用户名: 密码: 验证码:
超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高韧性水泥基复合材料(Ultra high toughness cementitious composites, UHTCC)是一种采用中等纤维体积掺量的乱向短纤维增强的高性能水泥基复合材料。它在拉伸和弯曲荷载作用下具有应变硬化和多缝开裂特性,拉伸应变可以达到3%以上,最大裂缝宽度可以控制在0.1mm以下。将该材料应用于混凝土结构,有望解决现代混凝土结构所面临的安全性和耐久性等问题。本文通过试验研究和理论分析,研究UHTCC的性能:
     (1)通过单轴拉伸试验研究UHTCC的抗拉性能,试验结果显示UHTCC在拉伸荷载作用下具有假应变硬化和多缝开裂特性,以及高延性、高韧性和高裂缝宽度控制能力。极限拉伸应变在3%以上,极限荷载时的最大裂缝宽度在0.1mm以下。而且,UHTCC试件在具有双边切口的情况下,仍然具有应变硬化和多缝开裂特性。
     (2)通过四点弯曲试验研究UHTCC的抗弯性能,试验结果显示UHTCC在弯曲荷载作用下具有非常显著的变形硬化特性、多缝开裂特性和高韧性性能。极限挠度高达30mm以上,如此大的变形能力足可以与铝、钢等金属材料相媲美。
     (3)通过单轴抗压试验研究UHTCC的抗压性能,试验结果显示UHTCC在压缩荷载作用下仍具有多缝开裂。在试件破坏过程中,这些微裂缝逐渐贯通并形成剪切斜裂缝。UHTCC的抗压强度类似于普通混凝土,抗压弹性模量约是混凝土的1/2-1/3,峰值应变约是普通混凝土的两倍,峰值荷载后的延性和韧性明显增加。
     (4)通过对比拉、弯性能指标建立了UHTCC拉弯对应关系,对比结果显示四点弯曲试验可以代替单轴拉伸试验,成为评价UHTCC独特力学性能的简单实用的试验方法。
     (5)根据抗压试验结果,参考现有的各种混凝土本构模型,分别针对结构或构件的承载能力极限状态分析和非线性分析,建立适合于描述UHTCC抗压特性的本构模型,为超高韧性水泥基复合材料在工程中的广泛应用提供必要的理论基础。
     (6)对比各国关于钢纤维混凝土弯曲韧性的测定与评价标准,建立了UHTCC抗压韧性评价体系,该体系通过5个抗压韧度参数从不同的角度定量的分析了UHTCC的受压韧性性能。分析结果表明UHTCC具有较高的受压韧性和塑性变形性能以及开裂后的荷载承受能力。
     (7)针对UHTCC的多缝开裂行为和后多缝开裂行为,在微观力学、断裂力学和数理统计的基础上,分析了UHTCC的应变硬化过程,并建立了相应的理论模型。所建立模型既可以用于复合材料的优化设计,也可以用于复合材料宏观性能的预测。
Ultra high toughness cementitious composites are a kind of high performance cementitious composites reinforced with medium fiber volume fraction random short fibers. This type of composites possesses strain hardening and multiple cracking under tensile and bending load with strain capacity more than 3% and maximum crack width below 0.1mm. Using this class of composites, it is potential to solve the structural problems inherent with today's typical concrete structures, such as security and long term durability. In this paper, the performance of UHTCC is researched by experimental studies and theoretical analysis.
     (1) The uniaxial tensile tests were carried out to characterize the tensile behavior of UHTCC. Test results show that UHTCC possess pseudo strain hardening and multiple cracking behaviors, as well as high ductility, toughness and crack width controlling capacity. Its tensile strain capacity is more than 3% and its maximum crack width is below 0.1mm. Moreover, the UHTCC specimens with double notches still exhibit pseudo strain hardening and multiple cracking under tensile load.
     (2) Four-point bending tests were carried out to characterize the flexural behavior of UHTCC. Test results show that UHTCC possess obvious deformation hardening, multiple cracking and high toughness properties under bending load. The ultimate deflection is more than 30mm which is comparable with the deformation capacity of aluminum and steel.
     (3) The uniaxial compression tests were carried out to characterize the compressive behavior of UHTCC. Test results show that UHTCC still possess multiple cracking behaviors. Those cracks coalesce gradually and inclined micro-cracks appear during the process of failure. The compressive strength is similar to that of ordinary concrete, and the elastic modulus is about 1/2-1/3 of that concrete, and the compressive strain at peak stress is about twice that of concrete, and the ductility and toughness have been improved obviously.
