用户名: 密码: 验证码:
延长油田注水管线内腐蚀机理及防腐技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
延长油田股份有限公司截至目前已建成采油厂22个,注水站309座,注水井2302口,注水管线总长度为400多千米,通过注水充分地补充了地层自身能量,提高了原油产量及采收率,为当地原油的正常生产做出了极大的贡献。根据近年来的现场调查,延长油田产出水具有矿化度高、pH值偏碱性,油田注水管线的腐蚀状况极为严形重。随着延长油田产出液含水的逐步上升和注水开发规模的加大以及注水管网使用年限的增加,注水管网系统的腐蚀问题近几年内呈现出急剧加重趋势,延长油田注水管道的腐蚀防治问题已刻不容缓。因此,针对延长油田注水管线出现的内腐蚀问题,为了弄清其腐蚀发生的内在原因,认识其腐蚀规律,有针对性地进行腐蚀防治,开展了本论文的研究,以保障延长油田注水管道的安全连续运行,延长管道的使用寿命。本论文的主要研究工作有:
     (1)延长油田注水管线内腐蚀现状调研与注水水质分析。通过对延长油田安塞-永坪段因腐蚀报废注水管段的现场开挖,调研分析了其内腐蚀和防腐技术现状;在对注水水质分析的基础上,研究了注水水质的腐蚀性。
     (2)蟠龙-余家坪段注水管道内腐蚀行为研究。利用室内挂片实验和电化学测试对管材的耐蚀性进行分析,与现场测试数据进行对比,对影响腐蚀的主要因素进行了实验研究;得出腐蚀速率与温度、时间、流速等的变化关系,并对其规律进行分析。利用能谱分析和扫描电镜技术对腐蚀过程中产生的垢样进行分析,研究了注水管线结垢的主要成分及垢下腐蚀的机理。
     (3)流速对注水管道内腐蚀行为研究。利用相似原理,设计制造了实验装置,通过设计的试片卡槽实现了腐蚀试片单面动态腐蚀,以模拟实际管线的内壁腐蚀现象。并通过改变转速模拟流速的变化来研究流速对管道腐蚀速率的影响。这是对现场进行模拟的实验技术创新,得到了流速与腐蚀速率的关系,结果表明流速对腐蚀速率影响明显。
     (4)腐蚀预测数学模型的建立。在测得的实验数据基础上,建立了延长油田注水管线腐蚀速率与温度、时间及流速之间的数学模型,可以初步预测当主要影响因素发生变化时延长油田管线钢的腐蚀速率,从而为延长油田注水管线在环境改变的条件下的防腐蚀工作提供理论指导。
     (5)缓蚀剂评价研究。针对延长油田注水的水质特点,筛选评价延长油田专用缓蚀剂是提高注水管线寿命的重点。为了评价缓蚀剂的缓蚀效果,将研制的HJF-94、ODD、TC-610、CQ-HO2和LED五利,缓蚀剂在模拟延长油田生产作业的环境中进行室内实验评价。确定了每种缓蚀剂的最佳作用量及最佳的缓蚀效果,通过对比表明:缓蚀剂TC-6l0和CQ-HO2的绥蚀性能优于其他缓蚀剂,且缓释效率较高:同时,通过实验对两种缓蚀剂按不同混合比例进行了复配实验。实验结果表明:动态条件下单独使用TC-610缓蚀剂的缓蚀效果更佳。
     (6)延长油田注水管线内防腐措施研究。在以上研究的基础上推荐了适合延长油田田注水管道内腐蚀的防护措施。
Yanchang Oilfield Co., Ltd. has built22oil production plant,309water injection plant,2302injection wells, the total length of water injection pipelines is400km so far, the formation energy is greatly complated, in order to increase crude oil production and oil recovery, which make a great contribution for normal local crude oil production. According to field investigation in recent years, water produced by the oil field has high salinity and alkaline pH, so oilfield water injection pipeline corrosion situation is extremely serious. With water cut produced gradually rising, the scale of water injection development is increasing and the service life of water injection network is lengthened, corrosion of the water injection line in Yanchang oilfield in recent years has a sharp increased trend, so the problem of water injection pipeline corrosion prevention has become essential. Therefore, to ensure the water injection pipeline in Yanchang oilfield safety and continuous operation and to prolong the life of the pipeline for corrosion protection, clarifying the underlying causes of the corrosion and understanding the corrosion law is studied in this paper.
