用户名: 密码: 验证码:
波浪中多物体耦合作用简单高效计算方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析港内船舶在波浪中运动对保障船舶安全性和设计有着十分重要的意义。对船舶和采油平台一类的单个结构物的计算可以采用通常的三维源汇分布法。但对于多个物体之间相互作用的计算,这一方法计算量比较大。因为这一方法需要大量的面源,尤其对于高频的情况。其计算量会随着物体的尺度和数量增大而增加。针对波浪中多物体的情况,这里需要一个快速的计算方法。Lean等提出的一个方法就适用于这类问题。该方法是将船体横剖面用具有相等面积和相同吃水的等效矩形代替,将流场划分为船底与水底之间的内场和船侧面之外的外场。对内场的速度势由解析解表达,对外场,在自由水面处物体周线上分布源汇,其速度势可沿水深作傅立叶级数展开。内外场速度势可以通过内外场匹配条件来求出。该方法仅对物体横剖面作近似处理,这使得该方法仅适用于细长型船体。
     本文扩展了Lean等的方法,对物体的横剖面和纵剖面同时作近似处理,用具有相等面积和相同吃水的等效矩形代替。这样船体底部横向流场和纵向流场就可以同时被考虑。由于本方法对物体同时采用横剖和纵剖,所以本方法不仅适用于细长型船体,也可适用于箱型船等具有较肥大船艏船艉的船型。基于上述计算方法给出了船体二阶波浪力的计算方法。同时在本文研究中,将计算船体方法与直立柱体的求解相结合,使得该方法扩展为多船多柱体相互作用问题的求解,从而构成了这类计算问题的一个简单高效的计算方法。通过应用本方法做了以下工作:
     (1)采用本方法对多船和直立码头(在计算中采用细长截面矩形墩)相互作用的情况进行了计算,分析了单船、两条船及三条船和码头间相互作用和船体的运动问题。并且也计算了码头为多墩柱离岸码头时船与多墩柱码头的相互作用;
     (2)把本文的计算方法应用于有船体存在的港内波浪计算,分析了有船和无船时港内波浪的分布特征,对港内波浪和船体的相互作用进行研究,给出了船体的水动力系数、波浪力和运动的特征;
     (3)把本方法在频域内计算的结果应用于船舶运动时域模型,建立了基于本方法的系泊浮体时域运动方程。采用该时域模型模拟一系泊浮式养鱼池在随机波浪作用下的受力和运动,给出了系缆张力、一阶波浪力和二阶波浪力及其浮体运动响应。
The analysis of hydrodynamic problems is an important subject of ship security and design. The hydrodynamics of a single structure in waves, such as a ship or a production platform, are usually calculated by the three-dimensional source-sink distribution method. But difficulties in actual computations may arise for calculations of the interaction of multiple bodies, since a lot of source panels are needed for this kind of numerical calculations, especially for a high wave frequency case. The computation work increases with the increase of size and number of structures. So for multiple-bodies case, a simple and efficient method is called for. The method proposed by Lean et al is a possible choice for such a purpose. This method approximates a ship cross section by a rectangle with the same area of the original ship section, and divides the flow field into inner domain below the ship bottom and the outer domain beside ship hull. The inner-domain velocity potential is given by a simple analytic solution, and the outer-domain velocity potential, given by a source-sink distribution along the contour of ship water area, is expanded over water depth as a Fourier series. The two velocity potentials are matched at the interface of two domains by matching condition. This method only solves the slender ship due to approximate a ship cross section.
     The present study extends Lean's method to approximate a ship cross section and longitudinal section by a rectangle with the same area of the original ship section. So the flow fields under the ship can be considerd in cross direction and longitudinal direction. The method solves not only the slender ship but also the fat ship. Based on the method mentioned above, the paper provide the method for calculating the second order wave force of the ship. At the same time, the problem for piers is treated as the case with the gap between ship bottom and seabed being zero. The above simple method can yield a simple and efficient calculation method for the coupling of multiple ships and piers in waves. The paper has done the following jobs by using the method:
     (1) The paper calculates the case of many ships against vertical quay(a long rectangle pier adopted in calculation), analyses the interaction of the case of one ship and pier, the case of two ships and pier and the case of three ships and pier, and presents the ship responses. As the quay is made up of multiple piers, the paper calculates the interaction between the ship and quay;
     (2) The method has been used in the case of many ships in the harbor. The paper gives distribution characters of waves in the harbor including the presence of the ship in the harbor and nothing in the harbor, and calculates the wave forces and ship responses;
     (3) Frequency domain results using the method are applied in the model of time domain, so that the motion equations are founded in the time domain. In the same time, the dynamic analysis of the tank mooring system is conducted using the mathematical models to evaluate the force and response of the tank in a random sea sate. The results include the mooring line forces, the first order wave forces, the second order wave forces and the motions of the tank.
