用户名: 密码: 验证码:
几种新型电容生物传感器及复杂样品溶出伏安分析技术的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学/生物传感器的研制已成为分析化学和生物化学领域中的一个非常重要和令人感兴趣的课题。其中自组装单层膜,分子印迹技术和纳米材料在这一领域中的应用尤为引人瞩目。本文将具有高选择性的分子印迹技术和可以提供实时响应信息的灵敏的电容传感方式相结合,研制了新型的分子印迹电容传感器; 将纳米材料固载抗体和电容传感相结合,研制了新型的电容免疫传感器; 分别将多孔的自组装膜和电化学聚合膜与电沉积纳米金阵列相结合,实现了在高浓度大分子污染物存在下,用溶出伏安法对痕量铜的灵敏测定; 最后对复杂样品中痕量重金属检测进行了探索。具体地说,本论文主要开展了以下几方面的创新研究工作:
    1.将分子印迹技术和电容传感方式相结合,制备了一种新型分子印迹电容传感器,建立了测定谷胱甘肽含量的新方法。详细研究了传感器的制备和响应特性。其线性范围0.025~0.30 mmol L–1,检测限为1.25×10–3 mmol L-1。对人血清中谷胱甘肽的含量进行了直接测定,并取得了良好的结果。基于电容传感技术,建立了两步反应的动力学模型用于描述分析物与印迹位之间的特异性识别过程,并获取了相关的动力学参数。
    2.以电合成的聚巯基苯并咪唑膜(PMBI)为介电层,结合分子印迹技术,制备一种新型分子印迹电容传感器用于苯噻草胺的检测。研究了传感器的制备和特性,并讨论了识别过程的动力学特征。此电容传感器制备方法经济简便,并且适用于不同结构的各种分子,有望应用于制备测定其他除草剂的传感器。
    3.基于硫醇衍生物分子的头端基团和表面活性剂的相互反应,用电化学法定量评估了自组装单层膜在表面活性剂存在下的抑阻特性。结果表明,通过改变SAMs的表面结构,不同类型的表面活性剂可以用不同的方式来控制抑阻效应和电子传输效率。带有正电荷的表面活性剂降低了负电荷的氧化还原探针与单层膜上负电荷基团的静电斥力,通过增加双电层内的探针浓度而提高了电子传输的可逆性。中性的表面活性剂没有表现出明显的影响,而带负电荷的表面活性剂由于同号电荷的静电斥力而抑阻了探针的靠近和反应。表面活性剂与硫醇衍生物单层膜间的吸附模式,及建议的研究方法可进一步用于研究生物膜的穿透性能。
    4.首次利用纳米羟基磷灰石的生物活性和生物兼容性,发展了一种新型的抗体固载方法。结合高灵敏的电容传感方式和共价键合方法,制备一种灵敏的非标记电容免疫传感器,并建立了人转铁蛋白的测定方法。线性范围: 1~100 ng
The fabrication of the chem/biosensor is one of the most promising and interesting areas in the field of analytical chemistry and biochemistry. Especially, the applications of self-assembled monolayer, molecular imprinted technology and nano-materials are distinguished. In this thesis, two new molecularly imprinted capacitive sensors were developed by combining high selectivity molecularly imprinted technology with high sensitivity capacitive transduction. Two new capacitive immunosensors were fabricated profiting from the biocompatibility of electrochemical deposited nano-gold array and capacitive transduction. A selectively penetrated SAM and a nano-gold array were sequentially modified on the glassy carbon electrode, by sensitive stripping voltammetry, trace copper in the presence of excess level of macromolecules was determinated. The analysis of heavy mental ions in complex environmental and biological samples was explored. The main work of this thesis, which was based on the techniques mentioned above, is summarized as follows:
    1. A novel biosensor for glutathion direct detection in human serum was proposed by combination of capacitive transduction and molecularly imprinting technique. A two-step kinetic model was successfully derived to describe the recognition process between analyte and imprint sites by capacitive approach. The prospects of future development of this method include further used for the estimation of kinetic and thermodynamic parameters in the MIP recognition process.
    2. A new artificial receptor layer was electrosynthesized on the gold electrode to fabricate a capacitive chemosensor. Based on molecular imprinting technique and capacitive transduction, the sensor was applied for herbicide detection. The MIP-modified electrode was selective to mefenacet among other anilide herbicide, and it is applicable to direct mefenacet sensing. Non-MIP-modified electrodes did not show selective response to mefenacet. MIPs proved to be effective as a molecular-recognition element of a chemosensor based on capacitive transduction of the recognized analyte. The preparation of MIPs is simple and low-cost and applicable to various molecules with different structure. The combination of molecular imprinting technique and capacitive
    transduction will provide simple, specific, and inexpensive sensing systems. This method can be expected for further applications to other herbicides. 3. The barrier properties and electron transfer of self-assembled thiol derivative monolayer modified electrodes in the presence of different surfactants were quantitatively investigated by seriate electrochemical experiments. It was found that by changing the surface structure of SAMs, different surfactants could regulate the barrier properties and electron-transfer efficiency in different ways. A positively charged surfactant lowers the electrostatic repulsion between the negative redox probes and negatively charged surface groups of the monolayer, enhancing the reversibility of electron transfer by virtue of increasing the redox probe concentration within the electric double-layer region. A neutral surfactant shows no significant effect, while a negative surfactant hinders the access and reaction of a redox probe by an electrostatic repulsion of same-sign charges. The adsorption model between the surfactant and the thiol derivative monolayers and the suggested methods can be further used to study the penetration property of biomembranes. 4. A new antibody immobilization strategy was successfully developed for the fabrication of a label-free capacitive immunosensor. Based on electrodeposition of nanometer-sized bioactive hydroxyapatite, covalently coupled with DS and capacitive transduction, the sensor was applied for human transferrin detection. The fabrication and the specificity of the immunosensor were discussed in detail. Compared with traditional immunoassays, the merit of this approach is that it achieved the real-time monitoring the antibody-antigen interaction and omitted the labeling procedure to simplify the analysis process. The immobilization strategy developed in the present work can be applied for the fabrication of other specific immunosensor. 5. An alumina sol-gel-derived ultrathin film was modified on the gold electrode surface followed by an electrochemical deposited nano-gold array. Anti-human transferrin was further immobilized on the nano-gold array to fabricate a novel capacitive immunosensor. 6. A sensitive and convenient voltammetric approach was developed for trace copper determination free from macromolecule interferences using a doubly
    modified GCE. After successively modified with a direct electrochemically deposited Au nanocrystals array and a spontaneously adsorbed MES monolayer film, the resulting GCE achieved a high sensitivity and a large linear response range in the determination of trace copper, even the concentration of coexisting model contaminants (Tween 80 and BSA) reached 500 ppm. Satisfied results were obtained in the detection of copper in the metallurgic wastewater sample. 7. A sensitive and convenient voltammetric approach was developed for trace copper (II) determination freeing from macromolecular interferences at PMBI film/Au nanocrystals modified GCEs. After successively modified with a electrodeposited Au nanocrystals array and a porous PMBI film, the resulting GCE achieved a high sensitivity and a large linear response range in the determination of trace copper, even the concentration of coexisting model contaminants (BSA and Tween 80) reached 500 ppm. The described method provided an alternative choice for the determination of trace copper in the analysis of complex environmental and biological samples by stripping voltammetry.