     The main research work of this paper is:
     (1) Corrosion investigation of Yanchang water injection pipeline internal corrosion status and analysis of water injection water quality. Through the survey of AnSai—YongPing water injection pipe sections which are abandoned because of corrosion and conducting on-site excavation, understand the pipeline internal corrosion and anticorrosion technology present situation; Through component analysis of the injection water quality, study the corrosion of water injection water quality.
     (2) Internal corrosion behavior study of water injection pipeline in PanLong—YongPing section. By interior coupon experiment and electrochemical testing, tubing corrosion resistance are analyzed; And compared with field test data, do the experimental researches on the main factors influencing the corrosion; Work out its regularity of corrosion rate and the changes with temperature, time, etc, and analyze the law. Using the energy spectrum analysis and SEM analysis of the corrosion process of scaling samples, analyzing the main composition of scaling in water injection pipeline and the mechanism of corrosion under the scaling.
     (3) Internal corrosion behavior research on water velocity of water injection pipeline. By similarity principle, design experiments independently which change speed instead of velocity change is used to study the influence of the velocity to the pipeline corrosion rate, which is used for simulating the scene of theoretical innovation, getting the relationship between velocity and the corrosion rate, results show that the velocity influence on the corrosion rate significantly.
     (4) Establishment of the mathematical model. On the basis of measured data getting from the experiment, establishing the mathematical model between corrosion rate of water injection pipeline with temperature, time and velocity to preliminary forecast Yanchang pipeline steel corrosion rate when main influent factors changes, and then provide a certain theoretical guidance of corrosion protection work in order to prolong oilfield water injection pipeline under the changing condition of environment.
     (5) Study of corrosion inhibitor. For water quality characteristics in Yanchang oilfield water injection line, developing the Yanchang oilfield special corrosion inhibitor is a major research contents and key of this paper. To evaluate corrosion control effect of corrosion inhibitors, doing the interior test evaluation with five kinds of corrosion inhibitors which are developed HJF-94, ODD, TC-610, CQ-HO2and LED in the simulation of the oil field production conditions. Determining the optimum dosage of each inhibitor and best corrosion control effect, comparing the five corrosion inhibitors, the results show that the corrosion control effect of TC-610and CQ-HO2is superior to other corrosion inhibitors; At the same time, carrying out the experiment of two kinds of corrosion inhibitors by combination test experiments with different proportion distribution. Results show that effect of using alone the TC-610corrosion inhibitor is much better, and this is a significant technological innovation.
     (6) Study on measures of internal corrosion protection for YanChang water injection pipeline. On the basis of literature research, the suitable measures of internal corrosion protection for Yanchang oilfield water injection pipeline are recommended.
引文
[1]崔之健,史秀敏,李又绿等.油气储运设施腐蚀与防护[M].北京:石油工业出版社,2009.8.
    [2]林玉珍,杨德钧.腐蚀和腐蚀控制原理[M].北京:中国石化出版社.2007,246-250.
    [3]路民旭,白真权,赵新伟等.油气采集储运中的腐蚀现状及典型案例[J].腐蚀与防护,2002,23(3):105.
    [4]胡文瑞.“宝”聚鄂尔多斯盆地[J].中国石油石化.2008,7:36-36.
    [5]张林森.延长油田增产改造特色工艺技术[M].北京:石油工业出版社.2011:65-68.
    [6]龙凤乐,郑文军,陈长风等.温度、C02分压、流速、pH值对X65管线钢C02均匀腐蚀速率的影响规律[J].腐蚀与防护,2005,6(7):290-293.
    [7]曹然伟.管线钢腐蚀的材料因素与环境因素关联性研究[D].西南石油学院硕士学位论文,2011.6.
    [8]Rebak R B,Szklarska-Smialowska Z.Influence of stress intensity and loading mode on intergranular strss corrosion cracking of alloy 600 in primary waters of pressurized water reactors[J].Corrosion.1994,50(5):378-393.
    [9]Tsay L W, Chen Y C, Chan S L I.Sulfide stress corrosion cracking and fatigue crack growth of welded TMCP API 5L X65 pipe-line steel[J].International Journal of Fatigue,2001,23(2):103-113.
