用户名: 密码: 验证码:
水貂CDV的分离鉴定及其主要基因的克隆与免疫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
犬瘟热(Canine distemper,CD)系由副粘病毒科麻疹病毒属的犬瘟热病毒引起的一种急性、热性、高度接触性的传染病。该病的流行与传播严重地影响了经济动物养殖业、野生动物保护业、动物园观赏业和养犬业的持续发展。随着生态环境的变化及犬瘟热病毒(Canine distemper virus,CDV)对流行因素的适应,其自然感染宿主范围在不断扩大,加之CDV变异株的出现,目前犬瘟热的发病率和致死率均有所升高,流行趋势由散在发生趋势向群发趋势发展,临床症状也越来越复杂,其危害也越来越大。特别是国宝大熊猫等珍稀动物及猕猴等灵长类动物的CDV感染,使CDV的致病地位日益突出。最新研究证实CDV在体外可感染人的前破骨细胞,在破骨细胞内增殖,表明CDV的自然宿主可能已扩展到了人类,犬瘟热可能是犬传染给人的第二个病毒性传染病。
     由于CDV呈世界性分布,自然感染宿主种类广泛,且可在大量的不相关动物种类间交叉感染。因此,消灭CDV几乎是不可能的,但可以利用疫苗进行主动免疫控制犬瘟热。目前常用的犬瘟热疫苗有CDV死毒苗、MV疫苗、CDV弱毒疫苗。但是CDV死苗和MV疫苗不能提供动物持久的保护力,而CDV弱毒疫苗的稳定性较差,接种后易受母源抗体的干扰,对某些免疫缺陷动物和野生动物不安全,具有散毒的危险,所以人们已开始研制新型疫苗,如核酸苗、基因工程亚单位苗、重组病毒苗等控制犬瘟热。本研究进行了以下几方面的工作,为水貂CD核酸疫苗的研制奠定基础。
     1,水貂犬瘟热病毒的分离与鉴定从山东省青岛市某水貂养殖场疑似犬瘟热的病死貂的肝脏中分离出1株病毒,并进行了系统的鉴定。结果表明:该毒株接种于Vero传代细胞后出现了CDV典型而有规律的细胞病变;其理化特性与CDV相同;致细胞病变作用可被兔抗CDV阳性血清阻断;包涵体检查在细胞浆中可见圆形或椭圆形嗜酸性包涵体;间接免疫荧光试验表明接种病毒的BHK-21细胞出现特异性的亮绿色荧光,而正常细胞则未见绿色荧光;提取接种病料后的Vero细胞培养物中的总RNA进行RT-PCR反应,扩增出了324bp和1053bp的目的片段。证明该毒株为CDV,命名为CDVSJ。
     2,犬瘟热病毒分离株附着蛋白(H)基因的克隆与序列分析对犬瘟热病毒水貂分离株CDVSJ株的H基因进行了RT-PCR扩增,扩增产物纯化后与pMD-18T Simple Vector连接,并转化至E.coli JM109感受态细胞中,成功地构建了重组克隆质粒pMD-18T-CDVH,并测定其序列。测序结果表明,CDVSJ株H基因由1596 bp组成,编码532个氨基酸,含有5个潜在的N-联糖基化位点,分别在76~78、318~320、349~351、383~385、514~516;含有12个半胱氨酸残基,分别位于66、81、115、211、223、304、309、317、417、493、502、529位。与01-2689、007Lm、2544Han95、25259、A75-17、American dog、black leopard、Liud、CDTaichung、Convac、Danish dog、Danish mink、DK91D、GreenIandic dog、Hamatsu、Javelina、KDK-1、LP、Onderstepoort、Snyder Hill、Tanu96、TN、Ueno和Yanaka毒株核苷酸序列同源性分别为90.7%、91.0%、91.9%、92.2%、92.0%、91.2%、91.8%、91.9%、90.9%、96.9%、92.0%、92.4%、92.0%、92.1%、90.9%、91.8%、91.1%、92.5%、96.6%、98.6%、91.1%、91.1%、91.0%和91.0%;推导的氨基酸序列同源性分别为89.9%、90.1%、91.4%、90.2%、91.9%、91.4%、91.9%、91.7%、91.2%、95.1%、91.4%、91.9%、91.6%、91.4%、90.4%、91.2%、90.8%、91.4%、94.6%、97.0%、90.8%、90.6%、91.0%和90.8%。与Onderstepoort、Convac、Hamatsu、A75/17、TN株相比,根据推导的氨基酸序列比较分析表明,犬瘟热病毒分离株CDVSJ具有5个潜在的N-联糖基化位点,与Onderstepoort疫苗株相比,在318Aa~320Aa、383Aa~385Aa处多2个N-联糖基化位点;与疫苗Convac株和野毒A75/17株相比,在530Aa~532Aa处少1个N-联糖基化位点;与Hamatsu株相比,在236Aa~238Aa、511Aa~513Aa和530Aa~532Aa处少3个N-联糖基化位点;与TN株相比,在236Aa~238Aa和511Aa~513Aa处少2个糖基化位点。聚类分析结果表明CDVSJ株与SnyderHill毒株的亲缘关系最近,二者与疫苗株Onderstepoort和Convac具有较高的同源性,组成一组,而与标准野毒强毒株Hamatsu的亲缘关系较远。
     3,犬瘟热病毒分离株融合蛋白(F)基因的克隆与序列分析对犬瘟热病毒水貂分离株CDVSJ株的F基因进行了RT-PCR扩增,扩增产物纯化后与pMD-18T Simple Vector连接,并转化至E.coli JM109感受态细胞中,成功地构建了重组克隆质粒pMD-18T-CDVF,并测定其序列。测序结果表明,CDVSJ株F基因由1053 bp组成,编码351个氨基酸,含有9个半胱氨酸残基;与01-2601株、2544-Han95株、5804P株、25259株、A75-17株、DOGDK91C株、ONP株、PDV-2株和98-2646株相比,核苷酸序列同源性分别为95.4%、93.8%、93.9%、94.3%、94.5%、93.9%、97.3%、94.7%和94.1%;推导的氨基酸序列同源性分别为97.4%、96.6%、97.7%、98.0%、97.4%、97.4%、97.2%、98.0%和96.6%。抗原指数比较结果说明分离株CDVSJ与疫苗Onderstepoort株、强毒A75-17株在40-50位氨基酸间存在较大差异。与Onderstepoort株、A75/17株和PDV-2株相比,各个毒株F蛋白的半胱氨酸残基数目及其位置保守,均为9个。这说明CDVF蛋白基因是一个相对保守的结构蛋白基因。
     4,犬瘟热病毒分离株F基因的真核表达将克隆至pMD-18T simple vector中的F基因片段亚克隆至pcDNA3.1(+)真核表达载体中,成功地构建出真核重组表达质粒pcDNA3.1-F和pcDNA3.1-SF。经脂质体介导法将真核重组表达质粒pcDNA3.1-F和pcDNA3.1-SF转染至BHK-21细胞中,通过ELISA法、间接荧光抗体技术和RT-PCR技术检测,证实目的基因在哺乳动物细胞中获得了表达。
     5,真核重组表达质粒的免疫研究为研究真核重组表达质粒的免疫特性,将真核重组表达质粒pcDNA3.1-F和pcDNA3.1-SF肌注日本大耳白兔进行免疫,同时设置pcDNA3.1(+)、生理盐水阴性对照组和犬瘟热弱毒疫苗阳性对照组。间接ELISA法检测结果显示,免疫兔体内产生了针对CDV的特异性抗体,且抗体水平随着免疫次数和免疫剂量的增加而升高,重组质粒组体液免疫水平显著高于生理盐水组和空载体组,但不及弱毒疫苗对照组。淋巴细胞转化试验结果表明,重组质粒免疫组产生了细胞免疫,但低于弱毒疫苗组。
     本研究从疑似犬瘟热病死貂肝脏中分离出1株犬瘟热病毒,并对水貂源犬瘟热病毒分离株的F基因和H基因进行了克隆与序列分析,丰富了CDV分子生物学研究内容;构建的CDV F基因真核重组表达质粒,在实验动物体内产生了特异性的体液免疫和细胞免疫。为进一步研究CDV F和H基因的免疫保护作用,研制诊断和预防水貂犬瘟热新型、高效的诊断试剂和DNA疫苗奠定了基础。
Canine distemper (CD), caused by canine distemper virus (CDV) which belongs to the Morbillivirusgenus of the Paramyxoviridae virus family, is a acute and highly contagious disease causing considerabledamages to the fur animal farming industry, threatening wildlife conservation and zoo animal. With thechanges in the environment and CDV adaptation to prevailing factors, CDV natural host's range expandsincessantly. In addition, the new CDV variants leading to the incidence and mortality rate of CD infectedanimals are increasing, and prevalent and clinical symptoms developed are more and more complicated atthe present time. Therefore, its harmful effects become more serious. In particular, when giant panda andmacaque and so forth quadrumana are infected CDV, CDV pathogenesis became protrusion. Latestresearch confirms that CDV can infect human prosoma osteoclast and that indicates CDV natural hostextends the possibility that it could infect human beings. It may be the second viral infection diseasepassing from dog to human beings.
