用户名: 密码: 验证码:
片状SrTiO_3模板的熔盐合成与改性及其在制备Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3织构压电陶瓷中的生长动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铌镁酸铅系陶瓷Pb(Mg_(1/3)Nb_(2/3))O_3是一类具有优良介电、压电性能的陶瓷体系。如Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3(PMN-PT)压电单晶因其在<001>方向具有优异压电性能而被认为是制作高效水声换能器、大应变驱动器、智能结构传感器等器件核心部件的理想材料。但制备单晶压电陶瓷目前普遍存在周期长、尺寸小、品质稳定性不佳以及难以加工成复杂形状等问题,严重影响其规模化应用。传统烧结型PMN-PT多晶压电陶瓷虽制备简单且性能较稳定,但其压电性能却显著低于对应单晶。采用模板晶粒生长技术(TGG)制备织构型多晶陶瓷既能继承由单晶体各向异性带来的优异性能,又可采用常规陶瓷成形与烧结制备手段,并且对于多种不同晶体结构的陶瓷体系均有较好的制备适用性,是一种高性能陶瓷的先进制备工艺。
     TGG技术制备织构型PMN-PT多晶压电陶瓷常采用SrTiO_3异质模板。片状SrTiO_3模板在熔盐合成过程中的形貌可控合成与改性、以及低温烧结条件下烧结体内织构组织的快速形成,是其中两个技术关键,将直接影响织构陶瓷的织构取向度和压电性能。本文作者选择PMN-32.5mol%PT压电陶瓷体系作为织构化研究对象,围绕SrTiO_3模板的熔盐可控合成和Ba~(2+)掺杂改性、以及TGG技术制备相应织构陶瓷过程中的基体和模板生长动力学行为与织构组织演变过程开展相关研究,并完成以下几方面工作:
     1)在SrCO_3和TiO_2熔盐合成Sr_3Ti_2O_7的研究中发现,形成片状Sr_3Ti_2O_7产物需经历物相演变和形貌发育两个过程。物相演变过程中先形成中间产物SrTiO_3,进而转变成Sr_3Ti_2O_7;Sr_3Ti_2O_7则通过溶解-析出模式在近似平衡的熔盐环境中发育成片状形貌。基于上述发现建立了熔盐产物先在Sr_3Ti_2O_7颗粒(001)表面外延形核、后沿<100>、<010>台阶式生长的二维生长模型。熔盐种类和添加量以及合成条件主要通过调控反应和传质过程来影响Sr_3Ti_2O_7产物形貌尺寸。如采用KCl/NaCl二元熔盐并改变其中组分,进而调整其对反应物/产物的溶解传质能力,可有效调控片状Sr_3Ti_2O_7颗粒形貌尺寸。缓慢升/降温条件则有助于熔盐产物根据Sr_3Ti_2O_7层状结构高度各向异性特点选择性析出到Sr_3Ti_2O_7颗粒各表面,进而形成高度各向异性的规整片状形貌。
     2)在片状Sr_3Ti_2O_7与TiO_2熔盐合成SrTiO_3的研究中,验证并分析了生成SrTiO_3物相并形成片状形貌的两种反应模式:一是Sr_3Ti_2O_7层状钙钛矿结构经Sr-O层迁出后切变成SrTiO_3完整钙钛矿结构;二是迁出的Sr-O层与TiO_2熔盐反应所得SrTiO_3产物在Sr_3Ti_2O_7表面外延生长。熔盐种类和添加量及合成条件主要通过改变物质溶解和析出过程来影响SrTiO_3的形貌各向异性程度。如增加熔盐助剂含量、延长保温时间及缓慢降温等措施均有助于SrTiO_3产物Ostwald熟化生长过程进行,经SrTiO_3小颗粒先溶解、进而在片状SrTiO_3颗粒无取向析出后,不利于获得形貌高度各向异性的SrTiO_3颗粒。另外KCl较NaCl更适合作为熔盐助剂合成片状SrTiO_3颗粒。
     3)在熔盐合成(Sr,Ba)TiO_3模板的研究中发现,所用前驱体类型和Ba2+置换方式直接影响(Sr,Ba)TiO_3产物形貌和Ba~(2+)置换程度。片状SrTiO_3前驱体在与BaO反应过程中,其片状形貌会受破坏,(Sr,Ba)TiO_3产物在此受破坏表面析出后形成无规则形貌,最终发育成高Ba~(2+)置换程度的片状多晶团聚体,且其形貌无规程度随BaO含量的增加而增加。片状Sr_3Ti_2O_7前驱体与BaO、TiO_2同时熔盐反应时,Sr_3Ti_2O_7经Sr-O层迁出和Ba~(2+)在层内置换出Sr~(2+)后转变成低Ba~(2+)含量的片状(Sr,Ba)TiO_3,Sr-O迁出后与BaO、TiO_2熔盐反应得到高Ba~(2+)含量的非片状(Sr,Ba)TiO_3,且其数量随熔盐中Ba~(2+)浓度增加而增多,合成后期片状(Sr,Ba)TiO_3经各表面无取向生长后逐渐增厚。对于二步熔盐合成,Sr_3Ti_2O_7先与BaO熔盐反应时,其层状结构有助于Ba~(2+)在Sr-O层间扩散并置换出Sr~(2+),在维持原有片状形貌的同时引入更多Ba~(2+),所得产物与TiO_2二次熔盐反应后得到形貌度高各向异性的规整片状(Sr,Ba)TiO_3颗粒,且非片状(Sr,Ba)TiO_3颗粒数量明显少于前两种合成方式。但增加Ba~(2+)浓度会降低片状(Sr,Ba)TiO_3表面平整程度。
     4)在反应-烧结技术制备铌镁酸铅陶瓷的研究中发现,所用镁源反应物对烧结体的物相组成、相对密度以及显微结构有较大影响。将(MgCO_3)_4·Mg(OH)_2·5H_2O代替传统的氧化镁MgO作为镁源反应物后,前者热分解产物的高反应活性有助于反应物之间反应活性互相匹配,进而可促进合成反应和基体烧结致密充分进行,850℃烧结4h后即可得到单一钙钛矿相组成的PMN陶瓷,相对密度约95%。
     5)在以片状SrTiO_3为模板对PMN-32.5PT进行TGG织构化制备的研究中发现,PbO熔化并形成液相烧结后,基体平均晶粒度和模板平均外延尺度均随保温时间t的1/3次方形式增长,并分别遵循Lay模型和由此衍生得到的模板外延生长模型。基体晶粒初始状态、PbO液相含量和烧结制度可调控两类晶粒的生长动力学系数。PbO液相-方面有助于基体晶粒溶解-析出过程进行,进而促进织构组织形成和基体烧结致密;另一方面也会溶解破坏SrTiO_3模板规整形貌。因此以PMN-32.5PT粉体为基体时,需在PbO熔化前适当保温,通过新生外延层保护作用使SrTiO_3模板继续保持规整片状形貌。其中含3wt%PbO液相和8vol%SrTiO_3模板时,1150℃烧结6h可制得取向因子约59.3%的织构陶瓷,其压电常数d_(33)(10KV/mm)约740pC/N,室温介电常数(1KHz)约3280。而以改进的一次固相合成PMN-32.5PT所用反应混合物为基体时,升温过程中反应所得高烧结活性的PMN-32.5PT可直接在SrTiO_3模板表面析出,有助于低温下迅速形成织构组织并烧结致密。其中基体内过量3wt%PbO并添加8vol%SrTiO_3模板时,1050℃烧结6h即可制得取向因子约53.8%的织构陶瓷,其d_(33)约690 pC/N,室温介电常数约3040。
Lead magnesium niobate,Pb(Mg_(1/3)Nb_(2/3))O_3, is one of the electric ceramics with excellent piezoelectric and dielectric properties. For example,Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3 (PMN-PT) single crystal has been regarded as a kind of ideal materials to be used in high-performance acoustic transducers, high-strain drivers and intelligent actuators, due to its excellent piezoelectric properties along <001> orientation. However, preparing single crystal always meets some problems, such as intrinsically high cost, small growth size, and low property stabilization and