     (4) The relationships between tensile and flexural properties are established by the comparison of basic mechanical indexes under tensile and bending load. The comparison results show that the four-point bending test method is a simple and practical method to estimate the special mechanical performance of UHTCC substituting for the uniaxial tensile test method.
     (5) Based on the compression test results and referring to the existing stress-strain models of concrete, two analysis models were proposed for ultimate limit state design and non-linear analysis of UHTCC structures respectively. The study production provides necessary theoretical models for the practical engineering application of UHTCC.
     (6) The system for evaluating the compressive toughness properties is established by comparing different testing and evaluating standards of flexural toughness for steel fiber reinforced concrete used in various countries. Five toughness indexes are used from different points of view to quantitatively evaluate the compressive toughness of UHTCC in detail. The analysis results of all the indexes demonstrate that UHTCC possess high compressive toughness and plastic deformation capacity, and high post-crack load bearing capacity.
     (7) The strain hardening processes referring to multiple cracking and post multiple cracking behaviors are theoretically analyzed based on the micromechanics, fracture mechanics and mathematical statistics and the corresponding models are established. These models can be used to optimize material properties or to predict the macromechanical composite properties.
引文
[1]陈舜东.大跨度桥梁建设和发展现状概述.四川建筑,2008,28(2):120-121.
    [2]邱振新,常维峰,张立成,崔洪涛,孙秀萍.海洋环境钢筋混凝土桥梁老化性能与防腐技术.21世纪建筑材料,2009,(1):68-70.
    [3]中国建筑学会建筑结构分会高层建筑结构委员会.我国大陆2004年底已建成150m以上高层建筑统计.土木工程学报,2008,41(3):103-109.
    [4]王景全.警惕桥梁大面积老化现象提前到来.http://www.cae.cn/swordcms/html/ysjy2/19237.htm
    [5]阿里木·吐尔逊,阿布都艾尼.我国水库大坝老化现状初步分析.大坝与安全,2004,(3):9-11.
    [6]程念高.我国坝工建设的发展、展望和挑战.大坝与安全,2001,(2):20-22.
    [7]鲁一晖,孙志恒.水工混凝土建筑物的病害检测与修补技术进展.中国水利水电科学研究院学报,2003,1(1):70-74.
    [8]宋恩来.混凝土坝老化与安全评价.大坝与安全,2008,(4):4-8.
    [9]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料.北京:中国建材工业出版社,2004.
    [10]Lankard D R, Newill J K. Preparation of highly reinforced steel fiber reinforced concrete composites. ACI,1984, SP-81:287-306.
    [11]Parameswaran V S, Krishnamcmoorth T S, Balasubramanian K. Behaviour of high volume fiber cement mortar in flexure. Cement & Concrete composites,1990,12(4):293-301.
    [12]Balaguru P N, Shah S P. Fiber reinforced cement composites. New York:Mc Graw-Hill, 1992.
    [13]Balaguru P, Kendzulak J. Mechanical properties of slurry infiltrated fiber concrete (SIFCON). In:Fiber Reinforced Concrete, Properties and Applications. ACI,1997, SP-105: 247-268.
    [14]Naaman A E, Homrich J R. Tensile stress-strain properties of SIFCON. ACI Materials Journal.1989,86(3):244-251.
    [15]Baaguru P, Kendzulak J. Flexural behavior of slurry infiltrated fiber concrete (SIFCON) made using condensed silica fume. In:Fly Ash, Silica Fume, Slag and Natural Pozzalans in Concrete, SP-60, ACI,1986:1215-1230.
    [16]Larkard D R. Preparation, properties and applications of cement-based composites contining 5 to 20 persent steel fiber. In:Shah S P, Skarendahl A eds. US-Sweden Joint Seminar on Steel Fiber Concrete. Stockholm:Swedish Cement&Concrete Research Institute,1985: 199-217.
    [17]Hackman L E, Farrell M B, Dunham O O. Slurry infiltrated mat concrete (SINCON). Concrete International,1992,14(12):53-57.
    [18]Hackman L E, Farrell M B, Dunham O O. Ultra high performance reinforced concrete. In:Daniel J I, Shah S P eds. Fiber Reinforced Concrete Developments and Innovations. SP-142.ACI,1994:235-247.
    [19]Bouygues Company. RPC International symposium on high performance and reactive particle concrete. Canada.1998
    [20]Richard P, Cheyrezy M. Reactive powder concretes with high ductility and 200-800 MPa compressive strength. In:Concrete Technology:Past, Present and Future. SP-144. ACI. 507-518.
    [21]Bache H H. Densified cement/ltrafine particle-based materials. In:Malhotra V M ed. The Second International conference on superplasticizers in concrete. Ontario, Canada. CANIMET. 1981:5-35.