    [10]Hara T,Asahi H.Conditions under which cracks occur in modified 13% chromium steel in acid solutions with H2S [J].Corrosion,2000,56(5):533-542.
    [11]Huang H, Show W J D.Cold work effects on sulfide stress cracking of pipeline steel exposed to sour environments [J].Corrosion Science,1993,34(1):61-78.
    [12]S.T.Costa, T.M.Pace, R.D.Turmbetta Free Vs.captive alkalinity....factors affecting the choice of high pressure industrial boiler internal treatment program.IWC-88-40:395-400.
    [13]Albert Bursik. Eight years of modified AVT with elevated oxygen level for once-through steam generators. IWC-86-82:226-231.
    [14]谢广宇,唐荻,武会宾等.X70级管线钢硫化物应力腐蚀开裂试验研究[J].物理测试,2008,26(1):26-29.
    [15]Jin Q H, Zhang H Q. Trace determination of sulfide and sulfide dioxide by vapor molecular absorption spectromtyr using magnesium and tellurium hollow method lamps. Talanta,1992,39(8):967-969.
    [16]Petersson B A, Fang Z.Conversion Techniques in flow injection analysis determination of sulfide by pereipitation with cadmium ions and detection by atomic absorption spectrometer. Anal Chim Aeta,1996,184:165.
    [17]冯拉俊,马小菊,雷阿利.硫离子对碳钢腐蚀性的影响[J].腐蚀科学与防护技术,2006,18(3):180-182.
    [18]Iamdy A S, Sa'ch A Q Lorenz W J, Shoeib M A, et al. Evaluation of corrosion and erosion-corrosion resistances of mild steel in sulfide-containing NaCl acrated solutions[J].Electrochimica Acta,2007,52(24):7068-7074.
    [19]Little B J,Wagner P.Myths related to microbiologically influenced corrosion. Materials performance,1997,36(6):40-44.
    [20]Favaherdashti R A.Review of some characteristics of MIC caused by sulfate reducing bacteria:present and future.anti-corrosion methods and materials,1999,43(3):173-180.
    [21]周静,柏任流.N80钢在中性介质中垢下腐蚀机理的研究[J].黔南民族师范学院学报》,2007(6),60-64.
    [22]熊颖,陈大钧,王君等.油气开采中H2S腐蚀的影响因素研究[J].石油化工腐蚀与防护,2007,24(6):17-19.
    [23]王冠杰.油气井C02防腐工艺设计研究[D].中国石油大学(华东),2012.
    [24]《油气田腐蚀与防护技术手册》编委会.油气田腐蚀与防护技术手册(下册)[M].北京:石油工业出版社,1999.
    [25]Xia Z, Chou K C, Szklarska-Smialowska Z.Pitting corrosion of carbon steel in CO2-containing NaCl brine[J].Corrosion,1989,45(8):636-642.
    [26]Ren C Q, Liu D X. Corrosion behavior of oil tube steel in stimulant solution with hydrogen sulfide and carbon dioxide[J].Materials Chemistry and Physics,2005,93(2):305-309.
    [27]Waard,C.De. and Milliams,D.E.Crossion[M],1975,31 (5).
    [28]Ogundel, GL and White, W E. Some Observations on Corrosion of Carbon Steel in Aqueou Environments Containing Carbon Dioxide[J],Corrosion,1986,42(2).
    [29]Nesic, S. and Postlethwaite, J.et al.An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Soltions[J], Corrosion,1996,52(4).
    [30]Linda, GS. Gray and Bruce, Anderson,GET al:Effect of Temperature on the Mechnism of Carbon Steel Corrosion by Aqueous Carbon dioxide[J].Corrosion/90,NACE,1990(40).
    [31]刘宏波,王书淼,高铸等.H2S、CO2对油气管道内腐蚀影响机制[J].油气储运,2007,26(12):43-46.
    [32]叶春艳.克拉玛依油田典型套管C02腐蚀行为及防护措施评价[D].西安石油大 学,2004.
    [33]王成达,严密林,赵新伟等.油气开发中H2S/CO2腐蚀研究进展[J].西安石油大学学报(自然科学版),2005,20(5):66-70.
    [34]罗金恒,赵新伟,张华等.腐蚀管道剩余寿命预测方法[J].管道技术与设备,2006,(5):37-39.