machinability. Although the sintering PMN-PT polycrystalline ceramics with good property stabilization can be easily fabricated, its properties are significantly lower than that of corresponding single-crystal. Templated grain growth method (TGG) is a kind of advanced technique to prepare textured polycrystalline ceramics with high performances that owe to the anisotropy properties of single-crystal. During TGG process, some conventional shaping and sintering processes can be referred, and many ceramics with different crystal structures can also be textured.
     SrTiO_3 hetero-template has been used widely to texture PMN-PT polycrystalline ceramics by TGG process. The morphology-controlled synthesis and modification of SrTiO_3 template by molten salt method, and the quick formation of textured microstructure at low sintering temperature are two critical factors, which may influence the textured degree and properties of ceramics greatly. During the research by choosing PMN-32.5mol%PT as a textured subject in this paper, the morphology-controlled synthesis and Ba~(2+)-doped modification of SrTiO_3 by molten salt method were investigated, and the matrix and template growth kinetics, and the development of textured microstructure during TGG process were also studied.
     The synthesis of tabular Sr_3Ti_2O_7 by reacting SrCO_3 with TiO_2 in flux can be divided into two stages: the phase formation and morphology development. During the phase formation, SrTiO_3 formed first, followed by the synthesis of Sr_3Ti_2O_7.The tabular Sr_3Ti_2O_7 can form through the dissolution-precipitation process in an approximate-equilibrium growth environment. Based on these observations, a two-dimensional growth process to form tabular Sr_3Ti_2O_7 particles was modeled: the formation of Sr_3Ti_2O_7 nucleuses on the (001) surface of product, and then the stepped growth along <100> and <010> orientations. The amount and type of salts, and the synthesis conditions influence the size and morphology of Sr_3Ti_2O_7 by adjusting the reaction and mass transfer process. The product morphology can be controlled effectively by using KCl/NaCl binary salt and adjusting the KCl/NaCl weight ratio. The slow heating and cooling conditions benifit the formation of tabular morphology with high shape anisotropy through the sufficient selective-prepitation of reaction product on the Sr_3Ti_2O_7 particle surfaces according to the high anisotropy of its layered crystal structure.
     Two reaction patterns to form tabular SrTiO_3 product by reacting tabular Sr_3Ti_2O_7 with TiO_2 in flux were investigated: the structure transition from layered perovskite structure of Sr_3Ti_2O_7 to perovskite structure of SrTiO_3 by outmigrating Sr-O layers, and the epitaxial growth of SrTiO_3 particles by the precipitation of product synthesized by reacting Sr-O with TiO_2 in flux. The amount and type of salts, and synthesis conditions influence the shape anisotropy of SrTiO_3 particles by adjusting the dissolution-precipitation process. Some synthesis conditions, such as increasing salt amount, prolonging synthesis time, and cooling slowly, would promote the Ostwald ripening growth of SrTiO_3 particles in flux. The small SrTiO_3 particles would be dissolved first, followed by the sufficiently non-selective precipitation on the tabular SrTiO_3 surfaces according to the high symmetry of its perovskite structure, which is disadvantageous to obtain the SrTiO_3 particles with high shape anisotropy. Additionally, KC1 is more suitable than NaCl to synthesis tabular SrTiO_3.