     Due to worldwide distribution of CDV and the widespread natural host and huge cross infection,eliminating CDV is almost impossible. However, a vaccine can be used as an active immunity to controlCD. Traditional attenuated vaccine has intrinsic shortcomings despite its important role in controlling theoccurrence of CD. In order to develop a new kind of safe and efficient CDV genetically engineeredvaccine, we have conducted the following works:
     1. Isolation and Identification of Canine Distemper Virus from Mink
     A strain of Canine Distemper Virus was isolated and identified systemically from the liver of a deadmink suspected of having Canine Distemper, at a mink farm in Qingdao, Shandong Province. The resultsindicated that typical and disciplinary CDV cell pathological changes appeared and the physical andchemical characteristics were similar to that of CDV after the virus strain had inoculated Vero cell. Thecytopathogenic effect can be interdicted by Rabbit anti-CDV positive serum. Rotundity and ellipseeosinophil inclusion body can be seen in cytoplasm during inclusion body examination. Indirectimmunofluorescent assay showed that BHK-21 cell inoculated the CDV resulting in idiosyncratic brightgreen fluorescence and that green fluorescence did not appeared in the normal cell. The total RNAextracted from Vero cell culture inoculated with the virus were amplified with Reversetranscription-polymerase chain reaction(RT-PCR), and two objective segments (324bp and 1053bp) wereobtained Thus, the virus strain was proved to be CDV and named as CDVSJ.
     2. Cloning and Sequencing Analysis on hemagglutinin (H) genes of Isolated Canine Distemper Virus Strain
     H gene of CDVSJ strain was amplified with RT-PCR, and the purified RT-PCR products werelinked with pMD-18T Simple Vector, then transferred to E.coli JM109 competent cell. The recombinedcloning plasmid pMD-18T-CDVH was created and sequenced. Sequencing result indicated that H genesection of CDVSJ strain was of a 1596bp fragment encoding 532 amino acids, which contained 5potential N-glycosylation positions located in 76Aa~78Aa, 318Aa~320Aa, 349Aa~351Aa, 383Aa~385Aa, 514Aa~516Aa; and also contained 12 cysteine residues located at 66, 81, 115, 211,223, 304,309, 317, 417, 493, 502, 529 positions. Compared with the nucleotide sequences of 01-2689, 007Lm,2544Han95, 25259, A75/17, American dog, black leopard, Liud, CDTaichung, Convac, Danish dog,Danish mink, DK91D,Greenlandic dog, Hamatsu, Javelina, KDK-1, LP, Onderstepoort, Snyder Hill,Tanu96, TN, Ueno and Yanaka strains, the homology is 90.7%, 91.0%, 91.9%, 92.2%, 92.0%, 91.2%,91.8%, 91.9%, 90.9%, 96.9%, 92.0%, 92.4%, 92.0%, 92.1%, 90.9%, 91.8%, 91.1%, 92.5%, 96.6%,98.6%, 91.1%, 91.1%, 91.0% and 91.0%, respectively. Derivative amino acids homology are 89.9%,90.1%, 91.4%, 90.2%, 91.9%, 91.4%, 91.9%, 91.7%, 91.2%, 95.1%, 91.4%, 91.9%, 91.6%, 91.4%,90.4%, 91.2%, 90.8%, 91.4%, 94.6%, 97.0%, 90.8%, 90.6%, 91.0% and 90.8%, respectively. Comparedwith Onderstepoort, Convac, Hamatsu, A75/17 and TN strains, CDVSJ strain contained 5 potentialN-glycosylation positions according to derivative amino acids sequence analysis. There were two moreN-glycosylation position at 318Aa~320Aaand383Aa~385Aa compared with the Onderstepoort vaccinestrain. One N-glycosylation positions, 530Aa~532Aa, were lacking compared with Convac and A75/17strains. Three N-glycosylation positions, 236Aa~238Aa, 511Aa~513Aa and 530Aa~532Aa, werelacking compared with Hamatsu strains.Two N-glycosylation position, 236Aa~238Aa and 511Aa~513Aa was lacking compared with TN strain. Clustering analysis results showed that CDVSJ strain isclosely related to the Snyder Hill strain. Sequence homologies are a close comparison to Onderstepoortand Convac, which form one group. However, the kinship between them and standard virulent strainHamatsu is far away.
     3. Cloning and Sequence Analysis of fusion (F) Gene of Canine Distemper Virus Strain
     F gene of CDVSJ strain was amplified with RT-PCR and the purified RT-PCR product was linkedto pMD-18T Simple Vector, then transferred to E.coli JM109 competent cell. The recombined cloningplasmid pMD-18T-CDVF was built and sequenced. Sequencing results indicated that F gene section ofCDVSJ strain was of a 1053bp fragment encoding 351 amino acids of which 9 were cysteine residues.Compared with the nucleotide sequences of 01-2601, 2544-Han95, 5804P, 25259, A75-17, DOGDK91C,ONP, PDV-2 and 98-2646strains, homology are 95.4%, 93.8%, 93.9%, 94.3%, 94.5%, 93.9%, 97.3%,94.7% and 94.1%, respectively. Derivative amino acids homology are 97.4%, 96.6%, 97.7%, 98.0%,97.4%, 97.4%, 97.2%, 98.0% and 96.6%, respectively. Antigen index comparative results showed that there are great differences in 40-50th amino acids between isolated CDVSJ and vaccine Onderstepoortand the virulent A75-17 strain.Compared with Onderstepoort, A75/17 and PDV-2 strains, the number andposition of cysteine residues of F protein in each strain was the same, being 9. That determines that CDVF gene is a comparative conservative structural protein gene.
     4. Eukaryotic expression of Canine Distemper Virus F gene
     Cloned F gene segment in pMD-18T simple vector was re-cloned to pcDNA3.1 (+) eukaryonexpression vector plasmid, forming eukaryon recombinant expression plasmid pcDNA3.1-CDVF andpcDNA3.1-CDVSF successfully. Eukaryon recombinant expression plasmid pcDNA3.1-CDVF andpcDNA3.1-CDVSF were transfected into BHK-21 cell by using lipoplast mediate method and has beenproved with ELISA, indirect fluorescent antibody technique and RT-PCR detection that the objectivegene was successfully expressed in mammalian cell.
     5. Immunization test of Eukaryon recombinant expression plasmid
     In order to study immunity characteristics of Eukaryon recombinant expression plasmid, Eukaryonrecombinant expression plasmid pcDNA3.1-F and pcDNA3.1-SF were injected intramuscularly intoJapanese albino rabbit. Meanwhile, pcDNA3.1 (+), normal saline negative control and CDV vaccinepositive were used as control. ELISA results showed that specificity antibody to CDV was produced inthe Japanese albino rabbit. Moreover antibody level increased with increasing immunizing times anddoses. The humoral immunity level of recombinant plasmid group was significantly higher than those ofnormal saline and pcDNA3.1 (+) control groups, however, but lower than that of attenuated vaccinegroup. Lymphocyte transformation test results showed that recombinant plasmid immunity groupproduced cellular immunity, but was lower than that of the attenuated vaccine group.