    [22]Wise S et al. The development of a high strength cementitious tooling/molding material. In:Young J F ed. Proceeding of materials research society symposium.1984,42:253-264.
    [23]曲福进,乔光,赵国藩.高性能纤维混凝土的抗剪性能研究.建筑结构,2001,31(11):36-37.
    [24]曲福进,黄承逵,赵国藩.SIFCON的抗压性能.见:李士恩,杨朝礼,全国第五届纤维水泥与纤维混凝土学术会议论文集,中国广东,1994:81-90.
    [25]Li V C. On Engineered Cementitious Composites (ECC)-A Review of the Material and its Applications. J. Advanced Concrete Technology,2003,1(3):215-230.
    [26]Li V C. From Micromechanics to Structural Engineering-the Design of Cementitous Composites for Civil Engineering Applications. JSCE J. of Struc. mechanics and Earthquake Engineering,1993,10(2):37-48.
    [27]Li V C, Kanda T. Engineered Cementitious Composites for Structural Applications. Innovations Forum in ASCE J. Materials in Civil Engineering,1998,10(2):66-69.
    [28]Li V C. Advances in ECC Research. ACI Special Publication on Concrete:Material Science to Applications,2002, SP206-23:373-400.
    [29]Li V C. PROGRESS AND APPLICATION OF ENGINEERED CEMENTITIOUS COMPOSITES.硅酸盐学报,2007,35(4):1-7.
    [30]Li V C. ECC-tailored composites through micromechanical modeling. In:Banthia et al, Fiber Reinforced Concrete:Present and the Future, CSCE, Montreal,1998,64-97.
    [31]Li V C, Mishra D K, Naaman A E et al. On the Shear Behavior of Engineered Cementitious Composites. J. of Advanced Cement Based Materials,1994,1(3):142-149.
    [32]Weimann M B, and Li V C. Drying Shrinkage and Crack Width of ECC. In:BMC-7, Poland, 2003:37-46.
    [33]Lim Y M, Wu H C and Li V C. Development of Flexural Composite Properties and Dry Shrinkage Behavior of High Performance Fiber Reinforced Cementitious Composites at Early Age. J. of Materials,1999,96(1):20-26.
    [34]Li V C and Obla K. Effect of Fiber Diameter Variation on Properties of Cement Based Matrix Fiber Reinforced Composites. Composites Engineering International Journal,1996, Part B 27B:275-284.
    [35]Lin Z and Li V C. Effect of Fiber Orientation on Tensile Strength and Ductility of Short Fiber Composites. In:Proceedings 12th ASCE Engineering Mechanics Conference, La Jolla, CA, Murakami H and Luco J E, eds.,1998,634-637.
    [36]Kanda T and Li V C. Effect of Apparent Fiber Strength and Fiber-Matrix Interface on Crack Bridging in Cement Composites. ASCE J. of Engineering Mechanics,1999, 125(3):290-299.
    [37]Li V C and Obla K H. Effect of Fiber Length Variation on Tensile Properties of Carbon Fiber Cement Composites. Int'1 J. of Composites Engineering,1994,4(9):947-964.
    [38]Maalej M, Hashida T and Li V C. Effect of Fiber Volume Fraction on the Off-Crack Plane Energy in Strain-Hardening Engineered Cementitious Composites. J. American Ceramics Society,1995,78(12):3369-3375.
    [39]Li V C, Mishra D K and Wu H C. Matrix Design for Pseudo Strain-Hardening Fiber Reinforced Cementitious Composites. RILEM J. Materials and Structures,1995,28(183):586-595.
    [40]Wang S and Li V C. Tailoring of Pre-existing Flaws in ECC Matrix for Saturated Strain Hardening.In:Proceedings of FRAMCOS-5, Vail, Colorado, U S A, April 2004,1005-1012.
    [41]Takashima H, Nishimatsu H, Miyagai K and Hashida T. Effect of Perlite Addition on Fracture Properties of Discontinuous Fiber-reinforced Cementitious Composites Manufactured by Extrusion Molding. In:Proceedings of FRAMCOS-5, Vail, Colorado, U S A, April 2004,1029-1036.
    [42]Chan Y W and Li V C. Effects of Transition Zone Densification on Fiber/Cement Bond Strength Improvement. J. Advanced Cement Based Materials,1997,5(1):8-17.
    [43]Li V C, Wu H C and Chan Y W, Effect of Plasma Treatment of Polyethylene Fibers on Interface and Cementitious Composite Properties. J. of Amer. Ceramics Soc.,1996, 79(3):700-704.
    [44]Li V C, Wu C, Wang S, Ogawa A and Saito T. Interface Tailoring for Strain-hardening PVA-ECC. ACI Materials Journal,2002,99(5):463-472.