    [35]周方勤.在役输气管道腐蚀剩余寿命预测技术研究[D].成都:西南石油大学,2006.
    [36]胥聪敏,霍春勇,熊庆人.X80管线钢在酸性土壤模拟溶液中的腐蚀行为[J].机械工程材料,2009,(5):33-36.
    [37]Zhang L, Li X G, Du C W. Effect of environment factors on electrochemical behavior of X70 pipeline steel in smilated soil solution [J] Journal of Iron and Steel Research, 2009,16(6):52-57.
    [38]曲良山,李晓刚,杜翠薇等.运用BP人工神经网络方法构建碳钢区域土壤腐蚀预测模型[J].北京科技大学学报,2009,31(12):85-91.
    [39]Jones D,Dawson J.Risk assessment approach to pipeline life management J].Pipes and Pipelines,1998,43(1):5-18.
    [40]袁赓.油气管道的腐蚀及预测研究[D],大连:大连理工大学,2011.
    [41]鲍艳东.新型碲镍铬合金的耐腐蚀性能研究[D],兰州,兰州理工大学2011.
    [42]吴荫顺,方智等著.腐蚀实验方法与防腐蚀检测技术[M].北京:化学工业出版社,1996:259-260.
    [43]吴荫顺.金属腐蚀研究方法[M].北京:冶金工业出版社,1993.
    [44]衣晓东.含H2S气田气井和地面集输用缓蚀剂的研究与评价[D],北京:中国石油大学,2011.
    [45]林冠发,郑茂盛,白真权等.高温C02腐蚀产物膜的结构特征与磨损性能[J].材料热处理学报,2005,26(5):80-83.
    [46]中国腐蚀与防护学会.金属腐蚀手册[M].任侃责任编辑.上海科学技术出版社,1987.
    [47]丁工.温度、压力及流速对管道湿气CO2腐蚀行为的影响[D].北京科技大学硕士学位论文,2007.12.
    [48]Yingfeng Chen, Lei Zhang. Effects of Temperature on CO2 Top of Line Corrosion of Pipeline Steel[C]. NACE International, NACE Corrosion/2011, Paper No.11327.
    [49]Crolet J L. Predicting CO2 corrosion in oil and gas industry, The institute of materials, London, UK,1994.1
    [50]黄健中,左禹.现代腐蚀科学和防蚀技术全书之材料的耐蚀性和腐蚀数据[M].北京:化学工业出版社,2003.
    [51]朱世东,尹志福,白真权等.温度对P110钢腐蚀行为的影响[J].中国腐蚀与防护学报,2009,29(6):493-497.
    [52]周计明.油管钢在含CO2/H2S高温高压水介质中的腐蚀行为及防护技术的作用[D].西安:西北工业大学,2002.
    [53]程靖.大庆油田杏南集输系统的腐蚀与防护研究[D],东北石油大学,2012.
    [54]苏俊华,张学元,王凤平等.高矿化度介质中二氧化碳腐蚀金属的规律[J].材料保护,1998,31(11):21-23.
    [55]马培红.塔河油田集输系统内防腐技术研究[D].成都:西南石油大学,2010.
    [56]钱锡俊.泵和压缩机[M].东营:中国石油大学出版社,2007.3:20-25.
    [57]白新德.材料腐蚀与控制[M].北京:清华大学出版社,2005.
    [58]翁永基.油气生产中多相流环境下碳钢腐蚀和磨损模型研究[J],石油学报,2003(5).
    [59]李章亚.油气田腐蚀与防护技术手册[M].北京:石油工业出版社,1999.
    [60]曹楚南.腐蚀电化学原理[M].第二版.北京:化学工业出版社,2004.4.
    [61]陆柱,郑士忠等.油田水处理技术[M].北京:石油工业出版社,1988:169-175.
    [62]Sun W, Nesic S. Basics revisited:kinetics of iron carbonate scale precipitation in CO2 corrosion[C]. NACE International. NACE Corrosion/2006, Houston, Texas, 2006. Paper No 365.
    [63]赵国仙,吕祥鸿.温度对油套管用钢腐蚀速率的影响[J].西安石油大学学报(自然科学版),2008.7,23(4).
    [64]王德国,何仁洋,董山英等.长距离油、气、水混输管道内壁流动腐蚀的研究进展[J],天然气与石油,2002(12).