     A strain of CDV was isolated from the liver of the suspect CD dead mink, and H and F gene ofCDVSJ strain were cloned and sequenced, providing useful information for molecular biological study ofthe virus. The recombined eukaryotic expression plasmid of CDV F protein gene was successfullyexpressed in the body of laboratory animal, producing both humoral and cell immunity. The results of thestudy provide fundamental information for the further study on the protective function of CDV H and Fgene, for the development of new type and efficient diagnostic reagent for diagnosis and prevention ofCD and DNA vaccine.
引文
[1] 夏咸柱.养犬大全[M].吉林:吉林人民出版社,1993:549-553.
    [2] 魏文康.犬瘟热病毒研究进展[J].预防兽医学进展,2001,3(1):31-33.
    [3] Gillespie JH,Timoncy JF著,胡祥壁等译.家畜传染病[M].(第七版).北京:农业出版社,1998:770-784.
    [4] Murphy FA. Virus Taxonomy: Classification and nomen culture of virus. Sixth report of the international committee on taxonomy of Virus New York[J]. Springer-verlagwien, 1995.
    [5] 蔡宝祥.家畜传染病学(第三版)[M].北京:中国农业出版社,1999:301-304.
    [6] 丛丽,闫新华等.狐貂犬瘟热\细小病毒性肠炎和脑(肝)炎流行病学调查[J].特产研究,2000,2:46-47.
    [7] 李金中,夏咸柱,胡贵学,等.我国犬瘟热病毒的生态学调查研究[L].畜牧兽医学报,1999,30(4):375-379.
    [8] 李建军,丁巧玲.我国犬瘟热研究进展[J].中国兽医杂志,2003,39(1):34-38.
    [9] Gordon MT, Anderson DC, Sharpe PT. Canine distemper virus localized in bone cells of patients with Paget, sdisease[J]. Bone, 1991, 12(3): 393.
    [10] Mee A P, Sharpe P T. Dogs, distemper and Pagets disease[J]. Bioessays, 1993, 15(12): 783-789.
    [11] Mee A P, Dixon J A, Hoyland J A, et al. Detectior of canine distemper virus in 100% of paget's disease samples by in situ-reverse transcriptase-polymerase chain reaction[J]. Bone Vol, 1998, 23(2): 171-175.
    [12] Selby P L, Davies M, Mee A P. Canine distemper virus induces human osteoclastogenesis through NF-kappaB and seouestosome 1/P62 activation[J]. J Bone Miner Res, 2006, 21(11): 1750-1756.
    [13] 殷震,刘景华.动物病毒学(第2版)[M].北京:科学出版社,1997:671-703.
    [14] Barrett T, Shrimpton SB, Russeu SE. Nucleotide sequence of the entire protein cdding region of canine distemper virus polymerase-associated protein[J]. Virus Res, 1985, 3(4): 367-372.
    [15] Sidhu MS, Menonna JP, Cook SD, et al. Canine distemper virus L gene: sequence and comparison with related viruses[J]. Virology, 1993, 193(1): 50-65.
    [16] 乔军.犬瘟热病毒分子生物学特征研究进展[J].塔里木农垦大学学报,2002,14(1):39-44.
    [17] Sidhu MS, Husar W, Cook SD, et al. Canine distemper terminal and intergenic non-protein coding nucleotide sequence: completion of the entire CDV genome sequence[J]. Virol, 1993, 193(1): 66-72.
    [18] Bellini WJ. The nucleotide and predicted amino acid sequence of the fusion protein of recent isolates of canine distemper virus[J]. Virology, 1986, 58(2): 408-416.
    [19] Evans SA, Belslan GJ, Barrett T. The role of the 5, non-translated regions of the fusion protein mRNA of canine distemper virus and rinderpest virus[J]. Virol, 1990, 177(1): 317-323.
    [20] Visser IKG, Heijden RWJ, Bidt MWG. Fusion protein gene nucleotide sequence similatities,shared antigenic sites and phylogenetic analysis suggest the phocid distemper virus type 2 and canine distemper virus belong to the same virus entity [J]. J Gen Virol, 1993, 74: 1989-1994.
    [21] Chriliod P, Beck K, Zuibriggen A, et al. Sequence analysis and expression of the attachment and fusion protein gene of canine distemper virus wild-type strain A75/17[J]. J Virol, 1999, 73: 2263-2269.
    
    [22] Liemann H, Harder TC, Locheit M, et al. Genetic analysis of the central untranslated genome region and the proximal coding part of the F gene of wild-type and vaccine distemper morbilliviruses[J]. Virus Gene, 1998, 17: 259-270.
    [23] Yoshida E, Shin Y, Iwatsuki K, et al. Epitopes and nuclear localization analysis of canine distemper virus nucleocapsid protein by expression of its deletion mutants[J]. Vet Microbiol, 1999, 66: 313-320.
    [24] Beaucerger P, Buckland R, Wild T F. Measles virus antigens induce both type-specific and canine distemper virus cross-reactive cytotoxic T lymphocytein in mice: localization of a common L~d-restricted nucleoprotein epitope[J]. J Gen Virol, 1993, 74: 2357-2363.
    [25] Steward M W. CTL epitopes identified with a defective recombinant adenovirus expressing measles virus nucleoprotein and evaluation of their protective capacity in mice[J]. Virus Res, 1999, 65(1): 75-86.
    [26] Pare JA,Barker IK,Crawshaw GJ,et al. Humoral response and protection from experimental challenge following vaccination of raccoon pups with a modified-live canine distemper virus vaccine[J]. J Wild Dis, 1999, 35(3): 430-439.
    [27] Yoshida E, Iwatsuki K, Miyashita N, et al. Molecular analysis of the nucleocapaid protein of recent isolates of canine distemper virus in Japan[J]. Vet Microbiol, 1998, 59: 237-244.
    [28] Stettler M, Zurbriggen A. Nucleotide and deduced amino acid sequences of the nucleocapsid protein of the virulent A75/17-CDV strain of canine distemper virus[J]. Vet Microbiol, 1995, 44(2-4): 211-217.
    [29] Hamburger D, Griot C, Zurbriggen A, et al. Loss of virulence of canine distemper virus is associated with a structural change recognized by a monoclonal antibody [J]. Experientia, 1991, 47(8): 842-845.
    [30] Pascal Cherpillod, Andrea Tipold, Monika Griot-Went, et al. DNA vaccine encoding nucleocapsid and surface protein of type canine distemper virus protects its natural host against distemper[J]. Vaccine, 2000, 18: 2927-2936.
    [31] 李吕文,张洪英,刘怀然,等.犬瘟热病毒A株N蛋白基因编码区的克隆与序列分析[J].动物医学进展,2003,24(6):93-95.
    [32] Neumeister C, Nanan R, Cornu T, et al. Measles virus and canine diostemper virus target protein into a TAP-inducement MHC classI-restricted antigen-precessing pathway[J]. J Gen Virol, 2001, 82: 441-447.
    [33] 孟庆玲,乔军,陈创夫.犬瘟热病毒TN野毒株核衣壳蛋白基因的克隆与序列分析[J].中国兽医科技,2004,34(4):24-27.
    [34] Curran M D, Rima BK. The genes encoding the phosphor and matrix protein of phocine distemper virus[J]. J Gen Virol, 1992, 73(6): 1587-1591.
    [35] Veronika von Messling, Chtistoph Springfeld, Patricia Devaux, et al. A Ferret Model of Canine Distemper Virus Virulence and Immunosuppression[J]. Virology, 2003, 77(23): 12579-12591.