    [45]Chan Y W and Li V C. Age Effect on the Characteristics of Fiber/Cement Interfacial Bond. J. Materials Science,1997,32 (19):5287-5292.
    [46]Li V C, Wang S and Wu C. Tensile Strain-Hardening Behavior of PVA-ECC. ACI Materials Journal,2001,98(6):483-492.
    [47]Maalej M and Li V C. Flexural/tensile Strength Ratio in Engineered Cementitious Composites, ASCE J. of Materials in Civil Engineering,1994,6(4):513-528.
    [48]Arakawa T and Ohno K. Shear Tests of Reinforced Concrete Beams by Special Type of Loading, Transactions of the Architectural Institute of Japan,57:581-584. (In Japanese)
    [49]Li V C and Hashida T. Engineering Ductile Fracture In Brittle Matrix Composites, J. of Materials Science Letters,1993,12:898-901.
    [50]Billington S L andKesner K E. Cyclic response of ductile fiber-reinforced cement-based composites. In:Proceedings of HPFRCC-4, Ann Arbor, Michigan, U S A. June 2003,363-378.
    [51]Suthiwarapirak P, Matsumoto T and Kanda T. Flexural Fatigue Failure Characteristics of an Engineered Cementitious Composite and Polymer Cement Mortars. J. Materials, Conc. Struc. Pavements, JSCE,2002,(718/V-57):121-134.
    [52]Maalej M and Li V C. Introduction of Strain Hardening Engineered Cementitious Composites in the Design of Reinforced Concrete Flexural Members for Improved Durability. American Concrete Institute Structural J.,1995,92(2):167-176.
    [53]Fukuyama H, Matsuzaki Y, Nakano K and Sato Y. Structural Performance of Beam Elements with PVA-ECC. In:Proc. Of High Performance Fiber Reinforced Cement Composites 3 (HPFRCC 3), Ed. Reinhardt and A. Naaman, Chapman & Hull,1999,531-542.
    [54]Parra-Montesinos G and Wight J K. Seismic Response of Exterior RC Column-to-Steel Beam Connections. Journal of Structural Engineering, ASCE,2000,126(10):1113-1121.
    [55]Fischer G and Li V C. Influence of Matrix Ductility on the Tension-Stiffening Behavior of Steel Reinforced Engineered Cementitious Composites(ECC). ACI J. of Structures,2002, 99(1):104-111.
    [56]Zhang J Li V C, Nowak A and Wang S. Introducing Ductile Strip for Durability Enhancement of Concrete Slabs. ASCE J. of Materials in Civil Engineering,2002,14(3):253-261.
    [57]Lim Y M and Li V C. Durable Repair of Aged Infrastructures Using Trapping Mechanism of Engineered Cementitious Composites. J. Cement and Concrete Composites,1997, 19(4):373-385.
    [58]Kamada T and Li V C. The Effects of Surface Preparation on the Fracture Behavior of ECC/Concrete Repair System. J. of Cement and Concrete Composites,2000,22(6):423-431.
    [59]Zhang J and Li V C. Monotonic and Fatigue Performance in Bending of Fiber Reinforced Engineered Cementitious Composite in Overlay System. J. of Cement and Concrete Research, 2002,32:415-423.
    [60]Fischer G, Fukuyama H and Li V C. Effect of Matrix Ductility on the Performance of Reinforced ECC Column Members under Reversed Cyclic Loading Conditions. In:Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Application and Evaluation (DRFCC-2002), Takayama, Japan, Oct.2002,269-278.
    [61]Fischer G and Li V C. Intrinsic Response Control of Moment Resisting Frames Utilizing Advanced Composite Materials and Structural Elements. ACI J. of Structures,2003, 100(2):166-176.
    [62]Kesner K andBillington S L. Experimental Response of Precast Infill Panels Made with DFRCC. In:Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Application and Evaluation (DRFCC-2002), Takayama, Japan, Oct.2002,289-298.
    [63]Yoon J K and Billington S L. Cyclic Response of Unbonded Post-Tensioned Precast Columns with Ductile Fiber-reinforced Concrete. Submitted for publication in ASCE J. Bridge Engrg., Aug.,2002.
    [64]Fischer G. Prefabricated Modular Structures Using ECC Technology. In:Proceedings of ConMat'05, Vancouver, Canada, August,2005,22-24
    [65]Kim Y Y, Kong H J and Li V C. Development of Sprayable Engineered Cementitious Composites. In:Proceedings of the HPFRCC-4, Ann Arbor, MI, USA,2003,233-243.