引文
[1] Pearson J E, Gill A, Vadgama P, Analytical aspects of biosensors. Ann. Clin. Biochem. 2000, 37:119–145
    [2] 杨秀荣,汪尔康.科学发展报告.北京,科学出版社1998:67–71
    [3] Gopel. W.从电子鼻到生物电子鼻:人鼻和MOSES人工鼻的嗅觉感受, 化学传感器,1998,18(4):2–20
    [4] Ulman A. Formation and structure of self-assembled monolayers. Chem.Rev., 1996, 96: 1533–1554
    [5] 方程,周性尧. 自组装膜研究进展及其在传感器技术中的应用. 分析科学学报, 2003, 19: 81–85
    [6] Ulman A. Self-assembled monolayers of thiols. San Diego: Academic press, 1998, 278
    [7] Wink T, Zuilen S J, Bult A, et al. Self-assembled monolayers for biosensors. Analyst, 122: 43R–50R
    [8] Harris A L, Chidsey C E D, Levinos N J, et al. onolayer vibrational spectroscopy by infrared-visible sum generation at metal and semiconductor surfaces. Chem. Phys. Lett., 1987, 141: 350–356
    [9] Laiho T, Leiro J A, Lukkari J. XPS study of irradiation damage and different metal–sulfur bonds in dodecanethiol monolayers on gold and platinum surfaces. Applied Surface Science, 2003, 212–213: 525–529
    [10] Hahner G, Woll C, Buck M, et al. Investigation of intermediate steps in the self-assembly of n-alkanethiols on gold surfaces by soft x-ray spectroscopy. Langmuir, 1993, 9: 1955–1958
    [11] Niu L, You T, Gui J Y, et al. EQCM Characterization of Self-Assembled Kinetics of 4-Pyridyl Hydroquinone at Pt Surface and Its Ion Transfer in Electrochemical Redox. Electroanalysis, 1999, 11: 1112–1115
    [12] Bain C D, Troughton E B, Tao Y T, et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc., 1989, 111: 321–335
    [13] Thomas R C, Sun L, Crooks R M, et al. Real-time measurements of the gas -phase adsorption of n–alkylthiol mono–and multilayers on gold. Langmuir, 1991, 7: 620–622
    [14] Cheng J, Saghi–Szabo G, Tossel J A, et al. Modulation of Electronic Coupling through Self–Assembled Monolayers via Internal Chemical Modification. J. Am. Chem. Soc., 1996, 118: 680–684
    [15] Yamada R, Uosaki K. In Situ Scanning Tunneling Microscopy Observation of the Self-Assembly Process of Alkanethiols on Gold (111) in Solution. Langmuir, 1998, 14: 855–861
    [16] Chailapakul O, Sun L, Xu C, et al. Interactions between organized, surface -confined monolayers and vapor-phase probe molecules. 7. Comparison of self -assembling n-alkanethiol monolayers deposited on gold from liquid and vapor phases. J. Am. Chem. Soc., 1993, 115: 12459–12467
    [17] Sellers H., Ulman A, Y. Shnidman, et al. Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. J. Am. Chem. Soc., 1993, 115: 9389–9401
    [18] Finklea H O, Avery S, Lynch M. Blocking Oriented Monolayers of Alkyl Mercap -tans on Gold Electrodes. Langmuir, 1987, 3: 409–413
    [19] Hatchett D W, Uibel R H, Stevenson K J, et al. Electrochemical Measurement of the Free Energy of Adsorption of n-Alkanethiolates at Ag(111). J. Am. Chem. Soc., 1998, 120: 1062–1069
    [20] Nuzzo R G, Dubois L H , Allara D L. Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J. Am. Chem. Soc., 1990, 112: 558–569
    [21] 侯士峰,方惠群,陈洪渊.聚电解质多层有序膜电极的生成及其电化学特性. 高等学校化学学报.1997, 18(12): 1949–1952
    [22] Chidsey C E D, Loiacono D N. Chemical functionality in self-assembled monolayers: structural and electrochemical properties. Langmuir, 1990, 6: 682– 691
    [23] Shimazu K, Yagi I, Sato Y. In situ and dynamic monitoring of the self-assembling and redox processes of a ferrocenylundecanethiol monolayer by electrochemical quartz crystal microbalance. Langmuir, 1992, 8: 1385–1387
    [24] Kondo T, Takechi M, Sato Y. Adsorption behavior of function -alized ferrocenylalkane thiols and disulfide onto Au and ITO and electrochemical properties of modified electrodes: Effects of acyl and alkyl groups attached to the ferrocene ring. J. Electroanal. Chem., 1995, 381: 203–209
    [25] Collard D M, Fox M A. Use of electroactive thiols to study the formation and exchange of alkanethiol monolayers on gold. Langmuir, 1991, 7: 1192–1197
    [26] Chidsey C E D. Free energy and temperature dependence of electron transfer at the metal electrolyte interface. Science.1991, 251: 919–922
    [27] Smalley J F, Feldberg S W, Chidsey C E D, et al. The kinetics of electron transfer through ferrocene-terminated alkanethiol monolayers on gold. J. Phys. Chem., 1995, 99: 13141–13149
    [28] Chidsey C E D, Bertozzi C R, Putvinski T M, et al. Coadsorption of ferrocene -terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers. J. Am. Chem. Soc., 1990, 112: 4301–4306
    [29] Wang J, Wu H, Angnes L. On-line monitoring of hydrophobic compounds at self-assembled monolayer modified amperometric flow detectors. Anal. Chem., 1993, 65: 1893–1896
    [30] Liu Z, Li J, Dong S, et al. Improvements in the selectivity of electrochemical detectors for liquid chromatography and flow injection analysis using the self-assembled n-alkanethiol monolayer-modified au electrode. Anal. Chem., 1996, 68: 2432–2436
    [31] Takehara K, Takemura H, Yasushi I. Electrochemical studies of the terminally substituted alkanethiol monolayers formed on a gold electrode: Effects of the terminal group on the redox responses of Fe(CN)3?6, Ru(NH3)3+6 and ferrocenedimethanol. Electrochim. Acta., 1994, 39: 817– 822
    [32] Amihood D, Eugenii K, Tao G L, et al, Photochemically-, Chemically-, and pH-Controlled Electrochemistry at Functionalized Spiropyran Monolayer Electrodes. Langmuir, 1997, 13: 1783–1790
    [33] Malem F, Mandler D. Self-assembled monolayers in electroanalytical chemistry: application of .omega.-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid. Anal. Chem., 1993, 65: 37– 41
    [34] Peng Z, Dong S. Formation of a Self-Assembled Monolayer of 2-Mercapto-3–n-octylthiophene on Gold. Langmuir, 2001, 17: 4904–4909
    [35] Turyan I, Mandler D. Self-assembled monolayers in electroanalytical chemistry: Application of omega-mercaptocarboxylic acid monolayers for electrochemical determination of ultralow levels of cadmium (II). Anal. Chem., 1994, 66: 58–63
    [36] Rojas M T, Koeniger R, Stoddart J F, et al. Supported Monolayers Containing Preformed Binding Sites. Synthesis and Interfacial Binding Properties of a Thiolated beta.-Cyclodextrin Derivative. J. Am. Chem. Soc., 1995, 117: 336– 343
    [37] Maeda Y, Fukuda T, Yamamoto H, et al. Regio-and Stereoselective Complexation by a Self-Assembled Monolayer of Thiolated Cyclodextrin on a Gold Electrode. Langmuir, 1997, 13: 4187–4189
    [38] Rojas M T, Kaifer A E. Molecular recognition at the electrode-solution interface. Design, self-assembly, and interfacial binding properties of a molecular sensor J. Am. Chem. Soc., 1995, 117: 5883-5884
    [39] Fuhrhop J H, Bedurke T, Gnade M, et al. Hydrophobic Gaps of Steroid Size in a Surface Monolayer Collect 1,2-trans-Cyclohexanediol and Glucose from Bulk Water. Langmuir, 1997, 13: 455 -459
    [40] Hickman J J, Ofer D, Laibinis P E, et al. Molecular Self-Assembly of 2-Terminal, Voltammetric Microsensors with Internal References. Science, 1991, 252 (5006): 688–691
    [41] Steinberg S, Rubinstein I. Ion-selective monolayer membranes based upon self-assembling tetradentate ligand monolayers on gold electrodes. 3. Application as selective ion sensors. Langmuir, 1992, 8: 1183–1187
    [42] Sun L, Johnson B, Wade T, Crooks R M. Selective electrostatic binding of ions by monolayers of mercaptan derivatives adsorbed to gold substrates. J. Phys. Chem., 1990, 94: 8869–8871
    [43] Jones T A, Perez G P, Johnson B J, et al. Interactions between Organized, Surface-Confined Monolayers and Liquid-Phase Probe Molecules. 3. Fundamental Aspects of the Binding Interaction between Charged Probe Molecules and Organomercaptan Monolayers. Langmuir, 1995, 11: 1318 -1328
    [44] Cheng Q, Brajter-Toth A.Permselectivity and High Sensitivity at Ultrathin Monolayers. Effect of Film Hydrophobicity. Anal. Chem., 1995, 67: 2767-2775
    [45] Menekhem Z, Tien H T. Formation of a bilayer lipid membrane on rigid supports: an approach to BLM-based biosensors. Biosensors & Bioelectronics, 1991, 6: 37–42
    [46] Willner I, Lion-Dagan M, Marx-Tibbon S, et al. Bioelectrocatalyzed Ampero -metric Transduction of Recorded Optical Signals Using Monolayer-Modified Au-Electrodes. J. Am. Chem. Soc., 1995, 117: 6581–6592
    [47] Lorenzo E, Sonchez L, Pariente F, et al. Thermodynamics and kinetics of adsorption and electrocatalysis of NADH oxidation with a self-assembling quinone derivative. Anal. Chim. Acta, 1995, 309: 79–88