     As for synthesizing (Sr, Ba)TiO_3 in KC1 flux, the precursors and reactive modes influence the phase composition and product morphology greatly. The perfect tabular morphology of SrTiO_3 precursor would be damaged when reacting with BaO. After the precipitation and irregular growth of (Sr, Ba)TiO_3 on these destroyed surfaces, the tabular aggregates that composed of many irregular (Sr, Ba)TiO_3 particles with high Ba~(2+) content formed. The irregular degree of tabular aggregates decreased by increasing BaO amount in reactants. When Sr_3Ti_2O_7 reacted with BaO and TiO_2 simultaneously, tabular (Sr, Ba)TiO_3 with relatively low Ba~(2+) content formed by outmigrating Sr-0 layers from layered structure of Sr_3Ti_2O_7 and substituting Ba~(2+) for Sr~(2+) in layers. The Sr-O layers reacted with BaO and TiO_2 in flux to form non-tabular (Sr, Ba)TiO_3 with relatively high Ba~(2+) content. After non-oriented growing, the tabular (Sr, Ba)TiO_3 thickened. The amount of non-tabular (Sr, Ba)TiO_3 increased by increasing BaO amount in reactants. As for two-step molten salt synthesis, when Sr_3Ti_2O_7 reacted with BaO first, its layered structure benefits the diffusion and substitution of Ba for Sr in layers, and the perfect tabular morphology can be maintained after doping more Ba~(2+).Further reacting with TiO_2,the (Sr, Ba)TiO_3 particles with perfect tabular morphology and high shape anisotropy can be obtained, and the amount of non-tabular (Sr, Ba)TiO_3 particles also decreased compared with the previous synthesis processes. However, the increase of BaO may lead to decrease smooth degree of particle surface.
     As for preparing PMN ceramics by reactive sintering, the magnesium precursors influence the phase composition and microstructure of sintering ceramics greatly. By substituting (MgCO_3)_4·Mg(OH)_2·5H_2O for MgO that widely used as a magnesium precursor, the high reactivity of product decomposed from the former benefits the match of reactivity among reactants, leading to promote the completion of reaction and densification. The PMN ceramics with perovskite single-phase composition and relative density of-95% can be prepared by sintering at 850℃for 4 h.
     During TGG process to texture PMN-32.5mol%PT polycrystalline ceramics by using SrTiO_3 templates, it was found that the experimental datas displayed the t~(1/3) relation between sintering time t and average matrix grain size or template growth distance, which followed the Lay model for matrix growth and the kinetic model for template growth that derivated from the former. The initial matrix status, PbO liquid phase content and sintering conditions can adjust the kinetic parameters for the growth of matrix and template. PbO liquid phse benefits the textured microstructure development and densification by promoting the dissolution-precipitation process, but it also dissolved and damaged SrTiO_3 templates. For this reason, when PMN-32.5PT matrix was used, a long-time aneal before forming PbO-based liquid phase is needed. After anealling,SrTiO_3 templates would be protected by a thin epitaxial growth layer. The textured ceramic with Lotgering factor of 59.3% can be obtained by containing PbO of 3 wt% and SrTiO_3 templates of 8 vol%, and sintering at 1150℃for 6 h, which has a piezoelectric coefficient d_(33) of -740 pC/N (10KV/mm) and room temperature dielectric constant of 3280 at 1 KHz. When the modified mixed reacntants for synthesizing PMN-32.5PT by solid-state synthesis were used as a matrix, the PMN-32.5PT with high reactivity synthesized from in situ reaction can be precipitated on the template surfaces directly, leading to the quick formation of textured microstructure and densification at low sintering temperature. By adding excess PbO of 3wt% and SrTiO_3 templates of 8 vol%, the textured ceramic with Lotgering factor of 53.8% can be prepared by sintering at 1050℃for 6 h, which has a piezoelectric coefficient d_(33) of -690 pC/N and room temperature dielectric constant of 3040.
引文
[1] 郭保全,侯宏花,潘玉田.智能材料和结构的应用及展望.科技情报开发与经济.2005,15(6):131-132.
    [2] 魏风春,张恒,张晓等.智能材料的开发与应用.材料导报,2006,20(5):375-378.
    [3] 谢建宏,张为公,梁大开.智能材料结构的研究现状及未来发展.材料导报,2006,20(11):6-9.
    [4] 高淑雅.智能材料及其应用.陕西科技大学学报,2004,22(5):163-166.
    [5] 唐少容,周岱,黄真.智能材料结构的研究与应用.建筑技术开发,2005,32(5):139-143.
    [6] 薛伟辰,郑乔文,刘振勇等.结构振动控制智能材料研究及应用进展.地震工程与工程振动,2006,26(5):213-217.
    [7] 高培德.智能材料和结构.功能材料与器件学报,2002,8(2):93-98.
    [8] 王守德,刘福田,程新.智能材料及其应用进展.济南大学学报(自然科学版),2002,16(1):97-100.
    [9] 韩鸿硕,蒋宇平,王家胜.美国国防结构和多功能材料的研究与发展.中国航天,2007,7:24-27.
    [10] 宋道仁.压电效应及其应用.北京:科学普及出版社,1987.41-46.
    [11] 包兴.电子器件导论.北京:北京理工大学出版社,2001.186-187.
    [12] 宋道仁.压电效应及其应用.北京:科学普及出版社,1987.46-47.
    [13] 钟维烈.铁电体物理.北京,科学出版社,2000,395.
    [14] 钟维烈.铁电体物理.北京,科学出版社,2000,2.
    [15] 宋道仁.压电效应及其应用.北京:科学普及出版社,1987.34.
    [16] 贾宝贤,边文凤,赵万生,等.压电超声换能器的应用与发展.压电与声光,2005,27(2):131-135.
    [17] 尚志远.压电超声换能器的性能分析及应用领域.压电与声光,1994,16(1):29-33.
    [18] 王炳辉,陈敬军.声纳换能器的新进展.声学技术,2004,23(1):67-71.
    [19] 王兴超,陈寿元,肖朋旭,等.高频压电陶瓷滤波器的研制.压电与声光,2004,26(2):103-105.
    [20] 万学华,张火荣,戴黎明,等.压电陶瓷谐振器.世界电子元器件,1998,8:17-19
    [21] 刘飘楚.利用母弹开舱过载的压电点火器研究.火工品,2003,3:11-14.
    [22] 陈荷娟,孙加存.高能多层压电陶瓷电源设计.弹道学报,2003,15(4):82-86.