    [66]Kim Y Y, Kong H J and Li V C. Design of Engineered Cementitious Composite (ECC) Suitable for Wet-mix Shotcreting. ACI Materials J.,2003,100(6):511-518.
    [67]Kong H J, Bike S and Li V C. Constitutive Rheological Control to Develop a Self-Consolidating Engineered Cementitious Composite Reinforced with Hydrophilic Poly(vinyl alcohol) Fibers. J. Cement and Concrete Composites,2003,25(3):333-341.
    [68]Kong H J, Bike S and Li V C. Development of a Self-Consolidating Engineered Cementitious Composite Employing Electrosteric Dispersion/Stabilization. J. Cement and Concrete Composites,2003,25(3):301-309.
    [69]Stang H and Li V C. Extrusion of ECC-Material. In:Proc. Of High Performance Fiber Reinforced Cement Composites 3 (HPFRCC 3), Ed. Reinhardt and A. Naaman, Chapman & Hull,1999, 203-212.
    [70]De Koker D. and Zijl van G. Extrusion of Engineered Cement-based Composite material. In:Proceedings of BEFIB, Varenna, Lake Como, Italy, Sept.2004,1301-1310.
    [71]Wang S and Li V C. High-Early-Strength Engineered Cementitious Composites. ACI Material Journal,2006,103(2):97-105.
    [72]Wang S and Li V C. Lightweight ECC. In:HPFRCC-4, Ann Arbor, MI, USA,2003,379-390.
    [73]Li V C. Performance Driven Design of Fiber Reinforced Cementitious Composites. In: Proceedings of 4th RILEM International Symposium on Fiber Reinforced Concrete, Ed. R. N. Swamy, Chapman and Hall,1992,12-30.
    [74]Kanda T and Li V C. A New Micromechanics Design Theory for Pseudo Strain Hardening Cementitious Composite. ASCE J. of Engineering Mechanics,1999,125(4):373-381.
    [75]Li V C and Wu H C. Micromechanics Based Design for Pseudo Strain-Hardening in Cementitious Composites. In:Proc. ASCE 9th Engin. Mech. Conf., Eds. L. D. Lutes & J. M. Niedzwecki, published by ASCE,1992,740-743.
    [76]Li V C and Leung C K Y. Steady State and Multiple Cracking of Short Random Fiber Composites. ASCE J. of Engineering Mechanics,1992,118(11):2246-2264.
    [77]Redon C, Li V C, Wu C, Hoshiro H, Saito T and Ogawa A. Measuring and Modifying Interface Properties of PVA Fibers in ECC Matrix. ASCE J. Materials in Civil Engineering,2001,13(6): 399-406.
    [78]Maalej M, Li V C and Hashida T. Effect of Fiber Rupture on Tensile Properties of Short Fiber Composites. ASCE J. Engineering Mechanics,1995,121 (8):903-913.
    [79]Lin Z and Li V C. Crack Bridging in Fiber Reinforced Cementitious Composites with Slip-hardening Interfaces. J. Mechanics and Physics of Solids,1997,45(5):763-787.
    [80]Wu H C and Li V C. Stochastic Process of Multiple Cracking in Discontinuous Random Fiber Reinforced Brittle Matrix Composites. Int'1 J. of Damage Mechanics,1995, 4(1):83-102.
    [81]Kabele P and Stemberk M. STOCHASTIC MODEL OF MULTIPLE CRACKING PROCESS IN FIBER REINFORCED CEMENTITIOUS COMPOSITES. Paper 4825 of Compendium of Papers CD ROM, ICF 11, Turin, Italy, March 2005.
    [82]黄俊,姜弘道.PVA纤维水泥基复合材料轴向拉伸应力-应变全曲线试验研究.第十一届全国纤维混凝土学术会议论文集—纤维混凝土的技术进展与工程应用,黄承逵,丁一宁,何化南编.中国辽宁大连,2006,96-103.
    [83]王晓刚,Folker H W和赵铁军.优化设计水泥基复合材料应变硬化性能研究.混凝土与水泥制品,2006,(3):46-49.
    [84]张君,公成旭.高韧性低收缩纤维增强水泥基复合材料研发.超高层混凝土泵送与超高性能混凝土技术的研究与应用国际研讨会论文集,叶浩文,朋改非主编,中国广东广州,2008,115-120.
    [85]高淑龄.PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究:(博士学位论文).大连:大连理工大学,2006.
    [86]高淑玲,徐世娘.PVA纤维增强水泥基复合材料拉伸特性实验研究.大连理工大学学报,2007,47(2):233-239.
    [87]高淑玲,徐世娘.单边切口薄板研究聚乙烯醇纤维增强水泥基复合材料断裂韧性。工程力学,2007,24(11):12-18.