    [48] Thomas L, Wolfgang S, Schmidt H L. Direct electrocatalytical H2O2 reduction with hemin covalently immobilized at a monolayer-modified gold electrode. J. Electroanal. Chem., 1995, 395: 341–344
    [49] Luzi E, Minunni M, Tombelli S, et al. New trends in affinity sensing: aptamers for ligand binding. Trends in Anal. Chem., 2003, 22: 810–818
    [50] Gooding J J, Hibbert D B. The application of alkanethiol self-assembled m onolayers to enzyme electrodes. Trends in Anal. Chem., 1999, 18: 525–533
    [51] Jose H, Roberto E, Ernesto J, et al. Layer-by-Layer Self -Assembly of Glucose Oxidase with a Poly (allylamine) ferrocene Redox Mediator. Langmuir, 1997, 13: 2708–2716
    [52] Monique A M, Robert A L. Fabrication of a mediated glucose oxidase recessed microelectrode for the amperometric determination of glucose. J. Electroanal. Chem., 1996, 414: 235– 246
    [53] Creager S E, Olsen K G. Self-assembled monolayers and enzyme electrodes: Progress, problems and prospects. Anal. Chim. Acta., 1995, 307: 277–289
    [54] Patolsky F, Tao G, Katz E. C60-mediated bioelectro-catalyzed oxidation of glucose with glucose oxidase. J. Electroanal. Chem., 1998, 454: 9–13
    [55] Mabrouk P A. Direct Electrochemistry for the Imidazole Complex of Microperoxidase-11 in Dimethyl Sulfoxide Solution at Naked Electrode Substrates Including Glassy Carbon, Gold, and Platinum. Anal. Chem., 1996, 6: 189 -191
    [56] Zahavy E, Willner I. Photoinduced Electron Transfer in Eosin-Modified Co(II)-Protoporphyrin IX Reconstituted Myoglobin and -or β-Hemoglobin Subunits: Photocatalytic Transformations by the Reconstituted Photoenzymes. J. Am. Chem. Soc, 1996, 118: 12499–12514
    [57] Li J, Yan J, Deng Q, et al. Viologen-thiol self-assembled monolayers for immobilized horseradish peroxidase at gold electrode surface. Electrochim. Acta., 1997, 42: 961–967
    [58] Narvaez A, Dominguez E, Katakis I, et al. Microperoxidase-11-mediated reduction of hemoproteins: electrocatalyzed reduction of cytochrome c, myoglobin and hemoglobin and electrocatalytic reduction of nitrate in the presence of cytochrome-dependent nitrate reductase. J. Electroanal. Chem., 1997, 430: 227–233
    [59] Willner I, Lapidot N, Riklin A, et al. Electron-Transfer Communication in Glutathione Reductase Assemblies: Electrocatalytic, Photocatalytic, and Catalytic Systems for the Reduction of Oxidized Glutathione. J. Am. Chem. Soc., 1994, 116: 1428–1441
    [60] Riklin A, Willner I. Glucose and Acetylcholine Sensing Multilayer Enzyme Electrodes of Controlled Enzyme Layer Thickness. Anal. Chem., 1995, 67: 4118–4126
    [61] Kinnear K T, Monbouquette H G. Direct electron transfer to Escherichia coli fumarate reductase in self-assembled alkanethiol monolayers on gold electrodes. Langmuir, 1993, 9: 2255–2257
    [62] Shoham B, Migron Y, Riklin A, et al. A bilirubin biosensor based on a multilayer network enzyme electrode. Biosens. Bioelectron., 1995, 10: 341–352
    [63] Willner I, Riklin A. Electrical. Communication between Electrodes and NAD(P) -Dependent Enzymes Using Pyrroloquinolinequinone Enzyme Electrodes in a Self-Assembled Monolayer Configuration: Design of a New Class of Amperometric Biosensors. Anal. Chem., 1994, 66: 1535–1539
    [64] Hoshi T, Anzai J, Osa T. Controlled Deposition of Glucose Oxidase on Platinum Electrode Based on an Avidin/Biotin System for the Regulation of Output Current of Glucose Sensors. Anal. Chem., 67: 770–774
    [65] He P, Ye J, Fang Y, et al. Self-assembled biotinylated disulfide derivative monolayer on gold electrode for immobilizing enzymes. Talanta, 1997, 44: 885 –890
    [66] Sun J J, Fang H Q, Chen H Y. Immobilization of horser –adish peroxidase on a self-assembled monolayer modified gold electrode for the detection of hydrogen peroxide. Analyst, 1998, 123: 1365–1366
    [67] Kagan Kerman, Dilsat Ozkan, Pinar Kara, et al. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Anal. Chim. Acta., 2002, 462: 39–47
    [68] Pang D W, Abru?a H D. Interactions of Benzyl Viologen with Surface-Bound Single-and Double-Stranded DNA. Anal. Chem., 2000, 72: 4700–4706
    [69] Pang D W, Zhang M, Wang Z L, et al. Modification of glassy carbon and gold electrodes with DNA. J. Electroanal. Chem., 1996, 403: 183–187
    [70] Salié G, Bartels K. Partial charge transfer and adsorption at metal electrodes. The underpotential deposition of Hg (I), Tl (I), Bi (III) and Cu (II) on polycrystalline gold electrodes. Electrochim. Acta., 1994, 39: 1057–1065
    [71] Oyamatsu D, Kuwabata S, Yoneyama H. Underpotential deposition behavior of metals onto gold electrodes coated with self-assembled monolayers of alkanethiols. J. Electroanal. Chem., 1999, 473: 59–67
    [72] 170Nishizawa M, Sunagawa T, Yoneyama H. Underpotential deposition of copper on gold electrodes through self-assembled monolayers of propanethiol. Langmuir, 1997, 13: 5215–5217
    [73] Jennings G K, Laibinis P E. Underpotentially deposited metal layers of silver provide enhanced stability to self-Assembled alkanethiol monolayers on gold. Langmuir, 1996, 12: 6173–6175
    [74] Jennings G K, Laibinis P E. Self-Assembled n-Alkanethiolate Monolayers on Underpotentially Deposited Adlayers of Silver and Copper on Gold. J. Am. Chem. Soc., 1997, 119: 5208–5214
    [75] Oyamatsu D, Nishizawa M, Kuwabata S, et al. Underpotential Deposition of Silver onto Gold Substrates Covered with Self-Assembled Monolayers of Alkanethiols To Induce Intervention of the Silver between the Monolayer and the Gold Substrate. Langmuir, 1998, 14: 3298–3302
    [76] Hagenstr?m H, Esplandiú M J, Kolb D M. Functionalized Self-Assembled Alkanethiol Monolayers on Au (111) Electrodes: 2. Silver Electrodeposition. Langmuir, 2001, 17: 839–848.
    [77] Hagenstr?m H, Schneeweiss M A, Kolb D M. Modification of a Au(111) Electrode with Ethanethiol. 2. Copper Electrodeposition. Langmuir, 1999, 15: 7802–7809
    [78] Adzic R R. Advances in Electrochemistry and Electrochemical Engineering, Wiley, New York, 13(1984):159
    [79] Markovich I, Mandler D. Disorganised self-assembled monolayers (SAMs): the incorporation of amphiphilic molecules.Analyst, 2001, 126: 1850–1856
    [80] Kongkanand A, Kuwabata S. Oxygen reduction at silver monolayer islands deposited on gold substrate. Electrochemistry Communications, 2003, 5: 133 –137
    [81] Oyamatsu D, Kanemoto H, Kuwabata S, et al. Nanopore preparation in self-assembled monolayers of alkanethiols with use of the selective desorption technique assisted by underpotential deposition of silver and copper. J. Electroanal. Chem., 2001, 497: 97–105
    [82] Arrigan D W M, Bihan L L, Pickup M J. Apparent enhanced underpotential voltammetry of lead at a spontaneously adsorbed monolayer-coated gold electrode. Analyst, 1999, 124: 1797–1802
    [83] Pauling L. A theory of the structure and process of formation of antibodies. J. Am. Chem. Soc., 1940, 62 (16): 2643–2657
    [84] Dickey F H. The preparation of specific adsorbents. Proc. Natl. Acak. Sci. USA., 1949, 35 (3): 227–229
    [85] Wulff G, Sarhan A. über die anwendung von enzyme-analogous gebauten polymeren zur recemattrennung. Angew. Chem., 1972, 84 (3): 364–367
    [86] Vlatakis G, Andersson L I, Muller R. Drug assay using antibody mimics made by molecular imprinting. Nature, 1993, 361 (4): 645–655
    [87] Piletsky S A, Piletskaya E V, Elgersma A V. Atrazine sensing by molecularly imprinted membranes. Biosens. Bioelectron., 1995, 10 (6): 959–964
    [88] Kriz D, Mosbach K. Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer. Anal. Chim. Acta., 1995, 300 (1): 71–75
    [89] Cheong S H, Rachkov A, Kpark J. Synthesis and binding properties of a noncovalent molecularly imprinted testosterone-specific polymer. J. Polym. Sci. A Polym Chem., 1998, 36 (13): 1725–1732
    [90] Panasyuk T L, Mirsky V M, Piletsky S A, Wolfbeis O S.Electropolymerized Molecularly Imprinted Polymers as Receptor Layers in Capacitive Chemical Sensors. Anal. Chem. 1999, 71: 4609–4613
    [91] Dario K, Ramstroem O, Svensson A, et al. A biomimetic sensor based on a molecularly imprinted polymer as a recognition element combined with fiber-optic tetection. Anal. Chem., 1995, 67 (11): 2142–2144
    [92] Raphael L, McNiven S, Sergey A, et al. Optical detection of chloramphenicol using molecularly imprinted polymers. Anal. Chem., 1997, 69: 2017-2021
