用户名: 密码: 验证码:
关节臂式坐标测量机自标定方法与误差补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关节臂式坐标测量机是一种多自由度、非笛卡尔系坐标测量设备,具有体积小、重量轻、运动灵活、方便工业现场测量等特点,具有广泛的应用前景。本学位论文结合杭州市科技计划项目“基于嵌入式系统的柔性臂测量机系统研制”,采用理论分析、计算机仿真和实验研究相结合的方法,系统、深入地开展了关节臂式坐标测量机理论基础和关键技术的研究,研制出六自由度关节臂式坐标测量机样机,并开发了标定和误差补偿系统。
     论文的主要研究内容包括:
     第一章,阐述本学位论文的研究背景与意义,详细论述关节臂式坐标测量机国内外研究现状,明确关节臂式坐标测量机的关键技术和发展方向。在此基础上,提出论文的主要研究内容。
     第二章,建立关节臂式坐标测量机的运动学模型,通过数值计算和图形仿真相结合的方法进行运动学分析。对关节臂式坐标测量机的误差来源进行了全面的分析,建立误差模型,并绘制关节转角、关节扭转角、关节长度、杆长和测头偏置等参量的关节空间误差分布图,通过误差分布图分析结构参数和测量位姿对测量机精度的影响规律,为关节臂式坐标测量机的结构设计、元器件选型及测量区域选择提供理论依据。
     第三章,在第二章理论研究的基础上,进行关节臂式坐标测量机的机械结构设计,并对测量机的测量空间进行仿真分析,得到测量空间的形状和大小。运用有限元软件ANSYS分析薄弱环节零件的强度及整机在重力和测量力作用下的变形情况。建立数据采集系统的软硬件平台,实现关节转角、触发按钮等信号的实时采集。研究常用几何元素的拟合及误差评定方法,开发基于Open Cascade CAD平台和多线程技术的坐标测量软件,用于关节臂式坐标测量机的测量和扫描操作。
     第四章,研究径向圆光栅角度传感器的组成和工作原理,并分析安装偏心和倾斜对其测量精度的影响规律。分别利用精密三坐标测量机和光电自准直仪对角度传感器的测量误差进行标定,研究测量误差的分布规律,提出两种不同形式的误差补偿方法:第一种方法采用RBF神经网络对角度测量误差进行预测和补偿;第二种方法根据角度测量误差信号的频谱分析结果,推导出一种基于正弦函数的误差补偿模型,并采用自适应粒子群算法对误差补偿模型的参数进行辨识,以克服最小二乘法等传统算法在辨识过程中无法收敛的问题。
     第五章,为解决关节臂式坐标测量机现场标定的难题,提出一种基于改进模拟退火算法的自标定方法。为弥补模拟退火算法遗失中间最优解的缺陷,并提高算法搜索效率和最终解质量,提出一种改进模拟退火算法,在算法搜索过程中保留中间最优解,并及时更新,当算法接近最优解时自动减小搜索范围。研究关节臂式坐标测量机自标定的原理及其实现方法,利用一个简单的锥形孔采集单点数据,根据单点数据建立以关节结构参数为未知量的超定方程组,并用改进模拟退火算法求超定方程组的最优解,从而实现关节结构参数的自动标定。
     第六章,对研制的关节臂式坐标测量机进行自标定及误差补偿实验研究,实验结果显示经过误差补偿后,各关节转角误差均控制在0.002°以内。经过自标定之后,关节臂式坐标测量机的长度测量精度达到±0.06mm,单点重复测量精度达到±0.05mm。
     第七章,对论文的主要研究工作和创新点做了总结,并对未来的研究工作进行展望。
The Articulated Arm Coordinate Measuring Machine (AACMM) is a kind of multi-degree-of-freedom, non-Cartesian coordinate measuring instrument, with features of small size, light weight, flexibility and convenience to be applied in industrial field. Sopported by the Technologies R&D Program of Hangzhou Municipality "Development of flexible arm measuring machine based on embedded system", a six degree-of-freedom AACMM with its calibration and error compensation systems were developed. The rearsearch work of this dissertation was carried out through the methods of theoretical analysis, numerical simulation with experimental verification.