    [88]高淑玲,徐世娘.利用水平外力总功研究PVA纤维增强水泥基复合材料韧性.东南大学学报,2007,37(2):324-329.
    [89]李贺东.超高韧性水泥基复合材料试验研究:(博士学位论文).大连:大连理工大学,2008.
    [90]徐世娘,李贺东.超高韧性水泥基复合材料研究进展及其工程应用.土木工程学报,2008,41(6):72-87.
    [91]Hedong Li, Christopher K. Y. Leung, Shilang XU and Qian CAO. Investigation on potential use of strain hardening ECC in permanent formwork with small scale flexural beams, Journal of Wuhan University of Technology (Materials Science Editon) (in press).
    [92]田艳华.自密实超高韧性水泥基复合材料试验研究:(硕士学位论文).大连:大连理工大学,2008.
    [93]饶芳芬.粉煤灰对超高韧性水泥基复合材料弯曲性能的影响试验研究:(硕士学位论文).大连:大连理工大学,2008.
    [94]张帅.增稠剂在PVA超高韧性水泥基复合材料中的应用:(硕士学位论文).大连:大连理工大学,2007.
    [95]王洪昌.超高韧性水泥基复合材料与钢筋粘结性能的试验研究:(硕士学位论文).大连:大连理工大学,2007.
    [96]李大为.玻璃纤维编织网与超高韧性水泥基复合材料粘结性能的研究:(硕士学位论文).大连: 大连理工大学,2007.
    [97]徐世娘,张秀芳.钢筋增强超高韧性水泥基复合材料RUHTCC受弯梁的计算理论与试验研究.中国科学(E辑),2009,39(5):878-896.
    [98]徐世娘,李庆华.超高韧性复合材料控裂功能梯度复合梁弯曲性能理论研究.中国科学(E辑),2009,39(6):1081-1094.
    [99]徐世娘,王楠,李庆华.超高韧性水泥基复合材料增强普通混凝土复合梁弯曲性能试验研究.土木工程学报(已录用)
    [100]徐世娘,蔡新华,李贺东.超高韧性纤维增强水泥基复合材料(UHTCC)抗冻耐久性能试验研究.土木工程学报(已录用)
    [101]徐世烺,刘志凤.超高韧性水泥基复合材料干缩性能及其对抗裂能力的影响.水利学报(已录用)
    [102]Rokugo and Kanda. R/ECC coupling beam. In:HPFRCC workshop, Hawaii,2005, http://www.engineeredcomposites.com/Applications/coupling_beam.html
    [103]Li V C. engineered cementitious composites. http://www.engin.umich.edu/ace-mrl/
    [104]Li V C. Bendable composites-ductile concrete for structures. Structure Magazine. July,2006,45-48.
    [105]Li V C. Strategies for high performance fiber reinforced cementitious composites development. In:the international workshop on advanced fiber reinforced concrete at Bergamo, Italy during sept.2004,24-25.
    [106]Information on http://www.engineeredcomposites.com/Applications/mihara_bridge.html
    [107]Kunieda M. and Rokugo K. Recent Progress on HPFRCC in Japan. Journal of advanced concrete technology.2006,4(1):19-33.
    [108]Information on http://www.kuraray-am.com/pvaf/structural.php
    [109]Information on http://www.engineeredcomposites.com/Applications/mitaka_dam.html
    [110]Information on http://www.engineeredcomposites.com/Applications/bridge_deck.html.
    [111]Lepech M D and Li V C. Durability and Long Term Performance of Engineered Cementitious Composites. Restoration of buildings and monuments,2006,12(2):119-132.
    [112]Lepech M and Li V C. Crack Resistant Concrete Material for Transportation Construction. In TRB 83rd Annual Meeting, Washington, D. C., Compendium of Papers CD ROM, Paper 04-4680, 2004.
    [113]Information on http://ace-mrl.engin.umich.edu/NewFiles/projects/linkslab_timeline.html
    [114]Li V C, Fischer G and Lepech M D. SHOTCRETING WITH ECC. Spritzbeton-Tagung.2009,1-16.
    [115]Information on http://www.engineeredcomposites.com/Applications/retaining_wall.html.[116]董振英,李庆斌,王光纶,潘家铮.钢纤维混凝土轴拉应力-应变特性的试验研究.水利学报,2005,(5):47-50.
    [117]Naaman A E, Homrich J R. Tensile stress-strain properties of SIFCON. ACI Materials Journal,1989,86(3):244-251.
    [118]田稳苓,黄承逵,李子祥.钢纤维膨胀混凝土管状构件受拉应力-应变全曲线研究.大连理工大学学报,2000,40(1):112-115.