    [23] 晏伯武,熊皓.压电变压器用锆钛酸铅压电陶瓷材料的研究.陶瓷学报,2007,28(2):150-154.
    [24] 蔡晓峰,邱海波.高介电常数压电陶瓷材料研究.硅酸盐通报,1999,3:15-17.
    [25] 孙涛,谭久彬,董申.压电陶瓷微驱动器用于超精定位的技术研究.压电与声光,1999,21(6):493-497.
    [26] 陈维山,赵学涛,刘军考,等.压电超声波马达发展现状及研究方向.电机与控制学报,2006,10(5):498-502.
    [27] 王华,张宪民,邓俊广.基于压电陶瓷驱动的精密定位平台研究.测试技术学报,2007,21(4):295-300.
    [28] 王威远,魏英杰,王聪,等.压电智能结构传感器/作动器位置优化研究.宇航学报,2007,28(4):1025-1029.
    [29] 田海民,缑新科.压电材料与智能结构在振动控制中的研究与前景展望.仪表技术与传感器,2007,8:7-9.
    [30] 吴大方,刘安成,麦汉超,等.压电智能柔性梁振动主动控制研究.北京航空航天大学学报,2004,30(2):160-163.
    [31] Service R F. Shape-changing crystals get shiftier. Science, 1997, 275:1878-1880.
    [32] Fu Huaxiang, Cohen Ronald E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature, 2000, 403:281-283.
    [33] Park Seung-Eek, Hackenberger W. High performance single crystal piezoelectrics: applications and issues. Current Opinion in Solid State and Materials Science, 2002, 6:11-18.
    [34] Park Seung-Eek, Shrout Thomas R. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Ultrasonics Ferroelectric Frequency Contral, 1997,44: 1140-1147.
    [35] Parka Seung-Eek, Shrout Thomas R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics,1997,82: 1804-1811.
    [36] Lim L C, Shanthi M, Rajan K K, et al.Flux growth of high-homogeneity PMN-PT single crystals and their property characterization. Journal of Crystal Growth, 2005,282: 330-342.
    [37] Kuwata J, Uchino K, Nomura S. Dielectric and piezoelectric properties of 0.91Pb(Zn_(1/3)Nb_(2/3))O_3-0.09PbTiO_3 single crystals. Japanese Journal of Applied Physics, 1982,21:1298-1302.
    [38] Liu S F, Park Seung-Eek, Shrout Thomas R, et al.E-field dependence of piezoelectric properties for rhombohedral 0.955Pb(Zn_(1/3)Nb_(2/3))O_3-0.045PbTiO_3 single crystals. Journal of Applied Physics, 1999, 85: 2810-2814.
    [39] Paik D S, Park Seung-Eek, Wada S, et al. E-field induced phase transition of <001> oriented rhomobohedral 0.92Pb(Zn_(1/3)Nb_(2/3))O_3-0.08PbTiO_3 crystals.Journal of Applied Physics, 1999, 85: 1080-2814.
    [40] Lima C L, Shanthia M, Rajana K K, et al. Flux growth of high-homogeneity PMN-PT single crystals and their property characterization. Journal of Crystal Growth, 2005,282:330-342.
    [41] Kania A, Slodczyk,Ujma Z. Flux growth and characterization of (1-x)PbMg_(1/3)Nb_(2/3)O_3-xPbTiO_3 single crystals. Journal of Crystal Growth, 2006,289(1):134-139.
    [42] Rockosi D J, Gorzkowski E P, King P T, et al. Seeded Growth from Twinned and Untwinned Abnormal Grains of Pb(Mg_(1/3)Nb_(2/3))O_3-35 mol% PbTiO_3 in a Matrix Containing PbO Additions. Journal of the American Ceramic Society,2003, 87(7): 1339-1342.
    [43] King P T, Gorzkowski E P, Scotch A M, et al. Kinetics of {001} Pb(Mg_(1/3)Nb_(2/3))O_3-35mol%PbTiO_3 single crystals grown by seeded polycrystal conversion. Journal of the American Ceramic Society, 2003, 86(12):2182-2187.
    [44] Li Tao. Heteroepitaxial growth of bulk single crystal Pb(Mg_(1/3)Nb_(2/3))O_3-32mol% PbTiO_3 from (111) SrTiO_3.Journal of Materials Research, 1999, 14(8):3189-3191.
    [45] 许桂生,罗豪,仲维卓,等.铅基复合钙钛矿型驰豫铁电单晶的生长基元与生长机理I.PMNT单晶的表面形貌、负晶结构及生长基元的组装与拆分.化学学报,2000,58(2):172-177.
    [46] Xu Guisheng, Luo Haosu, Guo Yiping, et al. Growth and piezoelectric properties of PbMg_(1/3)Nb_(2/3)O_3-PbTiO_3 crystals by the modified Bridgman technique. Solid State Communications, 2001, 120:321-324.
    [47] Messing G L, Trolier-McKinstry S, Sabolsky E M, et al. Templated grain growth of textured piezoelectric ceramics. Critical Reviews in Solid and Materials Sciences, 2004,29:45-96.
    [48] Kimura T. Application of texture engineering to piezoelectric ceramics. Journal of the Ceramic Society of Japan, 2006,114(1):15-25.
    [49] Hoffmann M J, Kungl H. High strain lead-based perovskite ferroelectrics.Current Opinion in Solid State and Materials Science, 2004, 8: 51-57.
    [50] Tadashi Takenaka, Koichiro Sakata. Grain orientation and electrical properties of hot-forged Bi_4Ti_3O_(12) ceramics. Japanese Journal of Applied Physics, 1980, 19(1):31-39.
    [51] Fuierer P A, Nichtawitz A. Electric field assisted hot-forging of bismuth titanate.Proceedings of the Ninth IEEE International Symposium on the Application of Ferroelectrics. Pennsylvania, USA: IEEE, 1994.126-129.