     In chapter 1, the background and significance of the research were introduced, the current research situations, key technologies and development trend of the AACMM were expatiated in detail, and then the research contents of this dissertation were proposed.
     In chapter 2, the kinematics model of the AACMM was established, and it was analyzed through the method of numerical calculation and graphical simulation. The error model of AACMMs was presented followed a thorough analysis of the error sources of AACMMs. Then the error distribution maps of joint angles, joint torsion angles and other linear parameters were plotted, and the influence of structure parameters on measurement precision was analyzed through the error distribution maps, which provide theoretical foundation for structural design, components selection and measurement area selection of AACMMs.
     In chapter 3, mechanical structure design of an AACMM was carried out based on the theoretical analysis in chapter 2, and its measurement space is achieved through simulation analysis. The deformation of the AACMM under the gravity and measuring force were analyzed with the software of ANSYS, and the results show that the strength and deformation meet the design requirements. The data acquisition system was built, which can realize real-time signal acquisition and high-speed transmission. The fit and evaluation methods of common geometric elements were studied, and a coordinate measuring software for AACMMs was developed based on Open Cascade CAD and multi-threading technology.
     In chapter 4, the composition and working principle of radial circular grating angle sensors were studied, and the measurement errors which caused by installation were analyzed. Then the angle sensors were calibrated respectively with coordinate measuring machines and autocollimators. From the calibration data the distribution of angle measurement errors was achieved. Afterwards two different forms of error compensation methods were proposed. One method predicts the measurement error of the angle sensors with radial basis function neural network at first, and then compensate the reading of the sensors by the predicting data. The other method is based on the spectrum analysis of the calibrating data. From the analysis result a sine function compensation model was proposed. Furthermore, a particle swarm optimization was used to identify the parameters of the compensation model, which can overcome the non-converge problem of the least-squares method and other traditional algorithms.
     In chapter 5, the principle and realization method of self-calibration for AACMMs were studied. A modified simulated annealing algorithm was proposed to identify the structural parameters of the AACMMs with the single point data acquisited from a cone-shape hole. The algorithm can keep the best solution during search, and reduce the search range when the solution approaches the global minimum, which can improve the search efficiency and accuracy.
     In chapter 6, the 6-DOF AACMM was used to carry out experimental tests to evaluate the calibration and error compensation methods, the results show that after compensation the measurement accuracy of circular grating sensors reaches 0.002°, and after calibration, length measurement and repeatability accuracy of the AACMM reaches 0.06mm and 0.05mm respectively.
     In chapter 7, the main work and innovations of this dissertation were summarized, and the further research subjects were proposed.
引文
[1]杨叔子,吴波.先进制造技术及其发展趋势[J].机械工程学报,2003,39(10):73-78.
    [2]张国雄.坐标测量技术发展方向[J].红外与激光工程,2008,37(S1):1-5.
    [3]张国雄.三坐标测量机的发展趋势[J].中国机械工程,2000,11(1):222-226.
    [4]RAGHUNANDAN R, VENKATESWARA RAO P. Selection of sampling points for accurate evaluation of flatness error using coordinate measuring machine[J]. Journal of Materials Processing Technology,2008,202(1-3):240-245.
    [5]张国雄.三坐标测量机[M].天津:天津大学出版社,1999.
    [6]李爱林.柔性臂三坐标测量机原型的研究与开发[D].杭州:浙江大学,2006.
    [7]小美农武久.多关节型三次元测定机精度向上[J].精密工学会志,1986,52(8):5.
    [8]LOTZE W. ScanMax--a novel 3D coordinate measuring machine for the shopfloor environment[J]. Measurement,1996,18(1):17-25.
    [9]http://www.romer.com
    [10]http://www.faro.com
    [11]付中正,叶东,张之江,等.新型关节式三坐标测量机的研究[J].工具技术,1997,31(1):38-40.