    [119]RILEM.CPC7:Direct Tension of Concrete Speciments 1975 TC14-CPC. RILEM Technical Recommendations for the Testing and Use of Construction Materials, E&FNspon, London, UK, 1994,23-24.
    [120]张君,公成旭.高韧性纤维增强水泥基复合材料单轴抗拉性能研究.第十一届全国纤维混凝土学术会议论文集—纤维混凝土的技术进展与工程应用,黄承逵,丁一宁,何化南编.中国辽宁大连,2006.27-32.
    [121]彭勃.混凝土单轴抗拉性能及其改性研究:(同济大学博士学位论文).上海:同济大学材料工程与科学学院,2001,15-18.
    [122]赵国藩,彭少民,黄承逵.钢纤维混凝土结构.北京:中国建筑工业出版社,1999
    [123]中华人民共和国国家标准.《玻璃纤维增强水泥性能试验方法抗弯性能》GB/T15231,中国标准出版社.1994年
    [124]ASTM C 1018-98, Standard test method for flexural toughness and first crack strength of fiber reinforced concrete [S],1991 Book of ASTM Standard, Part 04.02, ASTM, Philadelphia: 507-513.
    [125]Naaman AE, Reinhardt HW. Characterization of high performance fiber reinforced cement composites. In:Proceedings of the second international RILEM workshop. USA,1995, June: 1-24.
    [126]Hannant D J. Fiber cements and fiber concrete. chichester:John Wiley & Sons,1978.
    [127]包亦望,金宗哲.脆性材料弯曲强度与抗拉强度的关系研究.中国建筑材料科学研究院学报,1991,3(3):1-5.
    [128]包亦望.工程陶瓷的均强度破坏准则及弯曲强度与断裂韧度的尺寸效应:(博士学位论文),中国建筑材料科学研究院,1990.
    [129]金宗哲,包亦望.脆性材料力学性能评价与设计.北京:中国铁道出版社,1996.
    [130]Fordyce M W, Wodehouse R G. GRC and buildings. London:Butterworth & Co.,1983.
    [131]Li V C. Engineered Cementitious Composites-Tailored Composites Through Micromechanical Modeling. Fiber Reinforced Concrete:Present and the Future. Eds. N. Banthia et al, CSCE, Montreal,1998,64-97.
    [132]Li V C. Reflections on the Research and Development of Engineered Cementitious Composites (ECC). In:Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Application and Evaluation (DRFCC-2002), Takayama, Japan, Oct.2002,1-21.
    [133]Motoyoshi Y, Yoshihisa H, Atsuhisa 0 et al. Fiber reinforced foamedmortar with multiple cracks in flexure. Industrial materials product department,Tesac Co., Ltd, Japan:1-7.
    [134]Kanda T, Toshiyuki K, Satoshi N et al. Technical consideration in producing ECC pre-cast structural element. Kajima Technical Research Institute, Japan.
    [135]中华人民共和国国家标准.《普通混凝土力学性能试验方法》GB/T 50081-2002.
    [136]中华人民共和国国家标准.《钢丝网水泥用砂浆力学性能试验方法-轴心抗压强度试验》GB/T7897.5-1990.
    [137]Chin M S, Mansur M A and Wee T H. Effects of shape, size and casting direction of specimens on stress-strain curves of highstrength concrete. ACI Mat. J.,1997,94(3): 209-219.
    [138]中华人民共和国国家标准.《混凝土结构设计规》GB50010-2002.北京:国家质量技术监督局(SBTS),2002.
    [139]Comite Euro-International du Beton(CEB). CEB-FIP Model code 1990. Bull. d'information No.213/214, Lausanne, Switzerland,1993,33-42.
    [140]Oluokun F A, Burdette E G and Deatherage J H. Elastic Modulus, Poisson's Ratio, and Compressive Strength Relationships at Early Ages. ACI material journal,1991,88(1):3-10.
    [141]王元丰,梁亚平.高性能混凝土的弹性模量和泊松比,北方交通大学学报,2004,28(1)5-7.
    [142]成后昌,高性能混凝土的力学性能研究,重庆建筑大学学报,1999,21(3):74-77.
    [143]Mansur M A, Chin M S and Wee T H. Stress-Strain Relationship of High-Strength Fiber Concrete in Compression. Journal of materials in civil engineering,1999,11(1):21-29.
    [144]Naaman A E, Reinhardt H W. Characterization of high performance fiber reinforced cement composites. In:Proceedings of the second international RILEM workshop. USA, June, 1995,1-24.