    [52] Zeng J T, Li Y X, Yang Q B, et al.Grain oriented CaBi_4Ti_4O_(15) piezoceramics prepared by the screen-printing multilayer grain growth technique. Journal of the European Ceramic Society, 25(12): 2727-2730
    [53] Sun S W, Pan X M, Wang P C. Fabrication and electrical properties of grain-oriented 0.7Pb(Mg_(1/3)Nb_(2/3))O_3-0.3PbTiO_3 ceramics. Applied Physics Letters, 2004, 84(4): 574-577.
    [54] Sakuma Y, Kimura T. Mechanisms of Texture Development in Bismuth Layer-Structured Ferroelectrics Prepared by Templated Grain Growth. Journal of Electroceramics, 2004,13:537-541.
    [55] Seabaugh M M, Cheney G L, Hasinska K, et al. Development of a Templated Grain Growth System for Texturing Piezoelectric Ceramics. Journal of Intelligent Material Systems and Structures, 2004,15(3):209-214.
    [56] 郝俊杰,李龙土,王晓慧等.无铅压电陶瓷材料研究现状.硅酸盐学报,2004,32(2):189-195.
    [57] 杨群保,荆学珍,李永祥等.无铅压电陶瓷研究的新进展.电子元件与材料,2004,23(11):56-65.
    [58] 陈建华,裴志斌,车俊等.非铅基压电陶瓷体系的研究及进展.机械科学与技术,2004,23(10):1159-1162.
    [59] 尹奇异,赁敦敏,肖定全等.无铅压电陶瓷及其应用研究.金属功能材料,2004,11(6):40-44.
    [60] 李承恩,李毅,周家光.铋层状结构压电陶瓷及敏感元件高温特性研究.电子元件与材料,2002,21(5):11-13
    [61] Herabut A, Safari A. Processing and electromechanical properties of (Bi_(0.5)Na_(0.5))_((1-1.5x))La_xTiO_3 ceramics. Journal of American Ceramic Society, 1997,80(11): 2954-2958.
    [62] Sambasiva R K, Satyanarayana C. Piezoelectric and ferroelectric properties of rare-earth modified tungsten bronze barium silver niobate ceramics.Ferroelectrics, 1994,154(1-4): 195-200.
    [63] West D L, Payne D A. Reactive-Templated grain growth of Bi_(1/2)(Na,K)_(1/2)TiO_3:Effects of formation on texture development. Journal of American Ceramic Society, 2003, 86(7): 1132-1137.
    [64] Yasuyoshi Saito, Hisaaki Takao, Toshihiko Tani, et al.Lead-free Piezoceramics.Letter to nature, 2004,432:84-87.
    [65] Zhang S, Rhee S, Randall C A, et al. Dielectric and piezoelectric properties of high curie temperature single crystals in the Pb(Yb_(1/2)Nb_(1/2))O_3-xPbTiO_3 solid solution series. Japanese Journal of Applied Physics, 2002,41(2A):722-726.
    [66] Zhang S, Rehrig P W, Randall C, et al. Crystal growth and electrical properties of Pb(Yb_(1/2)Nb_(1/2))O_3-PbTiO_3 perovskite single crystals. Journal of Crystal Growth,2002, 234(2-3): 415-420.
    [67] Yasuda N, Ohwa H,Kume M, et al. Crystal growth and dielectric properties of solid solutions of Pb(Yb_(1/2)Nb_(1/2))O_3-PbTiO_3 with a high Curie temperature near a morphotropic phase boundary. Japanese Journal of Appled Physics, 2001, 40(9B):5664-5667.
    [68] Zhang S, Eitel R E, Randall C A, et al. Manganese-modified BiScO_3-PbTiO_3 piezoelectric ceramic for high-temperature shear mode sensor. Applied Physics Letters, 2005, 86(26):1-3.
    [69] Zhang S, Randall C A, Shrout T R. Characterization of perovskite piezoelectric single crystals of 0.43BiScO_3-0.57PbTiO_3 with high Curie temperature. Journal of Applied Physics, 2004, 95(8):4291-4295.
    [70] Eitel R E, Randall C A, Shrout T R, et al. New High Temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O_3-PbTiO_3 ceramics. Japanese Journal of Applied Physics, 2001, 40: 5999-6002.
    [71] 甘国友,严继康,孙加林等.压电复合材料的现状与展望.功能材料,2000,31(5):456-463.
    [72] 董丽杰,权红英,熊传溪.聚合物/压电陶瓷复合材料研究进展.国外建材科技,2004,25(4):69-71.
    [73] 刘梅冬,许毓春.压电铁电材料与器件.广州:华中理工大学出版社,1992.48-109.
    [74] Dias C J, Igreja R, Marat-Mendes R, et al.Recent advances in ceramic-polymer composite electres. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(1): 35-40.
    [75] 张荣国,颜学敏,雷家珩.陶瓷-聚合物相压电复合材料研究进展.佛山陶瓷,2005,9:25-28.
    [76] Kobayashi T, Shimanuki S, Saitoh S, et al. Improved growth of large lead zinc niobate titanate piezoelectric single crystals for medical ultrasonic transducers.Japanese Journal of Appled Physics, 1997, 36(913): 6035-6038.
    [77] 杨凤霞,王四德,兰从庆.1-3型PZT/Polymer压电复合材料性能分析.压电与声光,2001,23(1):49-55.
    [78] Xu Zhou, Chen Futao, Xi Zengzhe, et al. The studies of single crystal PMN-PT68/32/polymer 1-3 composites. Ceramics International,2004, 30(7):1777-1780.
    [79] West D L, Payne D A. Reactive-templated grain growth of Bi_(1/2)(Na,K)_(1/2)TiO_3:effects of formulation on texture development. Journal of the American Ceramic Society, 2004, 86(7):1132-1137.
    [80] Jing Xuezheng, Li Yongxiang, Yang Qunbao, et al. Influence of different templates on the textured Bi0.5(Nal-xKx)0.5TiO3 piezoelectric ceramics by the reactive template grain growth process. Ceramics International, 2004, 30:1889-1893.