    [12]叶东,车仁生.仿人多关节坐标测量机的数学建模及其误差分析[J].哈尔滨工业大学学报,1999,32(2):28-32.
    [13]叶东,黄庆成,车仁生.多关节坐标测量机的误差模型[J].光学精密工程,1999,7(2):91-96.
    [14]叶东,黄庆成,车仁生.多关节坐标测量机结构参数的校准[J].宇航计测技术,1999,19(6):12-16.
    [15]叶东,黄庆成,车仁生.六自由度关节式坐标测量机关节零位偏差的标定算法[J].工具技术,1999,34(4):34-36.
    [16]汪平平.三坐标测量机虚拟坐标测量系统研究[D].合肥:合肥工业大学,2003.
    [17]王学影.关节臂式坐标测量机系统研究[D].天津:天津大学,2008.
    [18]郭辉.关节臂式柔性三坐标测量系统关键技术研究[D].天津:天津大学,2005.
    [19]魏霖,王从军.多关节坐标测量机的坐标转换和参数标定[J].光电工程,2007,34(5):57-61.
    [20]王从军,魏霖,李中伟.仿人关节式坐标测量机的数学建模及标定方法[J].华中科技大学学报(自然科学版),2007,35(11):1-4.
    [21]李中伟,王从军,周晓慧.多关节坐标测量机的数学模型和参数标定[J].新技术新工艺,2006,6:35-36.
    [22]李茂西.视觉关节式坐标测量机关键技术研究[D].武汉:华中科技大学,2005.
    [23]邹璇,李德华.多关节机械臂的坐标模型和参数标定[J].光学精密工程,2001,9(3):252-256.
    [24]黄志东.关节式坐标测量机机械结构和测量误差研究[D].武汉:华中科技大学,2005.
    [25]任继文,龙铭.关节式坐标测量机关节轴晃动导致测量误差的分析及建模[J].工具技术,2005,39(11):59-62.
    [26]刘源,黄志东.关节式坐标测量机测量误差分析[J].机械与电子,2005,(8):35-39.
    [27]SANTOLARIA J, AGUILAR J-J, YAG E J-A, et al. Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines[J]. Precision Engineering,2008,32(4):251-268.
    [28]高贯斌,王文,林铿,等.关节臂式坐标测量机误差仿真系统建模与分析[J].计算机集成制造系统,2009,15(8):1534-1540.
    [29]叶怀储,高贯斌,陈欢,等.关节臂式坐标测量机运动学建模与误差研究[J].计量学报,2009,30(5A):1-5.
    [30]李爱林,王文,陈子辰.机器人化柔性三坐标测量机的设计与研究[J].机床与液压,2007,35(3):142-144.
    [31]宫珊珊,臧红彬,李木军.关节臂式坐标测量机的虚拟样机模型及仿真[J].计算机工程与应用,2009,45(14):241-244.
    [32]裘祖荣,孙增玉,张国雄.关节臂式坐标测量机标定系统的设计[J].计算机测量与控制,2009,17(1):88-90.
    [33]DENAVIT J, HARTENBERG R. A kinematic notation for lower pair mechanism based on matrices[J]. ASME Journal of Applied Mechnics,1955,22(6):215-221.
    [34]付宜利,潘博,李康.内窥镜操作机器人结构设计及运动学仿真[J].机械设计,2007,24(1):61-64.
    [35]李华忠,梁永生,洪炳熔.空间机器人连续运动轨迹控制建模和仿真研究[J].机器人,2008,30(5):410-415.
    [36]CORKE P. MATLAB toolboxes:Robotics and vision for students and teachers[J]. IEEE Robotics and Automation Magazine,2007,14(4):16-17.
    [37]CORKE P I. Robotics toolbox for MATLAB [J]. IEEE Robotics and Automation Magazine,1996,3(1):24-32.
    [38]马江.六自由度机械臂控制系统设计与运动学仿真[D].北京:北京工业大学,2009.
    [39]叶声华,王一,任永杰,等.基于激光跟踪仪的机器人运动学参数标定方法[J].天津大学学报,2007,40(2):4.