    [36] Palosaati H, J P Parisien, J J Rodriguez, et al. STAT protein interference and suppression of cytokine signal transduction by measles virus V protein[J]. 2003, 77: 7635-7644.
    [37] Veronika M, Nicholas S, Roberto C. Receptor(SLAM[CD150])recognition and the V protein sustain swift lymphocyte-based invasion of mucosal tissue and lymphatic organs by a morbillivirus[J]. Virology, 2006, 80(12): 6084-6092.
    [38] Sharma B, Norrby E, Blirenkrone Moller M, et a. The nucleotide and deduced amino acid and sequence of the M gene of phocid distemper virus(PDV). The most conserved protein of morbilliviruses shows a uniquely close relationship between PDV and canine distemper virus[J]. Virus-Res, 1992, 23(1-2): 13-25.
    [39] Olson P, Hedhammar A, Klingeborn B, et al. Canine parvovirus infection, canine distemper and infections canine hepatitis:inclination to vaccine and antibody response in the Swedish dog population[J]. Acta Vet Sdand, 1996, 37(4): 433-443.
    [40] 汪国托,闫庆生,刘长明,等.犬瘟热病毒的结构多肽分析[J].中国兽医杂志,1995,21(12):5-7.
    [41] Orvell J, Sheshberadamn H, Norrbo E. Preparation and characterization of monoclonal antibodies directed against four structural components of canine distemper virus[J]. J Gen Virol, 1985, 66(3): 443-456.
    [42] Wild TF, Fayolle I, Beauverger P, et al. Measles virus fusion: role of the cysteine-rich region of the fusion glycoprotein[J]. J Virol, 1994, 68(11): 7546-7548.
    [43] Befwee. Measles, canine distemper and rinderpest virus statied with monoclonal antibodies[J]. J Gen Virol, 1986, 67: 1381-1392.
    [44] Obeid OE, Partrdus CD, Howard CR, et al. Protection against morbillivirus-induced encephalitis by immunization with arational designed synthernic peptide vaccine containing B- and T-cell epitopes from the fusion protein of meales virus[J]. J Gen Virol, 1995, 69(3): 1420-1428.
    [45] Barret T, Clorke D K, Evons S A, et al. The nucleotide sequence of gene encoding the F protein of canine distemper virus: a comparison of the deduced amino acid sequence with other paramyxovirus[J]. Virus Res, 1987, 8: 373-386.
    [46] Partidos CD, Steward MV. Prediction and identification of a T cell eitope in the fusion protein of measles virus immunodominant in mice and humen[J]. J Gen Virol, 1997, 1: 2099-2105.
    [47] Von Messling V, Cattaneo R. Amino-terminal precursor sequence modulates canine distemper virus fusion protein function[J]. J Virol, 2002, 76(9): 4172-4180.
    [48] Iwatsuki K, Miyashita N, Yoshida E, el al. Molecular and phylogenetic analyses of the haemagglutinin(H)proteins of field isolates of canine distemper virus from naturally infected dogs[J]. J Gen Virol, 1997, 78 (2): 373-380.
    [49] Kovamees J, Blixenkrone-Moller, Norrby E. The nucleotide and predicted amino acid sequence of the attachment protein of canine distemper virus[J]. Virus Res, 1991, 19: 223-233.
    [50] Bolt G, Jensen TD, Gottschalck E, et al. Genetic diversity of the attachment(H) protein gene of current filed isolates of canine distemper virus[J]. J Gen Virol, 1997, 78: 367-372.
    [51] Hirayama N, Senda M, Nakashima N, et al. Protective effects of monoclonal antibodies against lethal canine distemper virus infection in mice[J]. J Gen Virol, 1991, 72(11): 2827-2830.
    [52] Mochizuki M, Hashrmoto M, Hagrwura S, et al. Genotypes of canine distemper virus determined by analyses of the hemagglutinin genes of recent isolates from dogs in Japan[J]. J Clin Microbiol, 1999, 37(9): 2936-2942.
    [53] Otraudon P, Wild TF. Monoclonal antibodies against measles virus[J]. J Gen Virol, 1981, 54(2): 325-332.
    [54] Lamb RA, Mitashita N, Belsham G, et al. Paramyoxvirus fusion: a hypothesis for changes[J]. Virology, 1993, 197: 1-11.
    [55] Wild TF, Naniche D, Rabourdin C, et al. Mode of entry of morbillivirus[J]. Vet Microbiol, 1995, 44: 267-270.
    [56] Von Messling V, Zimmer G, Herrler G, et al. The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity[J]. J Virol, 2001, 75 (14): 6418-6427.
    [57] Loffier S, Lottseich F, Lanza F, et al. CD9, a tetraspan transmembrance protein renders cells susceptible to canine distemper virus[J]. J Virol, 1997, 71: 42-49.
    [58] Cosby SL, Ltons C, Rima BK, et al. The penetration of small-plague mutants during undiluted passage of canine distemper virus [J]. Intevirology, 1985, 23(3): 157-166.
    [59] 郭爱珍,陆承平.犬瘟热病毒细胞膜受体的鉴定[J].病毒学报,2000,16(2):155-157.
    [60] Namche D, Wild TF, Rabourdin CC, et al. Measles virus hemagglutinin induces down-regulation of gp57/67, a molecule involved in virus encoding[J]. J Gen Virol, 1993, 74(6): 1073-1079.
    [61] Tatsuo H, Ono N, Yanagi Y. Morbillivirus use signaling lymphocyte activation molecules(CD150) as cellular receptors[J]. J Virol, 2001, 75: 5842-5850.
    [62] Tatsuo H, Yanagi Y. The morbillivirus receptor SLAM (CD150)[J]. Microbiol Immunol, 2002, 46: 135-142.
    [63] Veronika von Messling, Numan O, Qi Zhang, et al. Nearby clusters of hemagglutinin residues sustain SLAM-dependent canine distemper virus entry in peripheral blood mononuclear cells[J]. J Virol, 2005, 79 (9): 5857-5862.
    [64] Alkhatib G, Richardsonc, Shensh. Intracellular relasing glycosylation and cell surface expression of the measles virus fusion protein encoded by a recombinant adenovirus[J]. Virology, 1988, 15: 262-270.
    [65] Horvach CM, Patorson RG, Sgange nessy MA, et al. Biological activity of paramyxovirus fusion protein: factors influencing formation of stncytia[J]. J Virol, 1992, 66: 1528-1534.
    [66] Philippe P, Christine Z, Christa W, et al. Recovery of a persistent Canine distemper virus expressing the enhanced green fluorescent protein from cloned Cdna[J]. Virus Res, 2004, 101 (2): 147-153.
    [67] 田克恭,遇秀玲,吴娜,等.犬瘟热病毒强毒株的分离与鉴定[J].畜牧兽医学报,1998,29(2):151-154.
    [68] 陈培福,郭爱珍,陆承平.犬瘟热病毒南京分离株的生物学特性鉴定[J].中国兽医学报,2000,20(3):231-234.
    [69] 熊焰,徐志文,王印,等.小熊猫犬瘟热病及病原研究[J].动物医学进展,2001,22(3):74-76.
    [70] 乔军,需庆龄,夏咸柱,等.犬瘟热病毒XJ株的分离鉴定[J].微生物学通报,2002,29(1):56-59.
    [71] 韩磊,靳兴军,郭峰虎,等.犬瘟热病毒的分离与初步鉴定[J].中国兽医杂志,2004,40(2):30.
    [72] 白泉阳,万遂如,李六金,等.犬瘟热病毒的分离及部分特性研究[J].兽医大学学报,1991,11(4):347-351.
    [73] 苏凤艳,王卓聪,宗春曲,等.水貂源犬瘟热病毒的分离鉴定[J].吉林农业大学学报,2006,28(6):674-677.
    [74] 袁小远,单虎,王志亮,等.一株水貂犬瘟热病毒的分离与鉴定[J].经济动物学报,2006,10(4):189-192.