引文
[1]李玉成.海洋工程技术进展与对发展我国海洋经济的思考[J].大连理工大学学报,2002,42(1):1-5.
    [2]邱大洪.海岸和近海工程学科中的科学技术问题[J].大连理工大学学报,2000,40(6):631-637.
    [3]Haver S, Andersen 0 J. Freak waves:rare realizations of a typical population or typical realizations of a rare population?[C]//ISOPE-2000:Tenth(2000) International Offshore and Polar Engineering Conference.2000:123-130.
    [4]Clauss G F. Task-related wave groups for seakeeping tests or simulation of design storm waves[J]. Applied ocean research, Elsevier,1999,21(5):219-234.
    [5]Kjeldsen S P. Dangerous wave groups[J]. Norwegian maritime research, Selvig,1984, 12(2):4-16.
    [6]Ogilvie T F. A rational strip theory of ship motions:part 1[R].1969.
    [7]Tasai F, Takaki M. Theory and calculation of ship responses in regular waves[J]. J. Soc. Nav. Arch. Japan,1969.
    [8]Salvesen N, Tuck E O, Faltinsen O. Ship motions and sea loads[J]. Transactions of the Society of Naval Architects and Marine Engineers,1970,78:250-287.
    [9]Fujino M. Manueverability in restricted waters:state of the art[R].1976.
    [10]King G W. Unsteady hydrodynamic interactions between ships[J]. Journal of Ship Research,1977,21(3):157-164.
    [11]Newman J N. Lateral motion of a slender body between two parallel walls[J]. Journal of Fluid Mechanics, Cambridge Univ Press,1969,39 (Part 1):97-115.
    [12]Tuck E 0. Hydrodynamic problems of ships in restricted waters[J]. Annual Review of Fluid Mechanics, Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA,1978,10(1):33-46.
    [13]Yeung R W. On the interaction of slender ships in shallow water[J]. Journal of Fluid Mechanics, Cambridge Univ Press,1978,85(1):143-159.
    [14]Davis A M J, Geer J F. The application of uniform-slender-body theory to the motion of two ships in shallow water[J]. Journal of Fluid Mechanics, Cambridge Univ Press, 1982,114(1):419-441.
    [15]Kim C H, Fang M C. Vertical Relative Motion between Two Longitudinally Parallel Adjacent Platforms in Oblique Waves[C]//Department of Civil and Ocean Engineering, Stevens Institute of Technology, prepared for presentation in the Fourth international Symposium on Offshore Mechanics and Arctic Engineering, Dallas, texas. 1985.
    [16]Korsmeyer F T. T-ACS Offloading Mission Model Tests[R].1983.
    [17]贺五洲.切片法应用范围的研究[C]//第四届船舶耐波性学术讨论会论文集.浙江,1986.
    [18]Havelock T H. The damping of the heaving and pitching motion of a ship[J]. Philosophical Magazine, Taylor & Francis,1942,33(224):666-673.
    [19]John F. On the motion of floating bodies Ⅱ. Simple harmonic motions[J]. Communications on pure and applied mathematics, Wiley Online Library,1950,3(1): 45-101.
    [20]Haskind M D. On wave motion of a heavy fluid [J]. Prikl. Mat. Mekh,1954,18:15-26.
    [21]Kim W D. On the harmonic oscillations of a rigid body on a free surface [J]. Journal of Fluid Mechanics, Cambridge Univ Press,1965,21(3):427-451.
    [22]Mei C C. Numerical methods in water-wave diffraction and radiation[J]. Annual Review of Fluid Mechanics, Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA,1978,10(1):393-416.