    [40]WANG L, CHEN X, HUANG Q, et al. Error analysis of multi-legged walking robots based on forward kinematics[C]. IEEE International Conference on Robotics and Biomimetics, Yalong Bay, Sanya, China,2008:1172-1177.
    [41]ZHANG X, NELSON C A. Kinematic analysis and optimization of a novel robot for surgical tool manipulation[J]. Journal of Medical Devices, Transactions of the ASME, 2008,2(2).
    [42]LIN S-W, WANG P-P, FEI Y-T, et al. Simulation of the errors transfer in an articulation-type coordinate measuring machine [J]. International Journal of Advanced Manufacturing Technology,2006,30(9-10):879-886.
    [43]YE D, CHE R, HUANG Q. Calibration for kinematics parameters of articulated CMM[C]. Proceedings of the second International Symposium on Instrumentation Science and Technology Jinan:Harbin Institute of Technology,2002.
    [44]SHIMOJIMA K, FURUTANI R, ARAKI K. The estimation method of uncertainty of articulated coordinate measuring machine[J]. VDI Berichte,2004, (1860):245-250.
    [45]SHIMOJIMA K, FURUTANI R, OZONO S, et al. The estimation of kinematical parameter and uncertainty of articulated three-dimensional coordinate measuring machine[J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering,2003,69(6):841-845.
    [46]MOUSAVI P N, NATARAJ C, BAGHERI A, et al. Mathematical simulation of combined trajectory paths of a seven link biped robot[J]. Applied Mathematical Modelling,2008,32(7):1445-1462.
    [47]胡鹏浩,费业泰,王春花.国产柔性坐标测量机机械部分设计与调试[J].南京信息工程大学学报(自然科学版),2009,(1):67-70.
    [48]于秀丽,魏世民,廖启征.仿人机器人发展及其技术探索[J].机械工程学报,2009,45(3):71-75.
    [49]赵杰,王卫忠,蔡鹤皋.可重构机器人工作空间的自动计算方法[J].天津大学学报,2006,39(9):1082-1087.
    [50]ZHAO C S, FAROOQ M, BAYOUMI M M. Collision-free path planning for a robot with two arms cooperating in the 3-D work space[C]. IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA,1996:2835-2840.
    [51]BU W, LIU Z, TAN J. Industrial robot layout based on operation sequence optimisation[J]. International Journal of Production Research,2009,47(15):4125-4145.
    [52]BI Z M, LANG S Y T. Joint workspace of parallel kinematic machines[J]. Robotics and Computer-Integrated Manufacturing,2009,25(1):57-63.
    [53]JI S, WANG G, WANG Z, et al. Optimal design of a linear delta robot for the prescribed regular-shaped dexterous workspace[C]. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Chongqing, China,2008:2333-2338.
    [54]CAO Y, QI S, LU K, et al. An integrated method for workspace computation of robot manipulator[C]. Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, Hainan, China,2009:309-312.
    [55]BOSSCHER P, RIECHEL A T, EBERT-UPHOFF I. Wrench-feasible workspace generation for cable-driven robots[J]. IEEE Transactions on Robotics,2006, 22(5):890-902.
    [56]CUI B Y, JIN Z L. Analysis of workspace and rotation ability for a novel humanoid robot elbow joint[J]. Advanced Materials Research,2009,69-70:585-589.
    [57]GOSSELIN C M, JEAN M. Determination of the workspace of planar parallel manipulators with joint limits[J]. Robotics and Autonomous Systems,1996, 17(3):129-138.
    [58]MONSARRAT B, GOSSELIN C M. Workspace analysis and optimal design of a 3-Leg 6-DOF parallel platform mechanism[J]. IEEE Transactions on Robotics and Automation, 2003,19(6):954-966.
    [59]RALLI E, HIRZINGER G. Fast path planning for robot manipulators using numerical potential fields in the configuration space[C]. IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, Munich, Ger,1994:1922-1929.
