用户名: 密码: 验证码:
基于逆散射理论的金属矿地震成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属矿多产出于造山带,通常具有起伏地表的复杂特征,其地震波传播规律要比水平地表和层状介质情形复杂得多。金属矿区往往经历强烈的构造变动和岩浆活动,金属矿具有成矿条件复杂,矿体形状复杂,通常空间尺度不大(在空间尺度上要远远小于油气藏),镜面反射假设通常不成立,陡倾角和直立构造多见等特点,照搬油气资源的传统地震勘探方法来进行金属矿地震勘探,在很多情况下不能取得满意的探测结果。反射地震勘探法大多局限在大尺度的控矿构造预测,对于陡倾角、尺度小于地震波长的复杂金属矿床或地质体还缺乏有效的地震探测手段。井中地震成像技术在一定程度上可解决陡倾角和直立构造的探测问题,但探测范围有限、探测效率较低且不宜推广。反射地震和首波地震层析成像相结合的方法,深部成像依赖反射地震数据,不同深度的构造信息都能得到有效地反映,但对于反射信息严重缺失的小尺度地质体或陡倾角直立构造情况,该方法的效果仍然有限。在散射地震波场方面,目前还只局限于在特定条件下自激自收剖面(叠后剖面)中利用散射地震波场圈定与矿体有关的介质非均匀性。逆散射理论需要先验信息少,对于复杂地表情形下复杂地质体成像具有更大优势,逆散射成像在考虑逆散射序列一阶项的小扰动情形下已经取得显著的应用效果,但大扰动情形下仍有待研究。以上可见,对于复杂地质条件下金属矿的地震成像问题,目前还没有一种切实可行的反演方法可供实际使用。对于散射波地震勘探而言,本质上最终要解决的就是逆散射反演问题。研究复杂介质中散射波传播规律和逆散射反演成像方法将是金属矿地震勘探取得突破的关键。
     本文基于奇性反演成像理论和散射序列成像理论,将奇性反演成像方法引入到散射序列成像中。依据Beylkin奇性反演理论,利用小扰动技术在单一散射假定之下将反问题线性化,根据Green函数将线性化的算子方程转化为积分方程形式。引入了一类Fourier积分算子,该算子渐进展开的第一项是一个只含有奇性项的恒等算子。定义了一类因果广义Radon变换,其伴随算子是一个广义反投影算子,而Fourier积分算子等价于散射场的一个积分变换和广义反投影算子的复合运算。
     为研究复杂地表情形下,地震波在复杂地质构造中的传播过程,本文建立了起伏地表复杂地质体地震波传播数学模型。提出分段光滑曲线边界法向导数的一种插值算法,解决矩形网格有限差分法处理复杂边界这一长期以来一直困扰人们的难题;采用的波场系列快照技术可以有效地分析和认识起伏地表复杂地质体地震波传播规律,在正演散射序列的计算过程中,给出了利用高维快速卷积计算高维积分的快速算法,提高了计算效率。
     进行了起伏地表复杂地质体模型进行了奇性反演成像数值模拟研究。研究了2D炮集地震记录的奇性反演成像算法,研制了相应的成像软件,进行了理论模型的反演成像数值计算,阐述了奇性反演成像算法的一些特点和规律。基于逆散射序列的奇性反演成像算法的计算量要远远大于Beylkin奇性反演方法,逆散射序列的每个子项都是一个高维含参积分,子项的阶数越高积分的维数就越高,通常数值积分的计算速度几乎是无法接受的。本文根据被积函数的特点,将这些高维积分整理成了高维卷积的形式,并利用卷积定理和快速Fourier变换方法计算这些高维含参积分,极大地提高了计算速度。通过理论模型模拟计算,表明本文研究的基于逆散射序列的奇性反演成像算法,可以对复杂地下介质的构造进行有效成像,并具备在成像的过程中同时压制多次波的特点。
     开展金属矿地震野外试验,分别进行逆散射成像与常规反射地震数据成像并进行成像结果对比。试验中地震仪采用法国Sercel地震仪,震源采用可控震源。地震数据采集过程中试验两种观测系统,其一是常规反射地震勘探单边激发滚道方式的观测系统,其二是检波器排列固定不动炮点滚动的观测系统。对第一种观测系统采集的地震数据进行常规反射地震数据处理以便与成像结果进行对比。对两种观测系统采集的地震数据都进行了奇性反演成像研究,并取得了较好的成像效果。
Metal mine with orogen prolificly, usually has complex features relief surface,its seismic wave propagation is much more complicated than in layered media andthe level of the surface. Metal mines often experience intense tectonic and magmaticactivity, and metal mine has the characteristic of complex metallogenic conditions,complex ore complex shape, small spatial scale (much smaller than reservoirs in thespatial scale), not applicable specular reflection assumption, usually steep tilt andvertical structure. Metal mine seismic exploration copying traditional seismicexploration of oil and gas resources can not get satisfactory results in many cases.The conventional reflection imaging method is limited to large-scale metal structureprediction and effective seismic exploration method is still lacking in steep angle andscale of deposits seismic or geological body smaller than the wavelength. boreholeseismic imaging technology, to some extent, can resolve the problem of steep tilt andvertical structure, but has problems of limited detection range, low detectionefficiency and difficult to promote. Method combined first wave seismiccomography with seismic reflection method is relied on deep seismic reflectionimaging data, structural information at different depths can be effectively reflection,but is limited to the small-scale geological structure upright or steep dip with aserious lack of information reflecting. Scattering method of seismic wave