    [23]Newman J N. Marine hydrodynamics[M]. Massachusetts Institute of Technology,1977.
    [24]Newman J N. Panel methods in marine hydrodynamics[C]//Proc. Conf. Eleventh Australasian Fluid Mechanics-1992.1992.
    [25]Newman J N. Radiation and diffraction analysis of the McIver toroid[J]. Journal of Engineering Mathematics, Springer,1999,35(1):135-147.
    [26]Newman J N. Wave effects on multiple bodies[J]. Hydrodynamics in Ship and Ocean Engineering,2001:1-24.
    [27]Ursell F. Irregular frequencies and the motion of floating bodies[J]. Journal of Fluid Mechanics, Cambridge Univ Press,1981,105(1):143-156.
    [28]Hulme A. The wave forces acting on a floating hemisphere undergoing forced periodic oscillations[J]. Journal of Fluid Mechanics, Cambridge Univ Press,1982,121(1): 443-463.
    [29]Hulme A. Heave added-mass and damping coefficients of a submerged torus[J]. Journal of Fluid Mechanics, Cambridge Univ Press,1985,155:511-530.
    [30]Lau S M, Hearn G E. Suppression of irregular frequency effects in fluid--structure interaction problems using a combined boundary integral equation method[J]. International Journal for Numerical Methods in Fluids, Wiley Online Library,1989, 9(7):763-782.
    [31]Lee C H, Newman J N, Zhu X. An extended boundary integral equation method for the removal of irregular frequency effects[J]. International journal for numerical methods in fluids, Wiley Online Library,1996,23(7):637-660.
    [32]Wu G X, Taylor R E. The exciting force on a submerged spheroid in regular waves[J]. Journal of Fluid Mechanics, Cambridge Univ Press,1987,182(1):411-426.
    [33]Wu G X, Eatock Taylor R. On the radiation and diffraction of surface waves by submerged spheroids[J]. Journal of ship research, Society of Naval Architects and Marine Engineers,1989,33(2):84-92.
    [34]Wehausen J V, Laitone E V. Surface waves[M]. Springer,1960.
    [35]Faltinsen O M, Michelsen F C. Motions of large structures in waves at zero Froude number[C]//International Symposium on the Dynamics of Marine Vehicles and Structures in waves.1974.
    [36]Garrison C J. Hydrodynamic loading of large offshore structures:three-dimensional source distribution methods[J]. Numerical methods in offshore engineering,1978: 87-140.
    [37]Noblesse F. The Green function in the theory of radiation and diffraction of regular water waves by a body[J]. Journal of engineering mathematics, Springer,1982,16(2): 137-169.
    [38]Korsmeyer F T, Lee C H, Newman J N, et al. The analysis of wave effects on tension-leg platforms[C]//Invited paper of OMAE'88 Conference.1988.
    [39]Van Oortmerssen G. The motions of a ship in swallow water[J]. Ocean Engineering, Elsevier,1976,3(4):221-255.
    [40]孙伯起,董慎言.波浪中任意三维零航速物体水动力和运动计算[C]//三维流体动力计算交流讨论会.上海:1985.
    [41]刘应中,缪国平.多个物体在波浪中的耦合运动[C]//三维流体动力计算交流讨论会.上海:1985.
    [42]方钟圣.计算作用在海洋大结构物上水动力的源加偶分布法[C]//三维流体动力计算交流讨论会.上海:1985.
    [43]贺五洲,戴遗山.简单Green函数法求解三维水动力系数[J].中国造船,1986,2:1-15.
    [44]Maniar H. A B-spline based higher order method in 3D[C]//The Ninth International Workshop on Water Waves and Floating Bodies, Kuju, Oita, Japan.1994:153-157.
    [45]Suyehiro K. On the drift of ships caused by rolling among waves[J]. Trans. Inst. Naval Arch,1924,66.
    L46] Watanabe Y. Some contributions to the theory of rolling[J]. Transactions of the Royal Institution of Naval Architects,1938,80:408-432.
    [47]Havelock T H. The drifting force on a ship among waves[J]. Philosophical Magazine, Taylor & Francis,1942,33(221):467-475.