    [60]TYAPIN I, HOVLAND G, BROGARDH T. A fully geometric approach for the workspace area of the Gantry-Tau parallel kinematic manipulator[C]. Proceedings of the 13th IASTED International Conference on Robotics and Applications, Wurzburg, Germany,2007:437-444.
    [61]王晋.坐标测量机软件的技术发展[J].中国计量,2004,(2):12-13,15.
    [62]WALDELE F, BITTNER B, BUSCH K, et al. Testing of coordinate measuring machine software[J]. Precision Engineering,1993,15(2):121-123.
    [63]IMKAMP D, GRO R, WERNER K. Potentials of new CAD-based gear measurement software for coordinate measuring machines:Gear pro for involute, bevel and worm gears[J]. VDI Berichte,2005, (1904Ⅱ):1667-1678.
    [64]FRANCESCHINI F, GALETTO M, MAISANO D, et al. Mobile Spatial coordinate Measuring System (MScMS)-Introduction to the system[J]. International Journal of Production Research,2009,47(14):3867-3889.
    [65]余志华.虚拟柔性臂测量机研究[D].杭州:浙江大学,2007.
    [66]AIT-AOUDIA S, BAHRIZ M, SALHI L.2D geometric constraint solving:An overview[C].2009 2nd International Conference in Visualisation, Barcelona, Spain, 2009:201-206.
    [67]ZHOU H, TING K-L. Geometric modeling and optimization of multi-material compliant mechanisms using multi-layer wide curves[C]. ASME International Mechanical Engineering Congress and Exposition, Seattle, WA, United states,2008:55-64.
    [68]叶盛祥.光电位移精密测量技术[M].成都:科学技术出版社,2003.
    [69]喻洪麟.计量圆光栅的原理、制造及检测技术研究[D].重庆:重庆大学,2003.
    [70]史玉苓,徐成,韦春才.圆光栅副的系统误差分析[J].沈阳工业大学学报1997,19(1):26-28.
    [71]陈赞.单圈绝对式光电轴角编码器原理的研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2006.
    [72]张继友,范天泉,曹学东.光电自准直仪研究现状与展望[J].计量技术,2004,(7):27-29.
    [73]MICROE, "Alignment of Rotary Scales," M. Inc, Ed.,2004, pp.1-17.
    [74]方艳辉.增量式编码器全数字量相加技术的研究[D].长春:中国科学院(长春光学精密机械与物理研究所),2005.
    [75]付永启.新型圆光栅多头读数系统的研究[J].计量技术,1996,(5):11-14.
    [76]王因明.光学计量仪器设计[M].北京:机械工业出版社,1989.
    [77]朱应时,杨进.圆光栅的高精度高质量莫尔条纹信号的研究[J].计量学报,1994,16(4):280-285+296.
    [78]ORTON P A, POLIAKOFF J F, HATIRIS E, et al. Automatic self-calibration of an Incremental motion encoder[C]. IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary,2001:1614-1618.
    [79]WATANABE T, FUJIMOTO H, NAKAYAMA K, et al. Automatic high precision calibration system for angle encoder[C]. Recent Developments in Traceable Dimensional Measurement, Munich, Germany,2003:400-409.
    [80]郑毅,方红卫,何国建,等.基于径向基函数的多闸门控制河流的洪水模拟[J].清华大学学报(自然科学版),2008,48(12):2061-2064.
    [81]YEN-JEN O, SHIEN-CHING H, YU-YEN O, et al. Data classification with radial basis function networks based on a novel kernel density estimation algorithm[J]. IEEE Transactions on Neural Networks,2005,16(1):225-236.
    [82]LIM W S, YEOH J W L. Optimization and stabilization of sequential learning in RBF network for nonlinear function approximation [J]. IEICE Electronics Express,2008, 5(23):1030-1035.
    [83]CHEN M, CHEN W. Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems[J]. Chaos, Solitons and Fractals,2009, 41(5):2716-2724.
    [84]YANG Z R. A novel radial basis function neural network for discriminant analysis[J]. IEEE Transactions on Neural Networks,2006,17(3):604-612.