    [65]曹楚南.腐蚀电化学原理(第二版)[M].北京:化学工业出版社,2004.4:169-217.
    [66]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科技出版社,2002.7:1-17.
    [67]牛绍蕊.不锈钢的电化学腐蚀性能研究[D].甘肃,兰州:兰州理工大学,2010.
    [68]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1988.12:154-167.
    [69]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001.3:1-37.
    [70]王凤平,康万利,敬和民等.腐蚀电化学原理、方法及应用[M].北京:化学工业出版社,2008.3.
    [71]邵元华,朱果逸,董献堆等.电化学方法、原理和应用[M].北京:化学工业出版社,2005.5:265-270.
    [72]腾岛昭编著,陈震,姚建年等译.电化学测定方法[M].北京:北京大学出版社,1995.05.
    [73]P.R.Roberge, E.Halliop, and V.S.Sastri. Corrosion of Mild Steel Using Electrochemical Impedance Spectroscopy Data Analysis[J]. Corrosion,1992, 48(6):447-453.
    [74]方芳.天然气管道的腐蚀剩余寿命预测[M].西南石油学院硕士论文,2000.
    [75]张学元,邸超,雷良才.二氧化碳腐蚀与控制[M].北京:化学工业出版社,2000,1-60.
    [76]王德国,何仁洋,董山英.长距离油、气、水混输管道内壁流动腐蚀的研究进展[J].天然气与石油,2002(4):24-30.
    [77]Nesic S, Postlethwaite J, Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion Science, 1996,52(4):280-294.
    [78]Melchers R E. pitting corrosion of mild steel in marine immersion environment-2:vaiaility of maximum pit depth [C].corrosion(NACE),2004,60(10):937-944.
    [79]汪学华等编著,自然环境试验技术[M],航空工业出版社,2003.
    [80]翁永基.油气生产中多相流环境下碳钢腐蚀和磨损模型研究[J].石油学报,2003(24):99-102.
    [81]刘熠.油气两相流管道内腐蚀研究[D].西南石油大学,2007.
    [82]杨武,肖京先等.金属的局部腐蚀[M].北京:化学工业出版社,1995.68-103.
    [83]李冰.寒区水库冰盖厚度数值模拟方法的改进研究[D].辽宁:渤海大学,2012.
    [84]吴涛.客运专线隧道线下工程变形监测信息管理及预测系统研究[D].长沙:中南大学,2009.
    [85]Ahammed M.Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects [J].Pressure Vessels and piping,1998,75(4):321-329.
    [86]白真权,路民旭,赵新伟.油气管线腐蚀剩余寿命预测研究现状分析[J].天然气与石油,1998,16(1):32-36.
    [87]王新刚.咪唑啉类缓蚀剂及聚天冬氨酸阻垢剂的制备及其性能研究[D].大连:大连交通大学,2006.
    [88]邢娜.氢氟酸介质中不锈钢缓蚀剂的研制[D].辽宁师范大学,2005年.
    [89]吴荫顺,方智,何积铨等.腐蚀试验方法与防腐蚀检测技术[M].北京:化学工业出版社,1995.
    [90]郑家燊,黄魁元.缓蚀剂科技发展历程的回顾与展望[J],材料保护,2000.
    [91]冷菁.新型离子液体的缓蚀性能研究[D].南京理工大学,2012年.
    [92]吴荫顺.金属腐蚀研究方法[M].北京:冶金工业出版社,1993.
    [93]Gunaltun Y, Larrey D. Correlation of cases of line corrosion with calculated water condensation rates. Corrosion[C], Paper NO.00071.
    [94]SY/T 5405-1996酸化用缓蚀剂性能试验方法及评价指标[S].北京:中国标准出版社,1996.12.
    [95]朱向丽.高含硫气田地面集输系统防腐技术综合应用浅析[J].中国安全生产科学技术,2012,8(6):18-21.
    [96]曹楚南,陈家坚.缓蚀剂在油气田的应用[J].石油化工腐蚀与防护,1997,14(4):34-35.
    [97]黄红兵,黄黎明,唐永帆等.川渝含硫气田缓蚀剂的应用[J].天然气与石油化工,2007,36(3):227-233.
    [98]张天胜.缓蚀剂[M].北京:化学工业出版社,2001.12:19-28.