    [48]Havelock T H. The pressure of water waves upon a fixed obstacle[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, The Royal Society,1940,175(963):409-421.
    [49]Maruo H. The force of water waves upon a fixed obstacle[J].横浜国立大学工学部纪要,横浜国立大学,1956,5:11-31.
    [51]Mauro H. The drift of a body floating on waves[J]. Journal of Ship Research,1960, 4:1-5.
    [52]Newman J N. The drift force and moment on ships in waves [J]. Journal of ship research, 1967,11(1):51-60.
    [53]Pinkster J A. Low-frequency phenomena associated with vessels moored at sea[J]. Old SPE Journal, Society of Petroleum Engineers,1975,15(6):487-494.
    [54]Ohkusu M. Ship motions in vicinity of a structure[C]//Proceedings of Int Conf on Behavior of Offshore Structure.1976:284-306.
    [55]Fang M C, Kim C H. Two-dimensional analysis on the lateral drifting force between two floating structures[J]. Journal of ship research, Society of Naval Architects and Marine Engineers,1986,30(3):194-200.
    [56]Dev A K, Pinkster J A. Viscous Mean and Low Frequency Drift Forces on Semisubmersibles[C]//BOSS'97 8th International Conference on the Behaviour of Offshore Structures, Delft, The Netherlands.1997.
    [57]Fang M C, Chen G R. On three-dimensional solutions of drift forces and moments between two ships in waves[J]. Journal of ship research, Society of Naval Architects and Marine Engineers (SNAME),2002,46(4):280-288.
    [58]Pinkster J A, Van Oortmerssen G. Computation of the first and second order wave forces on oscillating bodies in regular waves[C]//Proc.2nd Internat. Conf. Num. Ship Hydrodynamics, Univ. of California, Berkeley. USA.1977.
    [59]Faltinsen 0 M, Loken A E. Drift forces and slowly varying forces on ships and offshore structures in waves[J]. Norwegian Maritime Research,1978,6(1):2-15.
    [60]Kim C H, Dalzell J F. An analysis of the quadratic frequency response for lateral drifting force and moment[J]. Journal of Ship Research,1981,25(2):117-129.
    [61]Musker A J, Loader P R, Butcher M C. Simulation of a submarine under waves[J]. International shipbuilding progress, IOS Press,1988,35(404):389-410.
    [63]Lee C H, Newman J N. First-and second-order wave effects on a submerged spheroid[J]. 1991,35(3):183-190.
    [64]倪绍毓.用切片法计算波浪漂移力[J].哈尔滨船舶工程学院学报,1992,13(1):1-12.
    [65]戴遗山,张亮.作用于运动潜体的波浪力[J].中国造船,1993(4):1-15.
    [66]缪国平,刘应中.二阶波浪力的切片理论与潜体上的垂向定常力[J].水动力学研究与进展:A辑,1993(4):435-447.
    [67]缪国平,刘应中,糜振星.斜浪中二维潜体的二阶定常力[J].中国造船,1994,125:20-31.
    [68]Zhao R, Faltinsen O M. Interaction between current, waves and marine structures[C]//International Conference on Numerical Ship Hydrodynamics,5th.1900.
    [69]Newman J N. Second-order, slowly-varying forces on vessels in irregular waves[J]. National Technical Information Service,1974:182-186.
    [70]Roberts J B. Non-linear analysis of slow drift oscillations of moored vessels in random seas[M]. National Maritime Institute,1980.
    [71]Marthinsen T. Calculation of slowly varying drift forces [J]. Applied Ocean Research, Elsevier,1983,5(3):141-144.
    [72]MacCamy R C, Fuchs R A. Wave forces on piles:a diffraction theory[M]. University of California, Dept. of Engineering,1952.
    [73]Spring B H, Monkmeyer P L. Interaction of plane waves with vertical cylinders[C]//Proceeding of the Fourteenth International Conference on Coastal Engineering.1974:1828-1847.
    [74]Chakrabarti S K. Wave forces on multiple vertical cylinders [J]. Journal of the Waterway Port Coastal and Ocean Division, ASCE,1978,104(2):147-161.