    [85]CHEN Y, HE J, ZHANG J, et al. Extending the working calibration ranges of four hexachlorocyclohexane isomers in gas chromatography-electron capture detector by radial basis function neural network[J]. Talanta,2009,79(3):916-925.
    [86]孟庆东,姚林泉.径向基函数局部插值的加权最小二乘配点法[J].苏州大学学报(自然科学版),,2009,25(3):15-20.
    [87]OKUHARA K, SASAKI K, OSAKI S. Reproductive and competitive radial basis function networks adaptable to dynamical environments [J]. Systems and Computers in Japan,2000,31(13):65-75.
    [88]HAGAN M T, DEMUTH H B, BEALE M H神经网络设计[M].北京:机械工业出版社,2002.
    [89]LEI Y, HE Z, ZIY. Application of an intelligent classification method to mechanical fault diagnosis[J]. Expert Systems with Applications,2009,36(6):9941-9948.
    [90]LIU C S, ZHANG S J, HU S S. Adaptive neural-networks-based fault detection and diagnosis using unmeasured states[J]. IET Control Theory and Applications,2008, 2(12):1066-1076.
    [91]PENG H, WU J, INOUSSA G, et al. Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model [J]. Control Engineering Practice, 2009,17(1):59-66.
    [92]张淮清.电磁场计算中的径向基函数无网格法研究[D].重庆:重庆大学,2008.
    [93]黄贤荣,刘德有.利用径向基函数神经网络处理水轮机综合特性曲线[J].水力发电学报,2008,26(1):114-118.
    [94]孙建伟,褚金奎.用快速傅里叶变换进行球面四杆机构连杆轨迹综合[J].机械工程学报,2008,44(7):32-37.
    [95]POTTS D, TASCHE M. Numerical stability of nonequispaced fast Fourier transforms[J]. Journal of Computational and Applied Mathematics,2008,222(2):655-674.
    [96]初旻霞.基于FFT自整定算法的实用性研究[D].大连:大连交通大学,2008.
    [97]ER-WEI B. A random least-trimmed-squares identification algorithm[J]. Automatica, 2003,39(9):1651-1659.
    [98]王贞,吴斌.基于最小二乘法的时滞实时在线估计方法[J].振动工程学报2009,22(6):625-631.
    [99]官云兰,程效军,施贵刚.一种稳健的点云数据平面拟合方法[J].同济大学学报(自 然科学版),2008,36(7):981-984.
    [100]王福昌,曹慧荣,朱红霞.经典最小二乘与全最小二乘法及其参数估计[J].统计与决策,2009,(1):16-17.
    [101]KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Aust,1995:1942-1948.
    [102]LEE W-S, CHEN Y T, WU T-H. Optimization for ice-storage air-conditioning system using particle swarm algorithm[J]. Applied Energy,2009,86(9):1589-1595.
    [103]CHEN D, ZHAO C. Particle swarm optimization with adaptive population size and its application[J]. Applied Soft Computing,2009,9(1):39-48.
    [104]许廷发,赵思宏,周生兵,等.DSP并行系统的并行粒子群优化目标跟踪[J].光学精密工程,2009,17(9):2236-2240.
    [105]刘得军,刘彩平,韦荣方.基于粒子群算法的6-DOF并联坐标测量机的测量建模[J].光学精密工程,2008,16(1):76-81.
    [106]PAN Q-K, WANG L, TASGETIREN M F, et al. A hybrid discrete particle swarm optimization algorithm for the no-wait flow shop scheduling problem with makespan criterion[J]. International Journal of Advanced Manufacturing Technology,2008, 38(3-4):337-347.
    [107]VENTER G, HAFTKA R T. Constrained particle swarm optimization using a bi-objective formulation[J]. Structural and Multidisciplinary Optimization, 40(1-6):65-76.
    [108]JIE J, ZENG J, HAN C, et al. Knowledge-based cooperative particle swarm optimization[J]. Applied Mathematics and Computation,2008,205(2):861-873.