    [99]吕向阳.3.5%NaCl溶液中铝及其合金缓蚀剂的电化学研究[D].重庆:西南大学,2009.5.
    [100]Coulson K E W. Standard damage-assessment approach is overly conservative [J]. Oil Gas,1990,88(15):41-44.
    [101]周云,付朝阳.耐高温固体缓蚀阻垢剂的研制[J].材料保护,2004,37(6)14-17.
    [102]李金桂等.表面工程技术和缓蚀剂[M].北京:中国石化出版社,2007.
    [103]王慧龙,郑家燊.环境友好缓蚀剂的研究进展[J].腐蚀科学与防护技术,2002(14)275-280.
    [104]Bard A.J, Faulkner L.R.Electrochemical Methods Fundamentals and Applications.2nd Edition.
    [105]崔美红,牟宗刚.缓蚀剂的研究进展[J].山东化工,2011(40)40-45.
    [106]Websters.Corrosion inhibitor selection for oil field pipelines[J]. Corrosion/93(NACE),1993,109.
    [107]李谦定,王京光,于洪江等.一种新型高效油气井酸化缓蚀剂的研制[J].天然气工业,2008,28(2):96-98.
    [108]油田注水缓蚀剂评价方法.SY5273-91,1991.
    [109]杨怀玉,陈家坚等.石油、天然气生产用缓蚀剂的评价方法[J].油田化学,1993(1)83-85.
    [110]Scbmitt,G. and Bruckhoff, W. Proc.5th European Symp. On corrosion Inhibitors(5SEIC),1980.P.323.
    [111]Durnie W, DE Marco, Jefferson A, Kinsella B. Development of a structure-activity relationship for oil field corrosion inhibitors[J]. Journal of the Electrochemical Society,1999,146 (5):1751-1756.
    [112]曾初升.316L不锈钢腐蚀性能电化学研究[D].昆明:昆明理工大学,2006.9.
    [113]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1986.12.
    [114]M.E.Cohem, P.A.Heimanu.J.Research of the NBS,1987,83 (5):429.
    [115]王佳,曹楚南,陈家坚.缓蚀剂理论与研究方法的进展[J].腐蚀科学与防护技术,1992,4(2):79-86.
    [116]张金钟,毛学强,刘万元等.评价缓蚀剂性能方法的研究进展[J].化学工程与装备,2011(12):139-141.
    [117]徐群杰,齐航,丁斯婧等.光电化学技术在金属腐蚀研究中应用新进展[J].上海电力学院学报,2008,24(1):73-76.
    [118]高秋英,梅平,陈武,艾俊析.咪唑啉类缓蚀剂的合成及应用研究进展[J].化学工程师,2006,128(5):18-21.
    [119]李倩,吕振波,赵杉林,孙廷秀.咪唑啉类缓蚀剂的合成及缓蚀性能研究[J].辽宁石油化工大学学报,2008,28(3):4-7.
    [120]沈长斌,薛钰芝.咪唑啉类缓蚀剂的结构特性及其缓蚀性能[J].大连铁道学院学报,2003,24(4):88-91.
    [121]中国腐蚀与防护学会《金属防腐蚀手册》编写组.金属防腐蚀手册[M].上海:上海科学技术出版社,1989.8.
    [122]努丽燕娜,王保峰.实验电化学[M].北京:化学工业出版社,2007.1:11-16.
    [123]Dewarrd C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975,31(5):177-181.
    [124]孟建勋,王健等.油气集输管道的腐蚀机理与防腐技术研究进展[J].重庆科技学院学报(自然科学版),2010,12(3):21-23.
    [125]崔斌.油气集输管道内腐蚀及内防腐技术[J].石油化工设计,2007,24(1):51-54.
    [126]曹君飞.温度湿度对在不同腐蚀阶段碳钢土壤腐蚀行为影响的研究[D].华中科技大学,2007.
    [127]王秀通.海水和海泥中阴极保护系统的边界元计算[D].青岛:中国科学院研究生院(海洋研究所,2005.
    [128]M.E.Parker, E.G.Peattie. Pipeline Corrosion and Cathodic Protection 3th edtion[J]. NACE,1984.
    [129]马培红.塔河油田集输系统内防腐技术研究[D].成都,西南石油大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700