    [75]邱大洪,朱大同.圆柱墩群上的波浪力[J].海洋学报(中文版),1985,7(1):86-102.
    [76]陈斌,郭烈锦,杨晓刚.圆柱绕流的离散涡数值模拟[J].自然科学进展,2002,12(9):964-969.
    [77]缪国平,余志兴,缪泉明,刘应中,张怀新.流体动力干扰对单排圆柱桩列波浪力的影响[J].力学学报,1998,30(5):513-520.
    [78]邓见,黄钰期,任安禄.分块法研究圆柱绕流升阻力[J].力学与实践,2004(1):24-26.
    [79]陈文曲,任安禄,邓见. 下游圆柱涡致振动的升阻力特性及涡脱落模态分析[J].浙江大学学报:工学版,2005,39(8):1254-1259.
    [80]陈文曲,任安禄,李广望.串列双圆柱绕流下游圆柱两自由度涡致振动研究[J].力学学报,2004,36(6):732-738.
    [81]刘松,符松.串列双圆柱绕流问题的数值模拟[J].计算力学学报,2000,17(3):260-266.
    [82]徐有恒,黄东群.侧柱对串列双柱脉动压力的干扰[J].力学学报,1997,29(1):30-37.
    [83]徐有恒,张德龙.三圆柱绕流压力的脉动幅度及其与RMS值数值关系的实验研究[J].水动力学研究与进展:A辑,1997,12(4):419-423.
    [84]楼小峰,曹丰产.串列钝体绕流的数值计算[J].同济大学学报:自然科学版,2002,30(5):604-608.
    [85]张爱社,张陵.等边布置三圆柱绕流的数值分析[J].应用力学学报,2003,20(1):31-36.
    [86]陈炬桦,熊盛武.绕三圆柱流体的LB模拟[J].武汉大学学报:自然科学版,1998,44(1):37-40.
    [87]高永祥,宋苏平,何荔.多圆柱墩群上波浪力的精确解及计算分析[J].水动力学研究与进展A辑,1987,2.
    [88]Linton C M, Evans D V. The interaction of waves with arrays of vertical circular cylinders[J]. Journal of Fluid Mechanics, Cambridge Univ Press,1990,215(1): 549-569.
    [89]周显初,王冬娇,章梓雄.两个垂直圆柱在水波中的水动力相互作用[J].应用数学和力学,1997,18(10):867-878.
    [90]Tuck E 0, Newman J N. Hydrodynamic interactions between ships[C]//Symposium on Naval Hydrodynamics,10th, Proceeding, Pap and Discuss, Cambridge, Mass, June 24-28,1974. 1976(Proceeding).
    [91]Van Oortmerssen G. Hydrodynamic interaction between two structures, floating in waves[C]//Proceedings of the 2nd Int Conf of Behavior of Offshore Structures.1979: 339-356.
    [92]L(?)ken A E. Hydrodynamic interaction between several floating bodies of arbitrary form in waves. [J]. Hydrodynamics in Ocean Engineering,1981,198:745-759.
    [93]Duncan J H, Barr R A, Liu Y Z. Computations of the coupled response of two bodies in a seaway[C]//International Workshop on Ship and Platform Motions.1983:26-28.
    [94]Landweber L, Chwang A T, Guo Z. Interaction between two bodies translating in an inviscid fluid[J]. Journal of Ship Research, Society of Naval Architects and Marine Engineers,1991,35(1):1-8.
    [95]Korsmeyer F T, Lee C H, Newman J N. Computation of ship interaction forces in restricted waters[J]. Journal of Ship Research,1993,37(4):298.
    [96]Wang S. Forces and moment on a moored vessel due to a passing ship[J]. J. Waterways and Harbours, Coastal Eng. Div. Proc. ASCE (WW3),1975,101:247-258.
    [97]Yeung R W, Hwang W. Nearfield hydrodynamic interactions of ships in shallow water[J]. Journal of Hydronautics,1977,11(4).
    [98]Isaacson M, Cheung K F. Hydrodynamics of ice mass near large offshore structure[J]. Journal of waterway, port, coastal, and ocean engineering, American Society of Civil Engineers,1988,114(4):487-502.
    [99]郑才士.浅水中船舶相互作用的一种计算方法[J].船舶工程,1994(6):8-14.