    [109]EBERHART R C, SHI Y. Particle swarm optimization:Developments, applications and resources[C]. Congress on Evolutionary Computation 2001, Soul, Korea,2001:81-86.
    [110]SHI Y, EBERHART R. Modified particle swarm optimizer[C]. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA, 1998:69-73.
    [111]LIN C-J, HSIEH M-H. Classification of mental task from EEG data using neural networks based on particle swarm optimization[J]. Neurocomputing,2009, 72(4-6):1121-1130.
    [112]WANG J, KUANG Z, XU X, et al. Discrete particle swarm optimization based on estimation of distribution for polygonal approximation problems[J]. Expert Systems with Applications,2009,36(5):9398-9408.
    [113]高贯斌,王文,林铿,等.应用改进模拟退火算法实现关节臂式坐标测量机的参数辨识[J].光学精密工程,2009,17(10):2549-2505.
    [114]常鹏,李铁民,刘辛军.平面三自由度冗余并联机床的分步自标定方法[J].清华大学学报(自然科学版),2008,48(5):808-811.
    [115]JUDD R P, KNASINSKI A B. Technique to calibrate industrial robots with experimental verification [J]. IEEE Transactions on Robotics and Automation,1990,6(1):20-30.
    [116]王东署,迟健男.机器人运动学标定综述[J].计算机应用研究,2007,(09).
    [117]朱延河,赵杰,蔡鹤皋.Delta机构的闭环自标定方法研究[J].西安交通大学学报,2005,39(2):134-137.
    [118]KOVAC I, FRANK A. Testing and calibration of coordinate measuring arms[J]. Precision Engineering,2001,25(2):90-99.
    [119]KAVAV I, KLEIN A. Apparatus and a procedure to calibrate coordinate measuring arms[J]. Journal of Mechanical Engineering,2002,48(1):17-32.
    [120]汪平平,费业泰,林慎旺.柔性三坐标测量臂的标定技术研究[J].西安交通大学学报,2006,40(3):284-288.
    [121]WANG X Y, LIU S G, ZHANG G X, et al. Calibration technology of the articulated arm flexible CMM[J]. Key Engineering Materials,2008,381-382:161-164.
    [122]刘万里,曲兴华,闫勇刚.便携式三坐标测量臂校准和误差补偿[J].仪器仪表学报,2007,28(S1):81-84.
    [123]FURUTANI R, SHIMOJIMA K, TAKAMASU K. Parameter calibration for non-cartesian CMM[J]. VDI Berichte,2004, (1860):317-326.
    [124]王学影,刘书桂,张国雄,等.多关节柔性三坐标测量系统标定技术研究[J].哈尔滨工业大学学报,2008,40(9):1439-1442.
    [125]GAO G, WANG W, LIN K, et al. Structural parameter identification for articulated arm coordinate measuring machines[C].2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, Hunan, China,2009:128-131.
    [126]MENG Y, ZHUANG H. Autonomous robot calibration using vision technology[J]. Robotics and Computer-Integrated Manufacturing,2007,23(4):436-446.
    [127]MUSTAFA S K, YANG G, SONG H Y, et al. Self-calibration of a biologically-inspired cable-driven robotic arm[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Piscataway, NJ 08855-1331, United States,2007: 4412467(1-6).
    [128]王东署,徐方,徐心和.激光加工机器人自标定研究[J].机械与电子,2006,(2):45-48.
    [129]DOLINSKY J U, JENKINSON I D, COLQUHOUN G J. Application of genetic programming to the calibration of industrial robots[J]. Computers in Industry,2007, 58(3):255-264.
    [130]CINKAYA H, MUNCH E, NOLLE R, et al. Self-calibration of the 6-DOF parallel robot TriPlanar by identification of the geometry parameters[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Piscataway, NJ 08855-1331, United States,2007:4412547(1-6).
    [131]LIRA W K, YANG G, YEO S H, et al. Kinematic analysis and self-calibration of three-legged modular parallel robots[J]. Proceedings of SPIE-The International Society for Optical Engineering,1999,3839:224-235.