    [81] Kimura Toshio, Sakuma Yoshiyuki, Murata Masatoshi. Texture development in piezoelectric ceramics by template grain growth using heterotemplates. Journal of the European Ceramic Society, 2005, 25: 2227-2230.
    [82] Kimura Toshio, Miura Yuko,Fuse Kaori. Texture development in barium titanate and PMN-PT using hexabarium 17-titanate heterotemplates. International Journal of Applied Ceramic Technology, 2005, 2(1): 15-22.
    [83] Allahverdi A, Hall A, Brennan R, et al. An overview of rapidly prototyped piezoelectric actuators and grain-oriented ceramics. Journal of Electroceramics,2002, 8(2): 129-137.
    [84] Sakuma Yoshiyuki, Kimura Toshio. Mechanisms of texture development in bismuth layer-structured ferroelectrics prepared by template grain growth.Journal of Electroceramics, 2004,13:537-541.
    [85] Gupta S M, Kulkarni A R. Synthesis and dielectric properties of lead magnesium niobate-A review. Materials Chemistry and Physics, 1994, 39(2):98-109.
    [86] 李龙土.弛豫铁电陶瓷研究进展[J].硅酸盐学报,1992,20(5):476-483.
    [87] Okazaki K, Igarashi H. Structure-property relations in ceramic dielectric capacitors. Ferroelectrics, 1979,27:263-268.
    [88] Koh J H, Jeong S J, Ha M S, et al.Dynamic observation in piezoelectric aging behavior of Pb(MgNb)O_3-Pb(ZrTi)O_3 multilayer ceramic actuators[J].Ferroelectrics, 2006, 332: 112-122.
    [89] 荆阳,雒建斌,路新春,等.PMN-PZT多层厚膜微致动器的制作与分析.机械工程学报,2005,41(3):107-111.
    [90] Saha D, Sen A, Maiti H S. Low temperature liquid phase sintering of lead magnesium niobate. Ceramics International, 1999, 25: 145-151.
    [91] Ananta S, Whomas N W. Relationships between sintering conditions,microstructure and dielectric properties of lead magnesium niobate. Journal of the European ceramic society, 1999, 19: 629-635.
    [92] Zhao X Y, Fang B J, Cao H, et al. Dielectric and Piezoelectric Performance of PMN-PT single Crystals with Compositions Around the MPB: Influence of Composition, Poling Field and Crystal Orientation. Materials Science and Engineering B, 2002, 96: 254-262.
    [93] Lejeune M, Boilot J P. Formation mechanism and ceramic process of the ferroelectric perovskites: Pb(Mg_(1/3)Nb_(2/3))O_3 and Pb(Fe_(1/2)Nb_(2/3))O_3.Ceramics International, 1982, 8: 99-103.
    [94] Swartz S L, Shrout T R. Fabrication of Perovskite Lead Magnesium. Niobate.Material research bulletin, 1982, 17(10): 1245-1250.
    [95] 夏峰,王晓莉,张良莹,等.PMN-PT系陶瓷的熔盐法合成及其压电性能研究.硅酸盐学报,1998,26(1):114-117.
    [96] Beltran H, Maso H, Julian B, et al. Preparation and characterization of compositions based on PbO-MgO-Nb2O5 using the Sol-Gel Method. Journal of Sol-Gel Science and Technology, 2003, 26: 1061-1065.
    [97] 王歆,庄志强.PMN-PT弛豫铁电粉体和薄膜的无机盐一凝胶法制备.硅酸盐学报,2002,30(S1):68-71.
    [98] Cavalheiro A A, Foschini C R, Zaghete M A, et al. Seeding of PMN powders made by the Pechini Method. Ceramics International, 2001, 27(5): 509-515.
    [99] Das R N, Pramanik P. Chemical synthesis of fine powder of lead magnesium niobate using niobium tartarate complex. Materials Letters, 2000,46(1):7-14.
    [100] Kong L B, Ma J, Zhu W, et al.Preparation of PMN-PT ceramics via a high-energy ball milling process. Journal of Alloys and Compounds, 2002, 336:242-246.
    [101]Shrout T R, Halliyal A. Preparation of lead-based ferroelectric relaxors for capacitors. American Ceramic Society Bulletin, 1987,64(4): 704-711.
    [102] Sana D, Sen A, Maiti H S. Fast firing of lead magnesium niobate at low temperature. Journal of Materials Research, 1996,11(4):932-938.
    [103]侯育冬,朱满康,王春娟,等.不同铅气氛对PZMN陶瓷压电性能的影响.压电与声光,2005,27(1):56-58.
    [104] Lejeune M, Boilot J P. Formation mechanism and ceramic process of the ferroelectric perovskites: Pb(Mg_(1/3)Nb_(2/3))O_3 and Pb(Fe_(1/3)Nb_(2/3))O_3.Ceramics International,1982,8:99-103.
    [105] Liou Y C. Effect of heating rate on properties of Pb(Mg_(1/3)Nb_(2/3))O_3 ceramics produced by the reaction-sintering process. Materials Letters, 2004, 58(6):944-947.
    [106] 邓金侠,邢献然,于然波,等.先驱体合成法制备PMN-PT弛豫铁电体及其表征.金属学报,2005,41(5):503-506.
    [107] Kwon S, Sabolsky E M, Messing G L. Low-temperature reactive sintering of 0.65PMN-0.35PT. Journal of the American Ceramic Society, 2001, 84(3):648-650.
    [108] Kwon S, Sabolsky E M, Messing G L, et al. High strain, <001> textured 0.675Pb(Mg_(1/3)Nb_(2/3))O_3-0.325PbTiO_3 ceramics: templated grain growth and piezoelectric properties. Journal of the American Ceramic Society, 2005, 88(2):312-317.
    [109] Noheda B, Cox D E, Shirane G, et al. Phase Diagram of the Ferroelectric Relaxor (1-x) Pb(Mg_(1/3)Nb_(2/3))O_3-xPbTiO_3.Physical Review B, 2002, 66(5):541041-5410410.
