Posto PerativehyPolordosisininstrumentedlumbarfusiononinstrumentedandadjaeents Pinal segrnents.Spine,2000,25:1617-1622.
    [97] RobertsonJT, Papado Poulos SM, Tra elis VC. Assessmento adjaeentseginentdiseasein Patientstreatedwitheerviealfusionorarthro Plasty: a ProspectiveZyearstudy JNeursu spine.2005,3(6):417-423.
    [98]赵江涛,李洪涛,宫云昭.计算机导航辅助下椎弓根螺钉内固定疗效观察[J].医学综述,2009,15(11):1746-1747.
    [99]赵佶寅.胸腰椎骨折椎弓根螺钉内固定系统的生物力学研究进展[J].医学综述,2012,18(9):1369-1371.
    [100]李洪伟.胸腰椎爆裂性骨折的治疗进展[J].徐州医学院学报,2008,28(1):66-70.
    [101] Gurr KR, MeAfee PC, Shih CM. Biomechanical analysis of anterior and posteriorinstrumentation systems after corpectcmy, A calf spine model. J Bone Joint Surg Am,1988,70(8):1182-1191.
    [102] Parker JW, Lane JR, Karaikovie EE, et al. Successful shortsegment instrumentationand fusion for thoracolumbar spine fractures: aconsecutivo1/2-year sense [J]. Spine(Phile Pa1976),2000,25(9):1157-1170.
    [103] Doerr TE, Montesano PX, Bmkus JK, et al. Spinal canal decompression instraamatiethoracolumbar burst fractures: Posterror distraction rods versus transpedieular screwfixation [J]. J orthop Trauma,1991,5(4):403-411.
    [104]辛兵,李永刚,侯筱魁.脊柱内固定对椎体骨密度的影响[J].上海第二医科大学学报,1998,18(3):190-192.
    [105] Kotani Y, Cunningham BW, Cappuccino A, et al. The role of spinal instrumentationin augmenting lumbar posterolateral fusion Spine,1996,32(2):278.
    [106] Smith KR, Hunt TR, Asher MA, et al. The effect of a stiff spinal implant on the bonemineral content of the lumbar spine in dogs, JBJS(AM),1991,73(1):115-121。
    [107] Faely ID, McAfee PC, Gurr KR, et al. Quantitative histoiogic study of the influenceof spinal instrumentation on lumbar fusion a canine model. J Orthop Res,1989,36(7):709-714..
    [108] Dalenberg DD, Asher MA, Robinson RG, et al. The effect of a stiff spinal implautand its loosening on bone mineal content in canines. Spine,1993,18:1862.-1866.
    [109] Halvorson TL, Kelley LA, Thomas KA, et al. Effect of bone mineral density onpedicale screw fixation. Spine,1994,19:2415.-2419.
    [110]侯丽娟.辛伐化汀—骨粉混合物对种植体周围骨缺损愈合的影响[D].山东医科大学,2012.
    [111] Miyahara K, Nagashima N, Ohmura T, et al. Evaiuation of mechanical properties inanometer scale using AFM-based nanoindentation tester [J]. Nanostruct Mater (PartB),1999,38(3):1049-1052.
    [112] Ho SP, Balooch M, Goodis HE, et al. Ultrastructure and nanomechanical propertiesof cementurm dentin junction [J]. J Bionmed Mater Res,2004,68(2):343-351.
    [113]朱太咏,石印玉,张戈等.补肾中药复方对去卵巢骨质疏松大鼠皮质骨生物力学性能的改善作用及机制的实验研究.中国老年学杂志,2002,11(22):490-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700