    [93] Amanda L J, Manuel O, George M M. Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent soman in water. Anal. Chem., 1999, 71 (2): 373–378
    [94] Amanda L J, Yin R, Janet L J. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water. Analyst., 2001, 126 (7): 798–802
    [95] Wang W H, Wei W, Macht M H, et al. Structural studies of metallic glass ZrTiCuNiBe alloy by electron diffraction intensity analysis. Appl. Phys. Lett., 2000, 80 (7): 793–798
    [96] Tan Y G, Nie L H, Yao S Z. A piezoelectric biomimetic sensor for aminopyrine with a molecularly imprinted polymer coating. Analyst., 2001, 126 (6): 664–670
    [97] Tan Y G, Yin F, Liang C D,et al. A study of a new TSM bio-mimetic sensor using a molecularly imprinted polymer coating and its application for the determination of nicotine in human serum and urine. Bioelectrochem, 2001, 53 (1): 141–148
    [98] Tan Y G, Zhou Z L, Wang P, et al. A study of a bio-mimetic recognition material for the BAW sensor by molecular imprinting and its application for the determination ofparacetamol in the human serum and urine. Talanta, 2001, 55 (3): 337–347
    [99] Franz L D, Hayden O, Konstantinos P H. Synthetic receptors as sensor coatings for molecules and living cells. Analyst, 2001, 126 (7): 766–771
    [100] Hong-Seok J, McNiven S, Ikebukuro K, et al. Selective piezoelectric odor sensors using molecularly imprinted polymers. Anal. Chim. Acta., 1999, 390 (1): 93–100
    [101] Kobayashi T, Yasuhiro Murawaki Y, Puchalapalli S R, et al. Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance. Anal. Chim. Acta, 2001, 435 (1): 141–149
    [102] Dickert F L, Forth P, Lieberzeit P, et al. Molecularly imprinted polymer-coated quartz crystal microbalance. Fresenius J. Anal. Chem., 1998, 360 (7): 759–764
    [103] Edward P C L, Fafara A, Victoria A V, et al. Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and xanthine. Can. J. Chem./Rev. Can. Chim., 1998, 76 (3): 265–273
    [104] Raymer M L. Agouron pharmaceuticals, pfizer global research and development. Nature, 1993, 361 (4): 645–652
    [105] Karsten H K, Dzgoev A, Mosbach K.Assay system for the herbicide 2, 4-dichlorophen-oxyacetic acid using a molecularly imprinted polymer as an artificial recognition element. Anal. Chem., 1998, 70 (6): 628–631
    [106] Ramstr6m O, Lei Y, Mosbach K. Artificial antibodies to corticosteroids prepared by molecular imprinting. Chem. Biol., 1996, 3 (4): 471–477
    [107] Andersson L I, Nicholls I A, Mosbach K. Antibody mimics obtained by noncovalent molecular imprinting. Proc. Natl. Acad. Sci. USA, 1995, 92(22):4788–4791
    [108] Takeshita M, Shinkai S. Recent topics on functionalization and recognition ability of calixarenes: The third host molecule. Bull Chem. Soc. Japn., 1995, 68 (9): 1088–1097
    [109] Wulff G, Vesper W. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates. Makromol. Chem., 1977, 178 (13): 2799–2816
    [110] 王进防,刘学良,王俊德. 同时烙印手性分子固定相. 分析化学,2000, 28 (11): 1531–1537
    [111] Sabourin L, Richard J A, Mosbach K, et al.Molecularly imprinted polymer combinatorial libraries for multiple simultaneous chiral separations. Anal. Commun., 1998, 35 (3): 285–288
    [112] Wang J F, Zhou L M, Liu X L. Simultaneous chiral separation using a combinatorial molecular imprinting phase. Chin. Chem. Lett., 2000, 11 (1): 65–68
    [113] Karsten H. Molecularly imprinted polymers in analytical chemistry. Analyst., 2001, 126 (5): 747–756
    [114] 周杰,何锡文.分子模板化合物在分析化学中的应用.分析测试学报,1998,17(1):87–89
    [115] 赖家平,何锡文,郭洪声.分子印迹技术的回顾与展望.分析化学,2001,29(7):836–840
    [116] 苏立强,刘学良,王俊德.分子烙印聚合物固定相分离咖啡因和茶碱的研究.高等学校化学学报,2001,22(7):1122–1128
    [117] 孟子晖,王进防,周良模.球形分子烙印聚合物分离立体异构体.色谱,1999,17 (4):323–326
    [118] 周杰,王善伟,郭洪声.原位分子印迹法制备的连续棒状模板聚合物的手性识别.分析化学,2000,28(3):296–240
    [119] Kempe M. Antibody-mimicking polymers as chiral stationary phases in HPLC. Anal. Chem., 1996, 68 (14): 1948–1953
    [120] Scott M, Yokobayashi Y, Hwan Cheong S. Enhancing the selectivity of molecularly imprinted polymers. Chem. Lett., 1997, 12 (10): 1297–1298
    [121] Andrew G M, Mosbach K. Molecularly imprinted polymer beads:Suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem., 1996, 68 (21): 3769–3774
    [122] Hosoya K, Yoshizako K, Shirasu Y, et al. Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition. J. Chromatogr. A, 1996, 728 (1–2): 139
    [123] Zhong M, Susan M L. Tubular-wire dual electrode for detection of thiols and disulfides by capillary electrophoresis/electrochemistry. Anal. Chem., 1999, 71 (2): 248–255
    [124] Schweitz L, Andersson L I, Nilsson S. Molecular imprint-based stationary phases for capillary electrochromatography. J. Chromatogr. A, 1998, 817 (1-2): 5–13
    [125] Lin J M, Nakagama T, Katsumi U, et al. Molecularly imprinted polymer as chiral selector for enantioseparation of amino acids by capillary gel electrophoresis. Chromatographia, 1996, 43 (5): 585–591
    [126] Nilsson K, Lindell J, Norrl6w O, et al. Imprinted polymers as antibody mimetics and new affinity gels for selective separations in capillary electrophoresis. J. Chromatogr. A, 1994, 680 (1): 57–61
    [127] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with predetermined selectivity obtained through molecular imprilltdng. Anal. Chem., 1997, 69 (7): 1179–1183
    [128] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics. J. Chromatogr. A, 1997, 792 (2): 401–409
    [129] Braggemann O, Freitag R, Michael J W, et al. Comparison of polymer coatings of capillaries for capillary electrophoresis with respect to their applicability to molecular imprinting and electrochromatography. J. Chromatogr. A, 1997, 781 (1-2): 43–53
    [130] Theode B R M, Rokus A D Z, et al. Spherical molecularly imprinted polymer particles: A promising tool for molecular recognition in capillary electrokinetic separations. Electrophoresis, 1998, 19 (11): 2055–2060
    [131] Michaela W, Edelmiro G, Howarth J, et al. Separation of the enantiomers of propranolol by incorporation of molecularly imprinted polymer particles as chiral selectors in capillary electrophoresis. Anal. Commun., 1997, 34 (1): 119–122
    [132] Zander A, Findlay P, Thomas R, et al. Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid-phase extraction. Anal. Chem., 1998, 70 (16): 3304–3314
    [133] Wayne M M, Edward P C L, Sellergren B. Determination of nicotine in tobacco by molecularly imprinted solid phase extraction with differential pulsed elution. Anal. Commun., 1999, 36 (2):217–220
    [134] Pichon V, Bouzige M, Midge C. Immunosorbents:natural molecular recognitio, materials for sample preparation of complex environmental matrices. Trend: Anal. Chem., 1999, 18 (2): 219–235
    [135] Marianne S, Jeppsson-Wistrand U, Mats O M, et al. Induced stereo-and substrate selectivity of bioimprinted .alpha.-chymotrypsin in anhydrous organic media. J. Am. Chem. Soc., 1991, 113 (24): 9366– 9368
    [136] 张立德,牟季美. 纳米材料和纳米结构. 北京:科学出版社,2001
    [137] Bangs L B. New developments in particle-based immonoassays: introduction. Pure Appl. Chem., 1996, 68:1873–1879
    [138] Hornyak G L, Patrissi C J, Martin C R. Fabrication, characterization and optical properties of gold-nanoparticle/porous-alumina composites: the non-scatteringmaxwell-garnett limit. J. Phys. Chem. B, 1997, 101:1548–1555
    [139] Simo J M, Joven J, Cliville X, et al. Automated latex agglutination immunoassay of serum ferritin with a centrifugal analyzer. Clin. Chem., 1994, 40:625–629
    [140] Medcalf E A, Newman D J, Gorman E G, et al. Rapid, robust method for measuring low concentrations of albumin in urine. Clin. Chem., 1990, 36:446–449
    [141] Elghanian R, Storhoff J J, Muic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277:1078–1081
    [142] Hahn P F, Stark D D, Lewis J M, et al. First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology, 1990, 175:695–700
    [143] ForstingM, ReithW, D6rflerA, et al. MRI in acute cerebral ischemia: perfusion imaging with superparamagnetic iron oxide in a rat model. Neuroradiology, 1994, 36:23–26
    [144] BendayanM. Practical electron microscopy, in Hunter Eeds. New York: Cambridge University Press, 1993, 71–92
    [145] Crumbliss A L, Perine S C, Stonehuerner J, et al. Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnology and Bioengineering, 1992, 40:483–490
    [146] Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. Journal of the American Chemical Society, 1996, 118:l154–1157