    [110] Moon J, Carasso M L. Particle-shape Control and Formation Mechanisms of Hydrothermally Derived Lead Titanate. J. Mater. Res., 1999,14(3):866-875.
    [111] 李永祥,吴冲若.片状和针状钛酸铅微粒子的制备研究.传感技术学报,1995:7-10.
    [112] Wada Satoshi, Takeda Kotaro, Muraishi Tomomitsu, et al. Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Japanese Journal of Applied Physics, 2007, 46(10):7039-7043.
    [113] 许桂生,罗豪,王评初,等.新型弛豫型铁电单晶PMNT的铁电与压电性能.科学通报,1999,44(20):2157-2161.
    [114] Sabolsky E, Trolier-McKinstry S, Messing G L. Kinetics of templated grain growth of 0.65Pb(Mg_(1/3)Nb_(2/3))O_3-0.35PbTiO_3. Journal of the American Ceramic Society, 2001, 84(11): 2507-2513.
    [115] Liu Hanxing, Sun Xiaoqin, Zhao Qinglin, et al.The synthesis and microstructures of tabular SrTiO_3 crystal. Solid-State Electronics, 2003, 47:2295-2298.
    [116] Takeuchi T, Tani T, Satoh T. Microcomposite Particles Sr_3Ti_2O_(7-) SrTiO_3 with an Epitaxial Core-Shell structure. Solid State Ionics, 1998, 108: 67-71.
    [117] Ebrahimi M E, Allahverdi M, Safari A. Synthesis of high aspect ratio platelet SrTiO_3.Journal of the American Ceramic Society, 2005, 88(8): 2129-2132.
    [118] Akdogan E K, Brennan R E, Allahverdi M, et al. Effects of molten salt synthesis (MSS) parameters on the morphology of Sr_3Ti_2O_7 and SrTiO_3 seed crystals.Journal of Electroceramic, 2006, 16:159-165.
    [119] Yoon K H, Cho Y S, Kang D H. Review molten salt synthesis of lead-based relaxors. Journal of materials science, 1998, 33: 2977-2984.
    [120] Nagata K, Okazaki K. One-directional grain-oriented lead metaniobate ceramics.Journal of Applied Physics, 1985, 24: 812-814.
    [121] Arendt R H, Rososlowski Z H. Lead zirconate titanate ceramics from molten salt synthesis powders. Materials Research Bulletin, 1979,14:703-709.
    [122] 蔡君威,王聪秀.熔盐合成法制备妮铁酸铅粉末.化学世界,1993,34:616-618.
    [123] 曹健,谢嘉宁,张业凤.熔盐法合成BaFe_(11)Co_(0.5)Ti_(0.5)O_(19)磁性粉体及其性能分析.功能材料,1996,27:446-448.
    [124] Arendt R H. The molten salt synthesis of single magnetic domain BaFe_(12)O_(19) and SrFe_(12)O_(19) crystal, Journal of Solid State Chemistry, 1973, 8(4):339-47.
    [125] Kan Yanmei,Jin Xihai, Wang Perling, et al. Anisotropic grain growth of Bi_4Ti_3O_(12) in molten salt fluxes. Materials Research Bulletin, 2003, 38: 567-576.
    [126] 煌听,李承恩,晏海学.熔盐法合成SrBi_Ta_2O_9粉体.无机材料学报,2002,17(1):145-148.
    [127] Zhao Lili,Gao Feng, Zhang Changsong, et al.Molten salt synthesis of anisometric KSr_2Nb_5O_(15) particles. Journal of Crystal Growth, 2005, 276:446-452.
    [128] Brahmaroutu Bhaskar, Messing G L, Trolier-Mckinstry S. Molten salt synthesis of anisotropic Sr_2Nb_2O_7 particles. Journal of the American Ceramic Society,1999, 82(6): 1565-1568.
    [129] Watari K, Brahmaroutu B, Messing G L, et al. Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO_3.Journal of Materials Research, 2000,15(4): 846-849.
    [130] Ruddlesen S N, Popper P. The Compound Sr_3Ti_2O_7 and its Structure. Acta Crystallogr, 1958,11:54-55.
    [131] Raj P M, Dunn S M, Cannon W R. Measurement of particle orientation in tape cast ceramic microstructures. Journal of Computer-Assisted Microscopy, 1998,10(1):33-51.
    [132] 李冬云,乔冠军,金志浩,流延法制备陶瓷薄片的研究进展.硅酸盐通报,2004 2:44-47.
    [133] Richard E M. Tape casting: past, present, potential. American Ceramic Society Bulletin, 1998, 77(10): 82-86.
    [134] Knitter R, Gunther E, Odemer C, et al. Ceramic microstructures and potential applications. Microsystem Technologies, 1996,2: 135-138.
    [135] Loey A S, Richard D M, Hugh R. Optimisation of thermoelectric green tape characteristics made by the tape casting method. Materials Chemistry and Physics, 2000, 62: 263-272.
    [136] Song J K,Um W S, Lee H S, et al. Effect of polymer molecular weight variations on PZT slip for tape casting. Journal of the European Ceramic Society,2000,20:685-688.
    [137] 来俊华,丘泰,徐洁,等.用流延法制备优质陶瓷基片的研究.江苏陶瓷,2003,36(2):7-9.
    [138] Kusumoto K, Sekiya T. Preparation and electrostrictive properties of PMN-PT solid solutions by excess PbO addition. Journal of the Korean Physical Society,1998, 32(3): 1190-1191.
    [139] Villegas M, Caballero A C, Kosec M, et al. Effects of PbO excess in Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3 ceramics: Part I. Sintering and dielectric properties.Journal of Materials Research, 1999, 14(3): 891-897.
    [140] 李东亮.PMN-PT陶瓷的织构化制备技术研究:[硕士学位论文].武汉:武汉理工大学,2005.
    [141] Liu X, Peng X, Xie W, et al.Decomposition kinetics and its influencing factor of SrCO_3 with high purity. Chinese Journal of Material Research, 2005, 19 (3):287-292.