    [75] 苏凤艳,全学俊,宗春曲,等.水貂源犬瘟热病毒F基因真核表达载体的构建及鉴定[J].经济动物学报,2007,11(1):23-26.
    [76] Camila PM. protection of dogs against canine distemper by vaccination with a canarypox virus recombinant expressing canine distemper virus fusion and hemagglutinin glycoproteins[J]. AJVR, 1997, 58(8): 833-835.
    [77] Appel MJ, Summer BA. Pathogenicity of morbillivirus for terrestual carnivores [J]. Vet Microbiol, 1995,44:187-191.
    [78] Gaskin JM. Canine distemper virus in domesticated cats and pigs[J]. Adv Enzymol Relat Areas Mol Biol, 1974,40(0):803-806.
    [79] Carpenter M A, Appel MJ. Roelke Parker M E, et al. Genetic characterization Of canine distemper virus in Serengen carnivores[J]. Vet Immunol Immunopathol. 1998, 65(2-4): 259-266.
    [80] Appel MJ, Yates RA, Foley GL, et al. Canine distemper epizootic in lions, tigers, and leopards in North Americal[J]. J Vet Diagn invest, 1994, 6(3): 277-288.
    [81] Appel MJ. Virus infections of carnivores[M]. Elsevier, 1987, 371-378.
    [82] Mainka St, Qiu X, He T, et al. Serologic survey of giant pandas(Ailuropoda melanoleuca)and domestic dogs and cats in the Wolong Reserve, China[J]. Wild Dis, 1994, 30(1): 86-89.
    [83] Svansson V, Blixenkrone Mollar M, Skirnisson K, et al. Infection studies with canine distemper virus in harbour seals[J]. Arch Virol, 1993, 131(3-4):349-359.
    [84] 何洪彬,夏咸柱,范泉水,等.小熊猫犬瘟热病毒感染的诊断[J].中国兽医学报,2000,20(5):447-449.
    [85] Driciru M, Siefert L, Prager KC, et al. A serosurvey of viral infections in lions (Panthera leo), from Queen Elizabeth National Park, Uganda[J]. J Wildl Dis, 2006, 42(3): 667-671.
    [86] 李金中,厦咸柱,邱薇,等.小熊猫等四种动物犬瘟热病毒的分离与鉴定[J].中国兽医科技,1998,28(8):8-10.
    [87] 田克恭.实验动物病毒性疾病[M].北京:农业出版社,1992.
    [88] 张兆霞,姜术霞,许剑琴.犬瘟热流行特点与诊疗[J].中国兽医杂志,2004,40(6):44-45.
    [89] 常国权,杨盛华,王新平.犬瘟热研究进展[J].中国兽医杂志,1995,21(1):40-42.
    [90] Iwatsuki K, Tokiyoshi S, Hirayama N. P, et al. Antigenic differenecs in the H proteins of canine distemper viruses[J]. J Vet M icrobiol, 2000, 71: 281-286.
    [91] 徐向明,殷俊,崔治中,等.犬瘟热病毒扬洲分离株融合蛋白F和附着蛋白H基因的序列分析[J].扬洲大学学报,2003,24(4):9-12,15.
    [92] 何洪彬,李金中,夏咸柱,等.熊猫等动物犬瘟热病毒附着蛋白基因的遗传多样性[J].病毒学报,2000,16(13):238-241.
    [93] 朱军莉,余旭平,张登祥,等.犬瘟热病毒Guizhou株血凝素基因的克隆及序列分析[J].中 国兽医学报,2006,26(1):17-20.
    [94] Harder TC, Kenter M, Vos it, et al. Canine distemper virus from diseased large field. Biological properties and phylogenetic relationship[J]. J Gen Virol, 1996, 77: 397-405.
    [95] Blixenkrone Moller M, Svansson V, Have P, et al. Studies on manifestations of canine distemper in urban dog populations[J]. Vet Microbiology, 1993, 37: 163-173.
    [96] 何洪彬,李金中,夏咸柱,等.犬瘟热病毒小熊猫株附着蛋白基因的序列分析[J].中国预防兽医学报,1999,21(6):423-427.
    [97] 何洪彬,李金中,夏咸柱,等.大熊猫犬瘟热病毒附着或血凝蛋白基因的序列分析[J].中国病毒学,2000,25(3):291-295.
    [98] Gemma T, Watari T, Akiyama K, et al. Epidemiological observation on recent outbreaks of distemper in Tokyo area[J]. Vet Med Sci, 1996, 58: 547-550.
    [99] Barrett T. Morbillivirus infections, with special emphasis on morbillivirus of carnivores[J]. Am J Vet Res, 1993, 69(1-2): 3-13.
    [100] 马坤绵.犬瘟热流行特点与控制措施[J].毛皮动物饲养,1990,4:20-21.
    [101] 袁小远,单虎,王志亮.水貂和狐犬瘟热病毒F基因的克隆与序列分析[J].经济动物学报,2005,9(3):129-131.
    [102] 耿文玉.一起由狼引起的护羊犬犬瘟热的诊治[J].当代畜禽养殖业,1999(12):7.
    [103] 史蒂芬·米尔斯.俄罗斯野生老虎发现犬瘟热病毒[J].人与自然,2005,9:14.
    [104] Muller C F, Fatzer RS, Beck K, et al. Studies on canine distemper virus persistence in the central nervous system[J]. Acta Neuropathol(Berl), 1995, 89(5): 438-445.
    [105] Meulen V, Marin S J. Genesis and maintenance of persistent infection by canine distemper virus[J]. J Gen Virol, 1976, 32: 431-440.
    [106] Zurbriggen A, Graber HU, Wagner A, et al. Canine distemper virus persistence in the nervous system is associated with noncytolytic selective virus spread[J]. J Gen Virol, 1995, 69: 1678-1686.
    [107] Plattet P, Rivals JP, Zuber B, et al. The fusion protein of wild-type canine distemper virus is a major deteminant of persistent infection[J]. Virology, 2005, 337(2): 312-326.
    [108] Moss WJ, Ryon JJ, Monze M, et al. Differential regulation ofinterleukin IL-4,IL-5,and IL-10 during measles in Zambian children[J]. J Infect Dis, 2002, (186): 879-887.
    [109] Slifka MK, Homann A, Tishon R, et al. Measles virus infection results in suppression of both innate and adaptive immune responses to secondary bacterial infection[J]. J Clin Investig, 2003, 111: 805-810.
    [110] Beckford AP, Kaschula RO, Stephen C. Factors associated with fatal cases of measles. A retrospective autopsy study[J]. SAfr Med, 1985, 68: 858-863.
    [111] Krakowkas, Ringler SS, Lewis M, et al. Immunosuppression by canine distemper virus: modulation of in vitro immunoglobulin synthesis interleukin release and prostaglandin E2 production[J]. Vet Immunol Innunopothol, 1987, 15: 181-201.
    [112] Iwatsuki K, Okita M, Ochikubo F, et al. Immunohistochemical analysis of the lymphoid organs of dogs natural infected with canine distemper virus[J]. J Comp Pathol, 1995, 113: 85-90.
    [113] Guo A, Lu C. Canine distemper virus causes apoptosis of Veto cells[J]. Vet Med B Infect Dis vet Public Health, 2000, 47(3): 183-190.
    [114] Kajita M, Katayama H, Murata T, et al. Canine distemper virus induces apoptosis through caspase-3 and -8 activation in Veto cells[J]. J Vet Med B Infect Dis Vet Public Health, 2006, 53 (6): 273-277.
    [115] 郭爱珍,陆承平.应用缺口末端标记法(TUNEL)分析犬瘟热病毒(CDV)诱导的细胞凋亡[J].南京农业大学学报,2000,23(1):71-73.
    [116] 郭爱珍,陆承平,张汇东,等.应用流式细胞术研究犬瘟热感染细胞的凋亡[J].中国兽医学报,2000,20(5):450-453.