    [147] Weissman J M, Sunkara H B, Tse A S, et al. Thermally switchable periodicities and diffraction from novel mesocopically ordered materials. Science, 1996, 274:959–960
    [148] Freeman RG, Grabar KC, Allison KJ et al. Self-assembled metal colloid monolayers: an approach to SERS substrates. Science, 1995, 267:1629-1632
    [149] Jin Y D, Kang X F, Song Y H, et al. Controlled nucleation and growth of surface-confined gold nanoparticles on a (3-aminopropyl) trimethoxysilane-modified glass slide:a strategy for SPR substrates. Anal. Chem., 2001, 73:2843–2849
    [150] Lyon L A, Musick M D, Natan M J. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem., 1998, 70:5177–5183
    [151] 赵红秋,林琳,唐季安等. 林业. 利用纳米金颗粒增强 DNA 探针在传感器 上的固定程度和识别能力. 科学通报,46(4).292–296
    [152] Singh A K, Flounders A W, Volponi J V, et al. Development of sensors for direct detection of organophosphates. Part I' Immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosen. Bioelectr., 1999, 14:703–713
    [153] Cai H, Xu C, He P G, et al. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J. Electroanal. Chem., 2001, 510(1-2):78–85
    [154] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 32:607–609
    [155] 董绍俊,车广礼,谢远武. 化学修饰电极. 北京:科学出版社,2003, 625
    [156] Gu H Y, Yu A M, Chen H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J. Electroanal. Chem., 2001, 516:119–126
    [157] Zhao Y D, Zhang W D, Cheng H, et al. Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powdez microelectrode. Anal. Sci., 2002, 18:939–941
    [158] Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based or horseradish peroxidase-labelled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Anal. Chim. Acta 1999, 391:73–82
    [159] Evans D F, Wennerstrom H. The colloid domain, where physics, chemistry and technology meet. New York:VCH, 1994
    [160] 朱民,刘敏,施国跃等. Nafion/Au 溶胶自组装微铂传感器的研究及其在心肌细胞中 NO 水平测定中的应用. 高等学校化学学报 2003, 24 (2):245–248
    [161] Lvov Y, Munge B, Giraldo O, et al. Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption. Langmuir 2000, 16:8850–8857
    [162] Gimeno Y, Hernandez Creus A, Gonzalez S, et al. Preparation of l00-160-nm-sized branched palladium islands with enhanced electrocatalytic properties on HOPG. Chemistry of Materials, 2001, 13:1857–1864
    [163] Shen Y, Liu J, Wu A, et al. Preparation of Pt nanoparticles assembled in multiplayer film. Chem. Lett., 2002, 31(5):550–552
    [164] Shipway A N, Lahav M, Blonder R, et al. Bis-bipyridinium cyclophane receptor-Au nanoparticles superstructures for electrochemical sensing applications. Chemistry of Materials, 1999, 11:13–15
    [165] Qhobosheane M, Santra S, Zhang P, et al. Biochemically functionalized silica nanoparticles. Analyst, 2001, 126:1274–1278
    [166] Topoglidis E, Cass A E G, O’Regan B, et al. Immobilization and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J. Electroanal. Chem., 2001, 517: 20–27
    [167] P. Bataillard, F. Gardies, N. Jaffrezic-Renault, C. Martelet, B. Colin, B. Mandrand, Direct detection of immunospecies by capacitance measurements.Anal. Chem. 1988, 60: 2374–2379
    [168] Bontidean I, Berggren C, Johansson G, et al..Detection of heavy ions at femtomolar level using potenin-based biosensors. Anal. Chem.,1998,70: 4162–4169
    [169] Berggren C, Bjarnason B, Johansson G..An immunological Intertleukine-6 biosensor using perturbation with a potentiostatic step. Biosens. Bioelectron.,1998, 13: 1061–1068
    [170] Maupas H, Soldatkin A P, Martelet C, et al..Direct immunosensing using differential electrochemical measurements of impedimetric variations. J. Electroanal. Chem., 1997,421: 165–171
    [171] Mirsky V M, Mass M, Krause C, et al..Capacitive approach to determine phospholipase A2 activity toward artificial and natural substrates. Anal. Chem., 1998, 70: 3674–3678
    [172] Kalinowski S, Figaszewski Z.A four-electrode system for measurement of bilayer lipid membrane capacitance. Meas. Sci. Technol.,1995,6: 1043-1049
    [173] Temple-Boyer P, Launay J, Sarrabayrouse G, et al. Amplifying structure for the development of field-effect capacitive sensors. Sens. Actuat. B,2002,86: 111–121
    [174] Temple-Boyer P, Launay J, Hajji B, et al. Study of capacitive structures for amplifying the sensitivity of FET-based chemical sensors. Sens. Actuat. B,2001,78: 285–290
    [175] Berney H, West J, Haefele E, et al. A DNA diagnostic biosensor: development, characterization and performance. Sens. Actuat. B,2000,68:100–108
    [176] Sibai A, Elamri K, Barbier D, et al. Analysis of the polymer-antibody-antigen interaction in a capacitive immunosensor by FTIR difference spectroscopy. Sens. Actuat. B,1996, 31: 125–130
    [177] Patolsky F, Zayats M, Katz E, et al. Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: characterization by faradic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Anal. Chem.,1999,71: 3171–3180
    [178] Varlan A R, Suls J, Sansen W, et al. Capacitive sensor for the allatostatin direct immunoassay. Sens. Actuat. B,1997,44: 334–340
    [179] Baranski A.S, Krogulec T, Neison L J, Norouzi P, High-Frequency Impedance Spectroscopy of Platinum Ultramicroelectrodes in Flowing Solutions.Anal. Chem. 1998, 70: 2895–2901
    [180] McNeil C J, Athey D, Ball M, Ho W O, Krause S, Armstrong R D, Wright J D, Rawson K, Electrochemical Sensors Based on Impedance Measurement of Enzyme-Catalyzed Polymer Dissolution: Theory and Applications. Anal. Chem. 1995, 67: 3928–3935
    [181] Ho W O, Krause S, McNeil C J, Pritchard J A, Armstrong R D, Athey D, Rawson K, Electrochemical Sensor for Measurement of Urea and Creatinine in Serum Based on ac Impedance Measurement of Enzyme-Catalyzed Polymer Transformation. Anal. Chem. 1999, 71: 1940–1946
    [182] Taylor R T, Marenchic I G, Spencer R H. Antibody and receptor-based biosensors for detection and process control. Anal. Chim. Acta,1991,249:67-70
    [183] Stelzle M, Weissmüller G, Sackmann E. On the application of supported biolayers as receptive layers for biosensors with electrode detection. J. Phys. Chem., 1993, 97:2974–2981
    [184] Barraud A, Parrot H, Billard V, et al..Study of immunoglobulin G thin layers obtained by Langmuir-Blodgett method: application to immunosensors. Biosens. Bioelectron., 1993,8:39–48
    [185] Knichel M, Heiduschka P, Beck W, et al. Utilization of a self-assembled peptide monolayer an impendimetric immunosensor. Sens. Actuat. B, 1995, 28:85–94
    [186] Ouerghi O, Touhami A, Jaffrezic-Renault N, et....Impedimetric immunosensor using avidin–biotin for antibody immobilization. Bioelectrchem., 2002 ,56:131–133
    [187] Betty C A, Lal R, Sharma D K, et al. Macroporous silicon based capacitive affinity sensor-fabrication and electrochemical studies. Sens. Actuat. B,2004,97:334–343
    [188] McNeil C J, Athey D, Ball M, et al. Electrochemical sensors based on impedance measurement of enzyme-catalyzed polymer dissolution: theory and applications. Anal. Chem., 1995, 67:3928–3935
    [189] Panasyuk-Delandy T, Mirsky V M, Ulbricht M, et al. Impedometric herbicide chemosensors based on molecularly imprinted polymers. Anal. Chim. Acta, 2001, 435:157–162
    [190] Cheng Z L, Wang E K, Yang X R. Capacitive detection of glucose using molecularly imprinted polymers. Biosens. Bioelectron. 2001, 16(3): 179–185. 196
    [191] Gong J L, Chun F C, Zeng G M, Shen G L, Yu R. Q. A novel electrosynthesized polymer applied to molecular imprinting technology. Talanta 2003, 61:447–453
    [192] Bontidean I, Ahlqvista J, Mulchandani A, et al. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens. Bioelectron.,2003, 18: 547–553
    [193] Buffle J, Tercier-Waeber M L.Voltammetric environmental tracemetal analysis and speciation: from laboratory to in situ measurements.Trends in Anal. Chem., 2005, 24(3):172–191
    [194] Vydra F, Stulik K J. Electrochemical stripping analysis. New York, Wiley, 1976
    [195] Wang J, Lu J, Hocevar S B, et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry. 2000, 72: 3218–3222
    [196] Wagner K, Strojek J W, Koziel K. Processes during anodic stripping voltammetry determination of lead in the presence of copper on a solid electrode modified with 2, 2’-bipyridyl in polyaniline. Analytica Chimica Acta., 2001, 447: 11–21