    [142] Kan Yanmei, Jin Xihai, Wang Peiling, et al. Anisotropic grain growth of Bi_4Ti_3O_(12) in molten salt fluxes. Materials Research Bulletin, 2003, 38: 567-576.
    [143] Cai Zongying, Xing Xianran, Yu Ranbo, et al. Large-scale synthesis of Pb_(1-x)La_xTiO_3 ceramic powders by molten salt method. Journal of Alloys and Compounds, 2006,420: 273-277.
    [144] Putzig D E, Delpasco T W. "Titanium Compound," in Kirkothmer Encyclopedia of Chemical Technology, 1991, 24: 235-237.
    [145] Galamba N, Nieo de Castro C A. Shear viscosity of molten alkali halides from equilibrium and nonequilibrium molecular-dynamics simulations. The Journal of Chemical Physics, 2005, 122: 224501-1-224501-9.
    [146] 苏周.熔盐法合成片状氧化铝粉体的研究:[硕士学位论文].长沙:中南大学,2004.
    [147] 闵乃本.晶体生长的物理基础.上海:上海科学技术出版,1982.346-349.
    [148] 闵乃本.晶体生长的物理基础.上海:上海科学技术出版,1982.352.
    [149] 闵乃本.晶体生长的物理基础.上海:上海科学技术出版,1982.353.
    [150] Kashchiev D, Rosmalen M V. Review: Nucleation in solution revisited. Crystal Research and Technology, 2003, 38, (7-8): 555-574.
    [151] Sangwal K. On the estimation of surface entropy factor, interfacial tension,dissolution enthalpy and metastable zone-width for substances crystallizing from solution. Journal of Crystal Growth, 1989, 97(2): 393-405.
    [152] Bennema P, Sohnel O.Interfacial surface tension for crystallization and precipitation from aqueous solutions. Journal of Crystal Growth, 1990, 102(3):547-556.
    [153] Mersmann A. Calculation of interfacial tensions. Journal of Crystal Growth,1990, 102(4): 841-847.
    [154] 唐睿康.表面能与晶体生长/溶解动力学研究的新动向.化学进展,2005,17(2):368-376.
    [155] 钟志勇.固态材料形成过程中的晶体生长机理探讨.人工晶体学报,2004,33(5):848-856.
    [156] 张克从.晶体生长.北京:科学出版社.1981.79-81.
    [157] 姚连增.晶体生长基础.合肥:中国科技大学出版,1995.409-412.
    [158] 闵乃本.晶体生长的物理基础.上海:上海科学技术出版,1982.416.
    [159] 闵乃本.晶体生长的物理基础.上海:上海科学技术出版,1982.343.
    [160] Park J H, Lee D H, Shin H S, et al.Transition of the particle-growth mechanism with temperature variation in the molten-salt method. Journal of the American Ceramic Society, 79(4): 1130-1132.
    [161] Jackson K A. The present state of the theory of crystal growth from the melt.Journal of Crystal Growth, 1974(24/25): 130-136.
    [162] Vengrenovitch R D. On the Ostwald ripening theory. Acta Metallurgy, 1982, 30:1079-1086.
    [163] 潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社.1998.583-586.
    [164] Usimaki U, Vahakangs J, Leppavuori S. Reaction rates of BaTiO_3 and SrTiO_3.Journal of the American Ceramic Society, 1982, 65(3): 147-149.
    [165] 刘韩星,刘志坚,欧阳世翕.微波合成SrTiO_3的工艺、结构与性能研究.物理化学学报,1998,14(7):624-629.
    [166] 赖华生,邓汝富.草酸盐共沉淀法制备施主掺杂的SrTiO_3微粉.南方冶金学院学报,1998,19(3):207-211.
    [167] 胡嗣强,黎少华.水热合成技术的研究和应用.化工冶金,1994,15(4):316-321.
    [168] Pontes F, Lee E. Leite E, et al. High dielectric constant of SrTiO_3 thin films prepared by chemical process. Journal of Materials Science, 2000, 35:4783-4787.
    [169] 仲维卓,华素坤.晶体生长形态学.北京:科学出版社.1999.114-116.
    [170] 张旭.氧化镁的活性影响因素及其应用.河北化工,2004,2:44-45.
    [171] 唐小丽,刘昌胜.重烧氧化镁粉的活性测定.华东理工大学学报,2001,27(2):157-169.
    [172] Dambekalne M Y, Antonova M K, Perro I T, Plaude A V. Synthesis of solid solutions of perovskites. Glass and Ceramics, 1985,42(8): 375-378.
    [173] Kwon S, Messing G L. Sintering of mixtures of seeded boehmite and ultrafine α-alumina. Journal of the American Ceramic Society, 2000, 83(1): 82-88.
    [174] 施剑林.固相烧结Ⅱ,熟化与致密化关系及物质传输途径.硅酸盐学报,1997,25(6):657-668.
    [175] 施剑林.固相烧结Ⅲ,实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为.硅酸盐学报,1998,26(1):1-13.
    [176] 孙大志,赵梅瑜,罗豪峺.PMNT陶瓷材料的压电介电性能研究.无机材料学报,2000,15(5):939-942.
    [177] Lay K W. Grain Growth in UO_2-Al_2O_3 in the Presence of a Liquid Phase.Journal of the American Ceramic Society, 1968, 51(7): 373-376.
    [178] Heimenz P C. Principles of Colloid and Surface Chemistry. New York: Marcel Dekker, 1986.
    [179] Hennings D F K, Janssen R, Reynen P J L. Control of liquid-phase-enhanced discontinuous grain-growth in barium-titanate. Journal of the American Ceramic Society, 1987, 70(1):23-27.
    [180] Seabaugh M M, Suvaci E, Brahmaroutu B, et al.Modeling anisotropic single crystal growth kinetics in liquid phase sintered α-Al_2O_3.Interface Science, 2000,8:257-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700