    [117] Moro L, Martins A, Alvese, et al. Apoptosis in canine distemper[J]. Arch Virol, 2003, 148(1): 153-164.
    [118] Kumaqai K, Yamaquchi R, Uchida K, et al. Lymphoid apoptosis in acute canine distemper[J]. J Vet Sci, 2004, 66(2): 175-181.
    [119] Schobesberqer M, Summerfield A, Doheer MG, et al. Canine distemper virus-induced depletion of uninfected lymphocytes is associated with apotosis. Vet Immunol Immunopathol, 2005, 104(1-2): 33-44.
    [120] Tipold A, VandeveldeM, WittekR, etal. Partial protection and intrathecal invasion of CD8 T cells in acute canine distemper virus infection[J]. Vet microbial, 2001, 83(3): 189-203.
    [121] 张洪辉,王君玮,刘清河,等.水貂犬瘟热病的诊治[J].中国动物检疫,2002,19(5):39-40.
    [122] 张先惠.犬瘟热的发病特点及防治[J].四川畜牧兽医,2004,31(8):52-53.
    [123] 张旭秋.狐犬瘟热的防治(X)[J].黑龙江畜牧兽医,2004,10:77-78.
    [124] 郑家三,刘元.犬瘟热的临床诊断及防治[J].现代畜牧兽医,2005,4:31-33.
    [125] 刘文亚,赵荣鼎,黄俊杰.水貂犬瘟热诊断与防治报告[J].畜牧兽医杂志,1992,1:34-36.
    [126] Moro L, Martins AS, Alves CM, et al. Apoptosis in the Cerebellum of Dogs with Distemper[J]. J Vet Med B Infest Dis Vet Public Health, 2003, 50(5):221-225.
    [127] Schobesberger M, Zurbriggen A, Doherr MG, et al. Demyelination precedes oligodendrocyte loss in canine distemper virus-induced encephalitis[J]. Acta Neuropathol, 2002, 103(1): 11-19.
    [128] Vandevelde M, ZurA. Demyelination in canine diostemper virus infection: a review[J]. Acta Neuropathol, 2005, 109(1): 56-68.
    [129] Grone A, Engelhardt P, Zurbriggen A. Canine distemper virus infection: proliferation of canine footpad keratinocytes[J]. Vet Pathol, 2003, 40: 574-578.
    [130] Grone A, Doherr MG, Zurbriggen A. Up-regulation of cytokeratin expression in canine dislemper virus-infected canine footpad epidermis[J]. Veterinary Dermatol, 2004, 15(3): 168-174.
    [131] Engelhardt P, Wyder M, Zurbriggen A, et al. Canine distemper virus associated proliferation of canine footpad keratinocytes in vitro[J]. Vet Microbiol, 2005, 107(1-2): 1-12.
    [132] Koutinas AF, Baumgartner W, Tontis D, et al. Histopathology and immunohistochemistry of canine distemper virus-indueed footpad hyperkeratosis(hard Pad disease)in dogs with natural canine distemper[J]. Vet Pathol, 2004, 41(1): 2-9.
    [133] 左秀峰.犬瘟热的诊断及防治[J].中国养犬杂志,1996,7(3):12-13.
    [134] 徐在品,张登辉,鲜思美.等.犬瘟热诊断方法研究进展[J].山地农业生物学报,2004,23(1):78-82.
    [135] 吴开波,王成东,杨光友.犬瘟热实验室诊断方法研究进展[J].中国动物检疫,2006,23(3):45-48.
    [136] 程世鹏,吴威,同新华.等.狐貉犬瘟热病综合诊断技术研究[J].特产研究,1999,2:40-41.
    [137] Ducatelle R, Coussement W, Hoorers, et al. Demonstritions of canine distemper viral antigen in paraffin sections using an unabled antibody-enzyme method[J], Am J Vet Res, 1980, 41(11): 1860-1862.
    [138] 孟庆龄.犬瘟热病原、诊断与防制研究概况[J].内蒙古畜牧科学,2001,22(3):13-15.
    [139] 华国荫,刘鼎新,吴英平.犬瘟热强毒的分离与培育[J].畜禽传染病,1983,3:8-13.
    [140] Wright NG, Cornwell HJC, Thompson H, et al. Canine distemper: current concepts in laboratory and clinical diagnosis[J]. Veterinary Record, 1974, 94(5): 86-92.
    [141] Kimoto T. In vitro and in vivo properties of the virus causing natural canine distemper encephalitis[J]. J Gen Virol, 1986, 67: 487-503.
    [142] 池元斌,夏咸柱,王雪梅,等.犬瘟热病毒的静水压灭活[J].中国兽医学报,2001,21(1):35-37.
    [143] 遇秀玲,田志恭,杨怡,等.犬瘟热(CDV MD-77株感染Vero细胞的电镜观察[J].中国兽医学报,2000,20(1):22-25.
    [144] 常国权,杨盛华.用离子捕获电镜技术快速检测犬瘟热病毒[J].畜牧与兽医,1994,26(6): 243-244.
    [145] 房红莹,陆承平,马勋,等.犬瘟热的微生物学诊断研究[J].中国兽医学报,1997,17(2):148-151.
    [146] 任文陟,陈秀芬,母连志,等.犬瘟热琼脂扩散试验方法的建立及初步应用[J].中国兽医学报,1994,14(4):398-401.
    [147] 刘鼎新,华国荫,李君阁,等.用酶标SPA染色法对犬瘟热快速诊断的研究[J].家畜传染病,1986,1:22-24.
    [148] P K Gathumbi.应用过氧化物技术检查肯尼亚疑似犬瘟热[J].国外兽医学畜禽传染病,1994,14(2):47-48.
    [149] 袁书志,夏咸柱.犬瘟热荧光抗体检测方法的比较研究[J].中国兽医学报,1994,14(2):146-149.
    [150] 金鑫,鲁承,吕相哲,等.Dot—ELISA检测犬瘟热病毒抗原的研究[J].中国兽医科技,2000,30(6):21—23.
    [151] 乔贵林,夏咸柱.犬瘟热病毒抗体检洲方法的比较研究[J].中国兽医学报,1997,17(1):26-29
    [152] Appel M, Robson DS. A microneutralization test for canine distemper virus[J]. Am J Vet Research, 1973, 34(11): 1459-1463.
    [153] Noon KF, Rogul M, Binn LN, et al. Enzyme-linked antibody to canine distemper virus[J]. Am J Vet Res, 1989, 41: 605-609.
    [154] Potgieter LN, Ajidagba PA. Quantitation of canine distemper virus and antibodies by enzyme-linked innunosorbent assay using protein A and monoclonal antibody capture[J]. J Vet Diagn Inuest, 1989, 1: 110-115.
    [155] Bernard SL, Shen DT, Gotham JR. Antigen requirements and specificity of enzyme-linked innumosorbent assay for detection of canine IgG against canine distemper uviral antigens[J]. Am J Vet Res, 1982, 43: 2266-2269.
    [156] 杨敬,乌仁高娃,范薇,等.间接ELISA检测犬瘟热血清抗体方法的建立[J].动物医学进展,2005,26(11):61-64.
    [157] Blixenkrone-Moller M, Pedersen IR, Appel MJ, et al. Detection of IgM antibodies against canine distemper virus in dog an d mink sera employing enzyme linked immunosorbent assay (ELISA)[J]. J Vet Diagn Invest, 1991, 3(1): 3-9.
    [158] Latha D, geetha M, Ramadass P, et al. Evaluation of ELISA based on the conserved and functional middle region of nucleocapsid protein to detect distemper infection in dogs[J]. Vet Microbiol, 2007, 120 (3-4): 251-260.
    [159] Oglesbee M, Jackwood D, Perrine K, et al. in vitro detection of canine distemper virus mucleic acid with a virus-specific cDNA probe by dot-blot and in situ hybridization[J]. J Virol Methods, 1986, 14(3-4): 195-211.