    [100]Berkhoff J C W, Booy N, Radder A C. Verification of numerical wave propagation models for simple harmonic linear water waves [J]. Coastal Engineering, Elsevier,1982,6(3): 255-279.
    [101]Copeland G J M. A practical alternative to the "mild-slope" wave equation[J]. Coastal Engineering, Elsevier,1985,9(2):125-149.
    [102]Boussinesq J. Theory of wave and swells propagated in long horizontal rectangular canal and imparting to the liquid contained in this canal [J]. Journal de Mathematiques pures et appliquees,1872,17(2):55-108.
    [103]邹志利.适合复杂地形的高阶Boussinesq水波方程[J].海洋学报,2001,23(1):109-119.
    [104]Lee J J. Wave-induced oscillations in harbours of arbitrary shape[D]. California Institute of Technology,1969.
    [105]Gerber M. The Incorporation of Dissipation Into the Modelling of Oscillations in Harbours of Arbitrary Shape[D]. Applied Mathematics, University of Cape Town,1978.
    [106]戴功虎,姚国权.赤湾港内波浪数学模型[J].海洋学报(中文版),1985(6):763-777.
    [107]陶建华,赵金城.边界元法计算港湾水波绕射[J].港工技术,1987(4):17-22.
    [108]戴功虎,丁炳灿,姚国权.烟台港波浪绕射数学模型研究[J].水运工程,1990(8):1-7.
    [109]张新曙,缪国平.任意形状港湾的水波振动[J].上海交通大学学报,2002(11):1555-1559.
    [110]齐鹏,王永学.非线性波浪时域计算的三维耦合模型[J].海洋学报,2000,22(6):102-109.
    [111]王大国.港口非线性波浪耦合计算模型[D].大连理工大学,2005.
    [112]Lean G H, Bowers E C, Matsoukis P F, Beresford P J. A mathematical model of vertical ship movement in waves with a small underkeel clearance and its validation against physical model results[R].1984(Oxon:HR Wallingford).
    [113]邹志利,戴遗山.直立圆柱二阶波浪力解析解[J].应用数学和力学,1994,15(9):807-819.
    [114]Choi Y R, Hong S Y. An analysis of hydrodynamic interaction of floating multi-body using higher-order boundary element method[C]//Proceedings of the 12th International Offshore and Polar Engineering Conference.2002:303-308.
    [115]Kashiwagi M, Endo K, Yamaguchi H. Wave drift forces and moments on two ships arranged side by side in waves[J]. Ocean engineering, Elsevier,2005,32(5-6):529-555.
    [116]Hong S Y, Kim J H, Cho S K, et al. Numerical and experimental study on hydrodynamic interaction of side-by-side moored multiple vessels[J]. Ocean engineering, Elsevier, 2005,32(7):783-801.
    [117]金红.具有精确色散性的线性和非线性波浪模型[D].大连理工大学,2008.
    [118]Beck R F, Liapis S. Transient motions of floating bodies at zero forward speed[J]. Journal of ship research, Society of Naval Architects and Marine Engineers,1987, 31(3):164-176.
    [119]Beck R F. Time-domain computations for floating bodies[J]. Applied ocean research, Elsevier,1994,16(5):267-282.
    [120]张亮,戴遗山.近水面航行物体绕射问题的时域解[J].中国造船,1992(4):1-15.
    [121]Ursell F. The decay of the free motion of a floating body[J]. Journal of Fluid Mechanics, Cambridge Univ Press,1964,19(2):305-319.
    [122]Kotik J, Lurye J. Heave oscillations of a floating cylinder of sphere[J]. Schiffstechnik,1968,15:37-38.
    [123]Maskell S J, Ursell F. The transient motion of a floating body[J]. Journal of Fluid Mechanics, Cambridge Univ Press,1970,44(2):303-313.
    [124]刘应中,黄庆玉.系泊系统动力分析的时域方法[J].上海交通大学学报,1997(11):7-12.
    [125]Cummins W E. The impulse response function and ship motions[R].1962.
    [126]OCIMF. Prediction of Wind and Current Loads on VLCCs[S]. Oil Companies International Marine Forum. London,1977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700