    [197] Zeng B, Ding X, Pan D, et al. Accumulation and stripping behavior of silver ions at DL-dithiothreitol self-assembled monolayer modified gold Electrodes. Talanta 2003, 59: 501–507
    [198] McCleskey T M, Ehler D S, Young J S, et al. Asymmetric membranes with modified gold films as selective gates for metal ion separations. Journal of Membrane Science, 2002, 210: 273–278
    [199] Ju H, Leech D. Electrochemical study of a metallothionein modified gold disk electrode and its action on Hg2+ cations. J. Electroanal. Chem., 2000, 484: 150–156
    [200] Herzog G., Arrigan D W M. Application of Disorganized Monolayer Films on Gold Electrodes to the Prevention of Surfactant Inhibition of the Voltammetric Detection of Trace Metals via Anodic Stripping of Underpotential Deposits: Detection of Copper. Anal. Chem. 2003, 75: 319–323
    [201] Bakker E, Telting-Diaz M, Electrochemical Sensors.Anal. Chem. 2002, 74, 2781–2800
    [202] Kroger S, Turner A P F, Mosbach K., Haupt K. Imprinted Polymer-Based Sensor System for Herbicides Using Differential-Pulse Voltammetry on Screen-Printed Electrodes. Anal. Chem, 1999, 71, 3698–3702
    [203] Wang J. Anal. Chem. 1999, 71, 328R
    [204] Sethi R S, Biosens. Bioelectron. 1994, 9, 243
    [205] Linton B, Hamilton A D. Formation of Artificial Receptors by Metal-Templated Self-Assembly. Chem. Rev. 1997, 97(5), 1669–1680
    [206] Sellergren B. Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. TrAC Trends in Anal. Chem. 1997, 16(6): 310–320
    [207] Mayes A G, Mosbach K. Molecularly imprinted polymers: useful materials for analytical chemistry? TrAC Trends in Anal. Chem. 1997, 16(6): 321–332
    [208] Sergeyeva T A, Piletsky S A, Brovko A A, Slinchenko E A, Sergeeva L M. Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst 1999, 124: 331
    [209] Andrea P, Miroslav S, Silvia S, Stanislav M. A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry. Sens. Actu. B 2001, 76(1-3): 286–294
    [210] Malitesta C, Losito I, Zambonin P G, Molecularly Imprinted Electrosynthesized Polymers: New Materials for Biomimetic Sensors. Anal. Chem. 1999, 71, 1366–1370
    [211] Adams J D, Johannessen J N, Bacon J P. Quantification of glutathione and glutathione disulfide in human plasma. Clin. Chem. 1987, 33:1675–1676b
    [212] Curello S, Ceconi C, Cargnoni A, Cornacchiari A, Ferrari R, Albertini A. Improved procedure for determining glutathione in plasma as an index of myocardial oxidative stress. Clin. Chem. 1987, 33:1448–1449
    [213] Kamata K, Takahashi M, Terajima K. Spectrophotometric determination of sodium chondroitin sulfate in eye drops after derivatization with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole. Analyst 1995, 120:2755–2758
    [214] Kataoka H, Miyanaga Y, Makita M J. Chromatogr A, 1994, 659:481
    [215] Zhang S, Sun W L, Xian Y Z, Zhang W, Jin L T, Yamamoto K, Tao S G., Jin J Y. Multichannel amperometric detection system for liquid chromatography to assay the thiols in human whole blood using the platinum microelectrodes chemically modified by copper tetraaminophthalocyanine. Anal. Chim. Acta 1999, 399:213–221
    [216] Kamidate T, Watanabe H. Peroxidase-catalysed luminol chemiluminescence method for the determination of glutathione. Talanta 1996, 43:1733–1738
    [217] Angerstein-Kozlowska H, Conway B E, Hamelin A, Stoicoviciu L, J. Electroanal. Chem. 1987, 28: 429
    [218] Dijksma M, Kamp B, Hoogvliet J C, van Bennekom W P. Development of an Electrochemical Immunosensor for Direct Detection of Interferon-γ at the Attomolar Level. Anal. Chem. 2001, 73: 901–907
    [219] Li J, Xiao L T, Zeng G. M, Huang G. He, Shen G. Li, Yu R Q. Amperometric Immunosensor Based on Polypyrrole/poly(m-pheylenediamine) Multilayer on Glassy Carbon Electrode for Cytokinin N6-(Δ2-isopentenyl) Adenosine Assay. Anal. Biochem. 2003, 321: 89–95
    [220] Piletsky S A, Piletska E V, Bossi A, Karim K, Lowe P, Turner A P F. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays Biosens. Bioelectron. 2001, 16 (9–12), 701–707
    [221] Merkoci A, Alegret S. New materials for electrochemical sensing iv. molecular imprinted polymers. TrAC Trends in Anal. Chem. 2002, 21, 717–725
    [222] Sergeyeva T A, Piletsky S A, Brovko A A, Slinchenko E A, Sergeeva L M. Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst 1999, 124:331–334
    [223] Deore B, Chen Z D, Nagaoka T. Potential-Induced Enantioselective Uptake of Amino Acid into Molecularly Imprinted Overoxidized Polypyrrole. Anal. Chem. 2000, 72:3989–3994
    [224] Peng H, Lang C D, Zhou A H, Zhang Y Y, Xie Q J, Yao S Z. Development of a New Atropine Sulfate Bulk Acoustic Wave Sensor Based on a Molecularly Imprinted Electrosynthesized Copolymer of Aniline with o-Phenylenediamine. Anal. Chim. Acta. 2000, 423:221–228
    [225] Assouli B, Ait Chikh Z A, Idrissi H, Srhiri A. Electrosynthesis of Adherent Poly(2-Mercaptobenzimidazole) Films on Brass Prepared in Nonaqueous Solvents. Polymer. 2001, 42: 2449–2454
    [226] Matsui J, Miyoshi Y, Doblhoff-Dier O, Takeuchi T. A Molecularly Imprinted Synthetic Polymer Receptor Selective for A trazine. Anal. Chem. 1995, 67:4404–4408
    [227] Shoji R, Takeuchi T, Kubo Izumi. Atrazine Sensor Based on Molecularly Imprinted Polymer-Modified Gold Electrode. Anal. Chem. 2003, 75:4882–4886
    [228] Berney H, West J, Haefele E, Alderman J, Lane W, Collins J K. A DNA Diagnostic Biosensor: Development, Characterisation and Performance. Sens. Actuat. B, 2000, 68:100–108
    [229] Mirsky V M, Riepl M, Wolfbeis O S. Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens. Bioelectron. 1997, 12: 977–989
    [230] Bernabeu P, Tamisier L, Cesare A De, Caprani A. Study of the adsorption of albumin on a platinum rotating disk electrode using impedance measurements. Electrochim. Acta 1988, 33:1129–1136
    [231] Mao Y A, Wei W Z, Zhang S F, Zeng G. M. Monitoring and Estimation of Kinetic Data by Piezoelectric Impedance Analysis of the Binding of the Anticancer Drug Mitoxantrone to Surface-Immobilized DNA. Anal. Bioanal. Chem. 2002, 373: 215–221
    [232] Mao Y A, Wei W Z, He D L, Nie L H, Yao S Z. Monitoring and kinetic parameter estimation for the binding process of berberine hydrochloride to bovine serum albumin with piezoelectric quartz crystal impedance analysis. Anal. Biochem. 2002, 306: 23–30
    [233] Finklea H O, Bard A J, Rubinstein I. (Eds), “Electroanalytical Chemistry-A Series of Advances”, Vol. 19, Marcel Dekker, New York, 1996, pp. 110–335
    [234] Chidsey C E D, Science 1991, 251:919
    [235] Arnold S, Feng Z Q, Kakiuchi T, Knoll W, Niki K. Investigation of the electrode reaction of cytochrome c through mixed self-assembled monolayers of alkanethiols on gold (111) surfaces. J. Electroanal. Chem., 1997, 438: 91–97
    [236] Hsu C P, Marcus R A. A sequential formula for electronic coupling in long range bridge-assisted electron transfer: Formulation of theory and application to alkanethiol monolayers. J. Chem. Phys. 1997, 106: 584–598
    [237] Cheng Q, Brajter-Toth A. Permselectivity, Sensitivity, and Amperometric pH Sensing at Thioctic Acid Monolayer Microelectrodes.Anal. Chem., 1996, 68: 4180–4185
    [238] Ozkan D, Erdem A, Kara P, Kerman K, Gooding J J, Nielsen P E, Ozsoz M. Electrochemical detection of hybridization using peptide nucleic acids and methylene blue on self-assembled alkanethiol monolayer modified gold electrodes. Electrochem. Commun., 2002, 4: 796–802
    [239] Ozoemena K, Nyokong T. Voltammetric characterization of the self-assembled monolayer (SAM) of octabutylthiophthalocyaninatoiron (II): a potential electrochemical sensor. Electrochimica Acta, 2002, 47: 4035–4043
    [240] Esplandiu M, Hagenstrom H, Kolb D M. Functionalized Self-Assembled Alkanethiol Monolayers on Au (111) Electrodes: 1. Surface Structure and Electrochemistry. Langmuir 2001, 17: 828–838
    [241] Porter M D, Bright T B, Allara D L, Chidsey C E D. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc., 1987, 109: 3559–3568
    [242] Chidsey C E D, Bertozzi C R, Putvinski T M, Mujsce A M. Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers. J. Am. Chem. Soc. 1990, 112: 4301–4306
    [243] Ulman A. Formation and structure of self-assembled monolayers. Chem. Rev, 1996, 96(4): 1533–1554
    [244] Molinero V, Calvo E J. Electrostatic interactions at self assembled molecular films of charged thiols on gold. J. Electroanal. Chem., 1998, 445: 17–25.