    [160] Appel MJ. Canine distemper virus infection and encephalitis in javelias[M]. Arch Virol, 1991: 147-152.
    [161] Zurbriggen A, Muller C, Vandenelde M. In Situ hybridization of virulent canine distemper virus in brian tissue using digoxigenin-labeled prober[J]. Am J Vet Res, 1993, 54(9): 1457-1459.
    [162] Gaedke K, Zurbriggen A, Baumgartner W. In vivo and in vitro detection of canine distemper virus nucleoprotein gene with digoxigenin-labelled RNA, double-stranded DNA probes and oligonucleotides by in situ hybridization [J]. Journal of Veterinary Medicine Series B, 1997, 44(6): 329-340.
    [163] 王宏俊,丁少忠.核酸探针检测犬瘟热病毒方法的建立和初步应用[J].中国兽药杂志,2006,40(5):19-22.
    [164] Mee AP, Gordon MJ, Mayc, et al. Canine distemper virus transcripts detected in the bone cells of dogs with metaphysical osteopathy[J]. Bone, 1993, 14: 59-67.
    [165] Shin Y, Mori T, Okita, et al. Detection of canine distemper virus nucleocapsid protein gene in canine peripheral blood mononuclear cells by RT-PCR[J]. J Vet Med Sci, 1995, 57: 439-445.
    [166] 李金中,何洪彬,夏咸柱,等.犬瘟热病毒反转录聚合酶链式反应诊断方法的建立和初步应用[J].病毒学报,1999,15(2):180-184.
    [167] 李金中,夏成柱.基因序列分析确诊大熊猫的犬瘟热病毒感染[J].中国兽医学报,1999,19(5):448-450.
    [168] 何洪彬,李金中,夏咸柱,等.犬瘟热病毒野毒株H蛋白基因的序列分析[J].中国兽医学报,1999,19(4):404-407.
    [169] 乔军,孟庆玲,郭新怀,等.用反转录-聚合酶链式反应检测狐狸感染犬瘟热病毒的研究[J].辽宁畜牧兽医,2001,2:1-2.
    [170] 王兰萍,李厚达.犬瘟热病毒RT-PCR检测方法的建立与应用[J].实验动物科学与管理,2002,9(1):4-6.
    [171] 肖定福,张汇东,李文平,等.RT-PCR检测宠物犬的犬瘟热病毒[J].经济动物学报,2005,9(4):221-224.
    [172] 王凤雪,闫喜军,邵西群,等.毛皮动物犬瘟热RT-PCR方法的建立与应用[J].特产研究,2005.4:14-17
    [173] Jozwik A, Frymus T. Comparison of the immunofluorescence assay with RT-PCR and nested PCR in the diagnosis of canine distemper[J]. Vet Res Commun, 2005, 29(4): 347-359.
    [174] Saito TB, Alfieri AA, Wosiacki SR, et al. Dectection of canine distemper virus by reverse transcriptase-polymerase chain reaction in the urine of dogs with signs of distemper encephalitis[J]. Res Vet Sci, 2006, 80(1): 116-119.
    [175] Franke V, Matern B, Ackermann O, et al. The prevention of distemper in zoo animals[J]. Berl Munch Tierarztl Wothenschr, 1989, 102 (2): 56-58.
    [176] Appel MJ. Canine distemper, emerging new problems[J]. Infect Dis Bull, 1996, 1: 6.
    [177] Bush M, Montali RJ, Brownstein D, et al. Vaccine-induced canine distemper in a lesser panda[J]. J Am Vet Med Assoc, 1976, 169 (9): 959-960.
    [178] Carpenter JW, Appel MJ, Erickson RC, et al. Fatal vaccine-induced canine distemper virus infection in black-footed ferrets[J]. JAm Vet Med Assoc, 1976, 169 (9): 961-964.
    [179] Erling N. Protection against canine distemper virus in dogs after immunization with isolated fusion protein[J]. J Virol, 1986, 5: 536-541.
    [180] Obeid EO. Protection against morbillivirus-induced encephalitis by immunization with a rationally designed synthetic peptide vaccine containing B-and-T-cell epotopes from the fusion protein of measles virus[J]. J Virol, 1995, 8: 1420-1428.
    [181] Wild TF. Vaccination of mice against canine distemper virus-induced encephalitis with vaccine virus recombinants encoding measles or canine distemper virus antigens [J]. Vaccine, 1993, 11 (4): 438-444.
    [182] Taylor J. Vaccine virus recombinants expressing either the measles virus fusion or hemagglutinnin glycoprotein protect dogs against canine distemper virus challenge[J]. J Virol, 1991, 8: 4263-4274.
    [183] Taylor J. Nonrephcating viral vectors as potential vaccines, recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins[J]. Virol, 1992, 11: 321-328.
    [184] Camila P M. Protection of dogs against canine distemper by vaccination with a canarypox virus recombinant expressing canine distemper virus fusion and hemagglutinin glycoproteins[J]. AJVR, 1997, 58 (8): 833-836.
    [185] Nathalie S. Canine distemper virus DNA vaccination induces humoral and cellular immunity and protects against a lethal intracerebral challenge[J]. J Virol, 1998, 11: 8472-8476.
    [186] Yoshikawa Y, Ochikubo F, Matsubara Y, et al. Natural infection with canine distemper virusin a Japanese monkey (Macaca fuscaca) [J]. Vet Microbiol, 1989, 20 (3): 193-205.
    [187] 张德全.水貂主要疫病防制技术[J].毛皮动物饲养,1995,4:17-18.
    [188] 高华峰,信爱国,赵文华.一例犬瘟热的RT-PCR诊断[J].云南畜牧兽医,2003,4:3-4.
    [189] 宗春苗,王卓聪,王全凯,苏凤艳.狐犬瘟热病毒的分离及RT-PCR鉴定[J].经济动物学报,2006,10(4):195-197.
    [190] Kovamees J, Blixenkrone-Moller M, Norrby E, et al. The nucleotide and predicted amino acid sequence of the attachment protein of canine distemper virus[J]. Virus Res, 1991, 19(2-3): 223-233.
    [191] 李金中,夏咸柱等.犬瘟热疫苗弱毒融合蛋白穿膜区基因的序列分析[J].中国预防兽医学报,1999,21(2):107-110.
    [192] 王兰萍,李厚达.犬瘟热病毒融合蛋白融合区基因的序列分析[J].扬州大学学报,2002,23(1):13-14,17.
    [193] Hass L, martens W, Greiser-wilke I, et ah Anlysis of the haemagglutinin gene of current wild-type canine distemper virus isolate from Germany [J]. Virus Res, 1997, 48: 165-171.
    [194] Yeon-sil shin.用RT-PCR检测犬外周血液单孩细胞中犬瘟热病毒核衣壳蛋白基因[J].国外兽医学-畜牧传染病,1997,17(1):26-29.
    [195] 李金中,何洪林,夏咸柱,等.犬瘟热病毒反转录-聚合酶链式反应论断方法的建立和初步应用[J].病毒学报,1999,15(2):180-184.
    [196] J.萨姆布鲁克,DW拉赛尔著,黄增堂等译.分子克隆实验指南[M]第三版.科学出版社,北京,2002.
    [197] Norrby E, Utter G, Orvell C. Protection against canine distemper virus in dogs after immunization with isolated fusion protein[J]. J Virol, 1986, 5: 536-541.
    [198] Vries PDE, Uytdehaag FG, Osterhaus AD. Canine distemper virus immune-stimulating complexes(Iscoms)but not measles virus iscoms protect dogs against CDV infection[J]. J Gen Virol, 1988, 69: 2071-2083.
    [199] 徐向明,吉荣,崔治中,等.犬瘟热病毒OP株囊膜糖蛋白F基因片段表达产物的免疫原性[J].中国兽医学报,2003,23(3):231-233.
    [200] Sixt N, Cardoso A, Vallier A, el al. Canine distemper virus DNA vaccination induces humeral and cellular immunity and protects against a lethal intracerebral challenge[J]. J Virol, 1998, 72: 8472-8476.