    [145]Ezeldin A S, Balaguru P N. normal-and high-strength fiber-reinforced concrete under compression. Journal of Materials in Civil Engineering,1992,4(4):415-429.
    [146]赵国藩.高等钢筋混凝土结构学.北京:中国电力出版社,1999:123-126.
    [147]王利民,徐世娘.混凝土及纤维混凝土材料特性曲线.大连理工大学学报,2002,42(5):580-585.
    [148]焦楚杰,孙伟,秦鸿根,张亚梅,蒋金洋.钢纤维高强混凝土单轴受压本构方程,东南大学学报,2004,34(3):366-369.
    [149]过镇海.混凝土的强度和变形-试验基础和本构关系.北京:清华大学出版社,1997.
    [150]Wang P T, Shah S P and Naaman A E. Stress-strain curves of normal and light weight concrete in compression. ACI J.,1978,75(11):603-611.
    [151]Comite Euro-International du Benton(CEB). CEB model code 90. Bull. d'information. No.203, Paris, France.1990.
    [152]Dahl K K B. Uniaxial stress-strain curve of high-strength concrete. Denmarks Tekniske Hojskole. Afdelingen for Baerende Konstruktioner,1992, Ser. R, N 282.
    [153]Wee T H, Chin M S and Mansur M A. stress-strain relationship of high strength concrete in compression. Journal of materials in Civil Engineering,1996,8(2):70-76.
    [154]Carreira D J and Chu K H. Stress-strain relationship for plain concrete in compression. ACI Journal.1985,83(6):797-804.
    [155]Desayi P and Krishman S. Equation for the stress-strain curve of concrete. ACI J. 1964,61(3),345-350.
    [156]Tulin L G and Gerstle K H. Discussion of'Equation for stress-strain curve of concrete'by P. Desayi, and S. Krishnan. ACI J.,1964,61 (9):701-716.
    [157]Popovics S. A numerical approach to the complete stress-strain curve of concrete. Cement & Concrete Res.,1973,3(4):583-599.
    [158]Kabele P. Assessment of Structural Performance of Engineered Cementitious Composites by Computer Simulation. CTU Reports Czech Technical University, Prague,2001,5(4).
    [159]丁一宁,董香军,王岳华.钢纤维混凝土弯曲韧性测试方法与评价标准.建筑材料学报,2005,8(6):260-264.
    [160]Oesterreichische Richtlinie Spritzbeton, Oesterreichi-scher Betonverein,1998.
    [161]Fanella D A and Naaman A E. Stress-strain properties of fiber-reinforced mortar in compression. Am. Concr. Inst.,1985,82(4):475-483.
    [162]Li V C. Postcrack Scaling relations for fiber reinforced cementitious composites, Journal of Materials in Civil Engineering.1992,4 (1):41-57.
    [163]Li V C and Wu H C. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites, J Appl. Mech. Rev,1992,45(8):390-398.
    [164]Kada T and Li V C. Effect of fiber strength and fiber-matrix interface on crack bridging in cement composites. Journal of Engineering Mechanics,1999,125 (3):290-299.
    [165]Lin Z, Kanda T and Li V C. On Interface Property Characterization and Performance of Fiber Reinforced Cementitious Composites. J. Concrete Science and Engineering, RILEM, 1999,1:173-184.
    [166]Chan Yin Wen. Fiber-cement bond property modification in relation to interfacial microstructure, Ph.D. Dissertation, the University of Michigan,1994
    [167]Leung C K and Li V C. Strength-based and fracture-based approaches in the analysis of fiber debonding, Journal of Materials Science Letters,1990,9:1140-1142.
    [168]Leung C K and Li V C. New Strength Based Model for the Debonding of Discontinuous Fibers in an Elastic Matrix, Journal of Materials Science.1991,26:5997-6009.
    [169]Wang Y. Mechanics of Fiber Reinforced Cementitious Composites, Ph.D. Dissertation, M. I. T.,1989.
    [170]Bao G and Song Y. Crack bridging models for fiber composites with degraded interfaces, J Mech. Phys. Solids.1993,41:1425-1444.
    [171]Budiansky B, Hutchinson J W and Evans A G. Matrix fracture in fiber reinforced ceramics, J. Mech. Phys. Solids.1986,34(2):167-189.
    [172]Kanda T and Li V C. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix, J Mater Civil Eng.,1998,10:5-13,
    [173]Li V C and Stang H. Interface Property Characterization and Strengthening Mechanisms in Fiber Reinforced Cement Based Composites, Advanced Cement Based Materials,1997, 6(99):1-20.
    [174]Wang Shuxin. Micromechanics based matrix design for engineered cementitious composites. Dissertation Abstracts International.2005, Section:B:66-09.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700