    [132]杨晓钧,李兵,张东来.并联机床运动学自标定方法研究[J].计算机集成制造系统,2008,14(9):1825-1829.
    [133]D'ARGENIO C, DI LEO G, PAOLILLO A, et al. Metrological performances of camera self-calibration techniques[C]. IEEE International Instrumentation and Measurement Technology Conference Proceedings, Piscataway, NJ 08855-1331, United States,2008: 1750-1755.
    [134]FURUKAWA R, KAWASAKI H. Self-calibration of multiple laser planes for 3D scene reconstruction[C].3rd International Symposium on 3D Data Processing, Visualization, and Transmission, Piscataway, NJ 08855-1331, United States,2007:200-207.
    [135]MARINAKIS D, DUDEK G. Self-calibration of a vision-based sensor network[J]. Image and Vision Computing,2009,27(1-2):116-130.
    [136]QIN L, HU Y, WEI Y, et al. Approach for camera self-calibration based on five straight lines[C].2008 International Conference on Wireless Communications, Networking and Mobile Computing, Piscataway, NJ 08855-1331, United States,2008:4680740(1-6).
    [137]李杏华.激光跟踪系统的设计[D].天津:天津大学,2003.
    [138]林永兵,李杏华,张国雄.基于多边法的三维坐标测量系统自标定最优方案[J].计量学报,2003,24(3):166-173.
    [139]林永兵,张国雄,李真,等.多路激光跟踪干涉三维坐标测量系统冗余技术[J].计量学报,2003,24(1):1-5.
    [140]林永兵,张国雄,李真,等.四路激光跟踪干涉三维坐标测量系统自标定与仿真[J].仪器仪表学报,2003,24(2):205-210.
    [141]MUSTAFA S K, YANG G, YEO S H, et al. Self-calibration of a biologically inspired 7 DOF cable-driven robotic arm[J]. IEEE/ASME Transactions on Mechatronics,2008, 13(1):66-75.
    [142]WANG L, CAO J, HAN C. Self-calibration of heterogeneous sensors based on particle swarm optimization[C].2009 4th IEEE Conference on Industrial Electronics and Applications, Xi'an, China,2009:321-325.
    [143]FENG C, CONG S, SHAN H, et al. Self-calibration for kinematic parameters of a redundant planar two-degree-of-freedom parallel manipulator using evolutionary algorithms[J]. Engineering Optimization,2009,41(4):385-398.
    [144]IWAHORI Y, WOODHAM R J, WATANABE Y, et al. Self-calibration and neural network implementation of photometric stereo [J]. Proceedings-International Conference on Pattern Recognition,2002,16(4):359-362.
    [145]高建设,程丽,赵永生.新型5自由度并联机床运动学自标定研究 [J].计算机集成制造系统,2007,13(4):738-743.
    [146]GAO G, WANG W, LIN K, et al. Kinematic Calibration for Articulated Arm Coordinate Measuring Machines Base on Particle Swarm Optimization[C].2009 International Conference on Intelligent Computation Technology and Automation, Zhangjiajie, Hunan, China,2009:189-192.
    [147]陈华根,吴健生,王家林,等.模拟退火算法机理研究[J].同济大学学报(自然科学版),2004,32(6):802-805.
    [148]田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006.
    [149]CHAN K Y, KWONG C K, LUO X G. Improved orthogonal array based simulated annealing for design optimization[J]. Expert Systems with Applications,2009, 36(4):7379-7389.
    [150]WANG Z, GENG X, SHAO Z. An effective simulated annealing algorithm for solving the traveling salesman problem[J]. Journal of Computational and Theoretical Nanoscience,2009,6(7):1680-1686.
    [151]LAMBERTI L. An efficient simulated annealing algorithm for design optimization of truss structures[J]. Computers and Structures,2008,86(19-20):1936-1953.
    [152]BUREERAT S, LIMTRAGOOL J. Structural topology optimisation using simulated annealing with multiresolution design variables[J]. Finite Elements in Analysis and Design,2008,44(12-13):738-747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700