    [245] Zhou Y M, Hu S Q, Shen G L, Capacitive immunosensor for the determination of schistosoma japonicum antigen. Anal. Lett., 2002, 35: 1919–1930
    [246] Sur U K, Subramanian R, Lakshminarayanan V. Cyclic voltammetric and electrochemical impedance studies on the structure, adsorption kinetics, and barrier properties of some organic dithiol self-assembled monolayers on gold. J. Colloid Interface Sci., 2003, 266: 175–182
    [247] Schweiss R, Werner C, Knoll W. Impedance spectroscopy studies of interfacial acid-base reactions of self-assembled monolayers. J. Electroanal. Chem., 2003, 540, 145–151
    [248] Takehara K, Ide Y, Aihara M, Obuchi E. Bioelectrochem.Bioenerg. 1992, 29: 103
    [249] Takehara K, Ide Y, Aihara M, Bioelectrochem. Bioenerg., 1992, 29:113
    [250] Takehara K, Aihara M, Ueda N, Electroanalysis, 1994, 4: 1083
    [251] Takehara K, Aihara M, Miura Y, Tanaka F. An ion-gate response of the cysteine-containing dipeptide monolayers formed on a gold electrode. The effects of alkaline earth ions .Bioelectrochem. Bioenerg., 1996, 39(1), 135–138
    [252] Yan C, Naltner A, Martin M, Naltner M, Fangman J M, Gurel O, J. Biol. Chem., 2002, 277:10967
    [253] Augusto L A, Li J, Synguelakis M, Johansson J, Chaby R. Structural Basis for Interactions between Lung Surfactant Protein C and Bacterial Lipopolysaccharide. J. Biol. Chem., 2002, 277: 23484–23492
    [254] Zanuy D, AlemanMolecular C. Dynamics Simulations of Surfactant·Poly ( , L-glutamate) Complexes in Chloroform Solution: Influence of the Chemical Constitution of the Surfactant in the Molecular Organization. Langmuir. 2003, 19: 3987–3995
    [255] Gohon Y, Popot J L. Membrane protein–surfactant complexes. Curr. Opin. Colloid. In., 2003, 8: 15–22
    [256] Von M G., Vauthey S, Santoso S, Zhang S G. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir. 2003, 19: 4332-4337.
    [257] Ye B X, Zhou X Y. Direct electrochemistry of hemoglobin at a bare silver electrode promoted by cetyl pyridinium chloride and its application in analysis. Electroanal., 1996, 8: 1165–1168
    [258] Deore B, Nagaoro T. The direct electrochemical detection of amino acids at a cu electrode in acidic chromatographic effluent. Anal. Sci., 2001, 17: i1691–i1694
    [259] Bianco P, Haladjian J. Electrochemistry of ferredoxin and c-type cytochromes at surfactant film-modified pyrolytic graphite electrodes. Electrochim. Acta. 1997, 16:587–594
    [260] Boussaad S, Tao N J, Electron transfer and adsorption of myoglobin on self-assembled surfactant films: an electrochemical tapping-mode AFM study. J. Am. Chem. Soc., 1999, 121: 4510–4515
    [261] Tsai Y C, Davis J, Compton R G.. Fresenius J. Anal. Chem. 2000, 368, 415.
    [262] Liu Y J, Zhang Z H, Nie L H, Yao S Z. Study on the influence of anionic and cationic surfactant on Au-colloid modified electrode function by cyclic voltammetry and electrochemical impedance techniques. Electrochimica Acta, 2003, 48: 2823–2830
    [263] Wang J, Zeng B Z, Fang C, Zhou X Y. The influence of surfactants on the electron-transfer reaction at self-assembled thiol monolayers modifying a gold electrode. J. Electroanal. Chem., 2000, 484:88–92
    [264] Boubour E, Lennox R. B. Insulating Properties of Self-Assembled Monolayers Monitored by Impedance Spectroscopy. Langmuir, 2000, 16: 4222–4228
    [265] Boubour E, Lennox R. B. Stability of -Functionalized Self-Assembled Monolayers as a Function of Applied Potential. Langmuir, 2000, 16: 7464-7470
    [266] Boubour E, Lennox R. B. Potential-Induced Defects in n-Alkanethiol Self-Assembled Monolayers Monitored by Impedance Spectroscopy. J. Phys. Chem. B 2000, 104: 9004–9010
    [267] Meiller C, Cuendet P, Gratzel M. Adsorbed omega-hydroxy thiol monolayers on gold electrodes: evidence for electron tunneling to redox species in solution. J. Phys. Chem. 1991, 95:877–886
    [268] Eric B. Electrochemical Sensors. Anal. Chem. 2004, 76:3285-3298
    [269] D’Souza S F, Appl. Biochem. Biotech. 2001, 96:225
    [270] Butterfield D A, Bhattacharyya D, Daunert S, Bachas L. Catalytic biofunctional membranes containing site-specifically immobilized enzyme arrays: a review .J Membrane Sci. 2001, 181: 29–37
    [271] Castner D G., Ratner B D. Biomedical surface science: Foundations to frontiers. Surf. Sci. 2002, 500:28–60
    [272] Shriver-Lake L C, Gammeter W B, Covalent binding of genetically engineered microorganisms to porous glass beads. Anal. Chim. Acta 2002, 470:71–78
    [273] Huang N P, V?r?s J, Paul S M D, Textor M, Spencer N D. Biotin-Derivatized Poly(L-lysine)-g-poly(ethylene glycol): A Novel Polymeric Interface for Bioaffinity Sensing. Langmuir 2002, 18:220–230
    [274] Cosnier S. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens. Bioelectron. 1999, 14:443–456
    [275] Butterfield D A, Colvin J, Liu J L, Wang J Q, Bachas L, Bhattacharrya D. Electron paramagnetic resonance spin label titration: a novel method to investigate random and site-specific immobilization of enzymes onto polymeric membranes with different properties. Anal. Chim. Acta. 2002, 470:29–36
    [276] Zhang Y Q, Tao M L, Shen W D, Zhou Y Z, Ding Y, Ma Y, Zhou WL. Immobilization of l-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials 2004, 25:3751–3759
    [277] Park I S, Kim D K, Adanyi N, Varadi M, Kim N. Development of a direct-binding chloramphenicol sensor based on thiol or sulfide mediated self-assembled antibody monolayers. Biosen. Bioelectron. 2004, 19:667–674
    [278] Hench L L. J. Am. Ceram. Soc. 1991, 74: 1487
    [279] Morita S, Furuya K, Ishihara K, Nakabayashi N. Performance of adhesive bone cement containing hydroxyapatite particles. Biomaterials 1998, 19:1601–1606
    [280] Lange G L, Donath K I. Biomaterials 1989, 10:121
    [281] Sousa S R, Barbosa M A. Effect of hydroxyapatite thickness on metal ion release from Ti6Al4V substrates. Biomaterials 1996, 17:397–404
    [282] Yu P L, Li M S, Li S T, Wang Z G, Zhu R F. Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 2004, 25:4393–4403
    [283] Yamashita K, Arashi T, Kitagaki K, Yamada S, Umegaki T, Ogawa K, J Am. Ceram. Soc. 1994, 77:2401
    [284] Guillot-NoeK O, Gomez-San R R, Perriere J, Hermann J, Craciun V, Boulmer-Leborgne C. Growth of apatite films by laser ablation: Reduction of the droplet areal density. J. Appl. Phys. 1996, 80:1803
    [285] Weng W J. J. Mater Sci: Mater Med 1998, 9:159–63
    [286] Redepenning J, Schlessinger T, Burnhum S, L Lipiello, Miyano J, J. Biomed Mater Res. 1996, 30:287–94
    [287] Moursi A M, Winnard A.V, Winnard P L, Lannutti J J, Seghi R R. Enhanced osteoblast response to a polymethylmethacrylate–hydroxyapatite composite. Biomaterials 2002, 23:133–144
    [288] Bergen H R, Lacey J M, Online single-step analysis of blood proteins: the transferrin story. Anal. Biochem. 2001, 29:122–129
    [289] Foo Y, Rosalki S B, Carbohydrate deficient transferrin measurement. Ann. Clin. Biochem. 1998, 35:345–350
    [290] Fisher P, Gotz M E, Danielczyk W, Gsell W, Riederer P, Blood transferrin and ferritin in Alzheimer’s disease. Life Sci. 1997, 60:2273–2278
    [291] G. Tremiliosi-Filho, L.H. Dall’Antonia, G. Jerkiewicz. Limit to extent of formation of the quasi-two-dimensional oxide state on Au electrodes .J. Electroanal. Chem. 1997, 422:149–159