    [201] Cherpillod P, Tipold A, Griotwenk M, el al. DNA vaccine an coding nucleocapsid and surface proteins of wild type canine distemper virus protects its natural host agianst distemper[J]. Vaccine, 2000, 18: 2927-2936.
    [202] Stern LB, Greenberg M, Gershoni JM, et al. The hamagglutinin of envelope protein of canine distemper virus confers cell tropism as illustrated by CDV and measles virus complementation analysis[J]. J Virol, 1995, 69: 1661-1668.
    [203] Merz D C, Seheid A, Choppin P W, el al. Importance of antibodies to the fusion glycoprotein of paramyxoviruses in the prevention of spread of infection[J]. J Exp Med, 1980, 15: 275-288.
    [204] Hirama K, Togashi K, Wakasa C, et al. Cytotoxic T-lymphocyte activity specific for hemagglutinin(H)protein of canine distemper virus in dogs[J]. J Vet Med Sci, 2003, 65: 109-112.
    [205] Martella V, Cirone F, Elia G, et al. Heterogeneity within the hemagglutinin genes of canine distemper virus (CDV) strains detected in Italy[J]. Vet Microbiol, 2006, 116(4): 301-309.
    [206] Hu A, Cattaneo R, Schwartz S, et al. Role of N—linked oligonucleotide chains in the precessing and antigenicity of measles virus haemagglutinin protein[J]. J Gen Virol, 1991, 75: 1-10.
    [207] 王兰萍,李厚达.犬瘟热病毒扬州分离株的生物学特性初步研究[J].上海实验动物科学,2002,22(2):109-111.
    [208] Lan NT, Yamaguchi R, Inomata A, et al. Comparative analyses of canine distemper viral isolates from clinical cases of canine distemper in vaccinated dogs[J]. Vet Microbiol, 2006, 115(1-3): 32-42.
    [209] Barrett T. Morbilliirus infections, with special emphasis on morbilliviruses of carnivores[J]. Vet Miorbill, 1999, 69(1-2): 3-13.
    [210] 陈武,陈洪汉,黄勉.弱毒疫苗接种导致小熊猫犬瘟热病毒感染的诊断[J].黑龙江畜牧兽医,2006,1:76-78.
    [211] 闫芳,夏咸柱,李德生,等.犬瘟热减毒疫苗对小熊猫安全性与免疫原性研究[J].病毒学报,2004,20(3):275-278.
    [212] Jacobs AA, Bergman JG, Theelen RP, et al. Compatibility of a bivalent modified-live vaccine against Bordetella bronchiseptica and CPiV, and a trivalent modified-live vaccine against CPV, CDV and CAV-2[J]. Vet Rec, 2007, 160(2): 41-45.
    [213] Bergman JG, Muniz M, Sutton D, et al. Comparative trial of the canine parvovirus, canine distemper virus and canine adenovirus type 2 fractions of two commercially available modified live vaccine[J]. Vet Rec, 2006, 159(22): 733-736.
    [214] 刘国霞,姜宇,张斌,等.动物核酸疫苗研究进展[J].动物医学进展,2005,26(9):34-36.
    [215] Suarez DL, Cherry S. The effect of eukaryotic expression vectors and adjuvants on DNA vaccines in chickens using an avian influenza model [J]. Avian Dis, 2000, 44(4): 861-868.
    [216] Horner AA, Raz E. Immunostimulatory sequence oligodeoxynucleotide-based vaccination and immunomodulation: two unique but complementary strategies for the treatment of allergic diseases[J]. J Allergy Clin Immunol, 2002, 110: 706-712.
    [217] Cho HJ, Hayashi T, Datta SK, et al. IFN-alpha beta promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines[J]. J Immunol, 2002, 168: 4907-4913.
    [218] Horner AA, Datta SK, Takabayashi K, et al. Immunostimulatory DNA-based Vaccines elicit multifaceted immune responses against HIV at systemic and mucosal sites[J]. J Immunol, 2001,167: 1584-1591.
    [219] Shoda LK, Kegerreis KA, Suarez CE, etal. Immunostimulatory CpG-modified plasmid DNA enhances IL-12, TNF-alpha, and NO production by bovine macrophages[J]. J Leukoc Biol, 2001, 70: 103-112.
    [220] 吴乃虎.基因工程原理(第二版)(下册)[M].北京:科学出版社,2002:311-314.
    [221] 魏群.生物工程技术实验指导[M].北京:高等教育出版社,2002:145-147.
    [222] 薛善.体外培养的原理与技术[M].北京:科学出版社,2001,935-936.
    [223] 周雪雁,关伟军.脂质体介导转染法原理及其研究进展[J].中国家禽,2005,27(7):43-45.
    [224] Curlee JF. Cross-species vaccination in wild and exotic animals[J]. Adv Vet Med, 1999, 41: 551-556.
    [225] 汪国托.核酸疫苗研究进展[J].中国禽业导刊,2005,22(3):37-39.
    [226] Wolff J A, Dowty ME, Jiao S, et al. Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubes and caveolae of mammalian skeletalmuscle [J]. Cell Sci, 1992, 103(4): 1249- 1259.
    [227] Srivastava IK, Liu MA. Gene Vaccines [J]. Annals of Tntemal Medicine, 2003, 138(7): 550-559.
    [228] Spier RE. Nucleic acid Vaccines[J]. Vaccine, 1995, 13: 131.
    [229] 刘玮红.核酸疫苗研究进展[J].泰山医学院学报,2006,27(2):182-184.
    [230] 舒黛廉,王慧杰,任敏.核酸疫苗研究现状[J].中国畜牧兽医,2005,32(10):43-45.
    [231] Scheerlinck JY. Genetic adjuvants for DNA vaccines[J]. Vaccine, 2001, 19(17-19): 2647-2656.
    [232] Egan MA, Israel ZR. The use of cytokines and chemokines as genetic adjuvants for plasmid DNA vaccines[J]. Clin Appl Immun Rev, 2002, 2(4-5): 255-287.
    [233] Kusakabe K, Xin KQ, Katoh H, et al. The timing of GM-CSF expression plasmid adminstration influences the Th1: Th2 response induced by an HIV-specific DNA vaccine[J]. J Immunol, 2000, 164(6): 3102-3111.
    [234] Fynan EF, Robinson HL, Webster RG, et al. Usee of DNA encoding influenza hemagglutinin as an avian influenza vaccine[J]. DNA Cell Biol, 1993, 12(9): 785-789.
    [235] Singh M, Briones M, Ott G, et al. Cationic microparticles: a potent delivery system fod DNA vaccine[J]. Proc Natl Acad Sci USA, 2000, 97(2): 811-816.
    [236] Danko I, Fritz JD, Wolff JA, et al. Pharmacological enhancement of in vivo foreign gene expression inmuscle[J]. Gene Ther, 1994, 1(2): 114-121.
    [237] 姜永萍,于康震,邓国华,等.表达H5亚型禽流感病毒HA基因的DNA疫苗免疫保护效力研究[J].中国农业科学,2004,37(7):1071-1075.
    [238] 姜秀云,牛分枝杆菌主要保护性抗原基因的克隆、表达及免疫原性研究[博士论文].2005
    [239] 闫芳,夏咸柱,扈荣良,等.犬瘟热病毒H、F、N基因试验免疫研究[J].畜牧兽医学报,2006,37(1):50-55.
    [240] 郭明明.兽用核酸疫苗的研究进展[J].畜牧与兽医,2006,38(5):57-60.
    [241] 杨汉春主编.动物免疫学[M].(第二版)中国农业大学出版社,2003年8月:375-377.
    [242] 林清华编.免疫学实验[M].湖北:武汉大学出版社,1999.5
    [243] 闫芳,夏咸柱,谢之景,等.犬瘟热病毒小熊猫株H、F和N基因的克隆与表达[J].中国兽医学报,2006,26(2):129-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700