    [292] Fung Y S, Si S H, Zhu DR. Piezoelectric crystal for sensing bacteria by immobilizing antibodies on divinylsulphone activated poly-m-aminophenol film. Talanta 2000, 51:151–158
    [293] 司士辉, 陈寒芳, 陈昕, 抗体固载于电聚合物膜的压电免疫型细菌传感器.分析测试学报. 2002, 21(5): 33–35
    [294] Berney H, West J, Haefele E, Alderman J, Lane W, Collins J K. Detection and differentiation of C4 hydrocarbon isomers over the Pd–SnO2 compressed powder sensor. Sensor Actuat. B, 2000, 68 (1–3): 100–107
    [295] Berggren C, Johansson G, Capacitive measurement of antibody-antigen interactions in a flow system. Anal. Chem. 1997, 69:3651–3657
    [296] Jiang D C, Tang J, Liu B H, Yang P Y, Kong J L, Ultrathin alumina sol-gel-derived films allowing direct detection of the liver fibrosis markers by capacitance measurement. Anal. Chem. 2003, 75:4578–4584
    [297] Jiang D C, Tang J, Liu B H, Yang P Y, Shen X R, Kong J L, Covalently coupling the antibody on an amine-self-assembled gold surface to probe hyaluronan-binding protein with capacitance measurement. Biosens. Bioelectron. 2003, 18:1183–1191
    [298] Blake D A, Jone R M, Blake R C, Pavlov A R, Darwish I A, Yu H, Antibody-based sensors for heavy mental ions. Biosens. Bioelectron. 2001, 16:799–809
    [299] Berggren C, Bjarnason B, Johansson G. Capacitive biosensors. Electroanalysis 2001, 13:173–180
    [300] Berney H C, Alderman J, Lane W A, Collins J K, Development of a capacitive immunosensor: a comparison of monoclonal and polyclonal capture antibodies as the primary layer. J. Mol. Recogn. 1998, 11:175–177
    [301] Mirsky V M, Krause C, Heckmann K D, Capacitive sensor for lipolytic enzymes. Thin Solid Films 1996, 284–285:939–941
    [302] Hu S Q, Wu Z Y, Zhou Y M, Cao Z X, Shen G L, Yu R Q, Capacitive immunosensor for transferrin based on an o-aminobenzenthiol oligomer layer. Anal. Chim. Acta. 2002, 458:297–304
    [303] Hyatt M A, Colloidal gold: principles, methods and applications, Vol. New York: Academic Press, 1989
    [304] Brown K R, Fox A P, Natan M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. J. Am. Chem. Soc.,1996,118: 1154–1157
    [305] Martin R, Mitchell D T. Nanomaterials in analytical chemistry. Anal. Chem.,1998, 5: 322A–327A
    [306] Bharathi S, Nogami M, A glucose biosensor based on electrodeposited biocomposities of gold nanoparticles and glucoseoxidase enzyme. Analyst, 2001, 126:1919–1922
    [307] Yoldas, B. E. J. Mater. Sci. 1975, 10, 1856–1860
    [308] Michael O F, George D B, Mark T M. Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes. J. Electroanal. Chem. 1999, 466:234–241
    [309] Mohamed S E D, Takeyoshi O, Takeo O, J. Electrochem. Soc. 150 (2003) A851–A857
    [310] Kendüzler E, Türker A R. Atomic absorption spectrophotometric determination of trace copper in waters, aluminium foil and tea samples after preconcentration with 1-nitroso-2-naphthol-3, 6-disulfonic acid on Ambersorb 572. Anal. Chim. Acta 2003, 480:259–266
    [311] Ndung’u K, Franks R P, Bruland K W, Flegal A R. Organic complexation and total dissolved trace metal analysis in estuarine waters: comparison of solvent-extraction graphite furnace atomic absorption spectrometric and chelating resin flow injection inductively coupled plasma-mass spectrometric analysis. Anal. Chim. Acta 2003, 481:127–138
    [312] Charbucinski, J.; Malos, J.; Rojc, A.; Smith, C. Prompt gamma neutron activation analysis method and instrumentation for copper grade estimation in large diameter blast holes. Appl. Radia. Isotop. 2003, 59: 197–203
    [313] Shams E, Babaei A, Soltaninezhad M. Simultaneous determination of copper, zinc and lead by adsorptive stripping voltammetry in the presence of Morin. Anal. Chim. Acta 2004, 501: 119–124
    [314] Clinio L, Giancarlo T. Voltammetric trace metal determinations by cathodic and anodic stripping voltammetry in environmental matrices in the presence of mutual interference. J. Electroanal. Chem. 2001, 509:80–89
    [315] Pournaghi-Azar M H, Dastangoo H. Differential pulse anodic stripping voltammetry of copper in dichloromethane: application to the analysis of human hair. Anal. Chim. Acta 2000, 405:135–144
    [316] Mamdouh E A, Guy D, Salvatore D. Calibrationless determination of cadmium, lead and copper in rain samples by stripping voltammetry at mercury microelectrodes: Effect of natural convection on the deposition step. Anal. Chim. Acta 2002, 452:65–75
    [317] Hajian R, Shams E. Application of adsorptive stripping voltammetry to the determination of bismuth and copper in the presence of morin. Anal. Chim. Acta 2003, 491:63–69
    [318] Rodrigo A A M, Lucio A. Simultaneous determination of copper and lead in ethanol fuel by anodic stripping voltammetry. Microchem. J. 77 (2004) 157–162.
    [319] Van Staden J F, Matoetoe M C. Simultaneous determination of copper, lead, cadmium and zinc using differential pulse anodic stripping voltammetry in a flow system. Anal. Chim. Acta 2000, 411:201–207
    [320] Etienne M, Bessiere J, Walcarius A. Voltammetric detection of copper (II) at a carbon paste electrode containing an organically modified silica. Sensor Actuat. B 2001, 76:531–538
    [321] Rashid O K, Jeffrey D N, Ibtisam E T. Stripping chronopotentiometric detection of copper using screen-printed three-electrode system–application to acetic-acid bioavailable fraction from soil samples. Anal. Chim. Acta 2003, 493:95–104
    [322] Andrea C, Mauro A La-Scalea, Ivano G R G, Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: a review. Electroanal. 2004, 16:697–711
    [323] Xuan D, Olga N, Michael E H, Richard G C. Anodic Stripping Voltammetry of Arsenic (III) Using Gold Nanoparticle-Modified Electrodes. Anal. Chem. 2004, 76: 5924–5929
    [324] Arrigan D W M, Iqbal T, Pickup M J, Underpotential deposition of copper at mercaptoalkane sulfonate-coated polycrystalline gold. Electroanal., 2001, 13:751–754
    [325] Randles J, Discuss Faraday Soc. 1947, 1:11
    [326] Krznaric D, Goricnik T. Reactions of Copper on the Au (111) Surface in the Underpotential Deposition Region from Chloride Solutions. Langmuir 2001, 17: 4347–4351
    [327] kirowa-Eisner E, Brand M, Tzur D. Determination of sub-nanomolar of lead by anodic-stripping voltammetry at the silver electrode. Anal.Chim.Acta 1999, 385: 325–335
    [328] IUPAC, “Compendium of Analytical Nomenclature.” Pergamon Press, Oxford, 1978
    [329] Bonfil Y, Brand M, Kirowa-Eisner E. Determination of sub-μgl?1 concentrations of copper by anodic stripping voltammetry at the gold electrode. Anal. Chim. Acta 1999, 387, 85–95
    [330] Bonfil Y, Brand M, Kirowa-Eisner E. Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal. Chim. Acta 2000, 424: 65–76
    [331] Bonfil Y, Brand M, Kirowa-Eisner E. Characteristics of subtractive anodic stripping voltammetry of Pb and Cd at silver and gold electrodes. Anal. Chim. Acta 2002, 464, 99–114
    [332] Osaka T, Naoi K, Ogano S. J. Electrochem. Soc. 1987, 134:2096–2102
    [333] Kanamura K, Kawai Y. Diffusion behavior of anions in polyaniline during electrochemical undoping. 2. Effect of the preparation conditions of polyaniline on the diffusion coefficient of BF4–. J. Phys. Chem., 1994, 98, 2174–2179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700