iscurrently still confined to delineatethe non-uniformity of orebody and related mediaat the certain zero offset section conditions (stacked cross-section). Inverse scatteringtheory requires little priori information, and has a greater advantage for compleximaging complex surface geological circumstances, the inverse scattering imagingcircumstances under small perturbations considering the first order term of inversescattering sequence has made significant application effect, but remains to be studiedin the case of large disturbances. Above that, seismic imaging method for practicaluse at the complicated geological conditions of metal mine is not existed. For thescattered wave seismic exploration, the essence is to ultimately solve the inverse scattering inverse problem. Research on complex medium wave propagation andscattering inverse scattering imaging method will be the key for metal mine seismicexploration.
     The singularity inversion imaging method is introduced to scatter imagingsequence based on the singularity theory and scattering imaging sequence inversionimaging theory.The inverse is linearized by using the small perturbation in singlescattering assumption based on Beylkin’s singular inversion method, according tothe Green function the linearization operator equation is transformed into integralequation. A class of Fourier integral operator is induced, the operator asymptoticexpansion of the first is a singular item containing only the identity operator. A classof causal generalized Radon transform is defined, its adjoint operator is a generalizedback projection operator, and Fourier integral operator is equivalent to the compoundoperation of an integral transformation in the scattering field and generalized backprojection operator.
     To study the circumstances of seismic wave propagation under complex surfacein complex geological structure, the paper will establish the undulating surfaceseismic wave propagation in complex geological mathematical model.Thetopography of the complex geological seismic wave propagation mathematicalmodel is established, an interpolation method is given for computing normalderivative at the rectangular grid point on the boundary to solve a rectangular gridfinite difference method deal with complex boundary, which is a difficult problemand has been troubled people long; and propagation laws in the relief surface andcomplex media are revealed using the technique of a series of wave field snapshots.
     A rugged topography and complicated geological model was conducted forsingular inversion imaging numerical simulation.The algorithm of singular inversionimaging for2-D shot seismic record is studied, and the relevant computer imagingsoftware is developed as well. Numerical calculation of inverse imaging of its theorymodel is did, some characteristics and rules of the singularity inversion imagingalgorithm is described. the amount of calculation of the singularity inversion imagingalgorithm of inverse scattering sequence is much larger than the Beylkin singularity inversion method, each item in inverse scattering sequence is a high dimensionalparametric integral, more integral higher of item, and more dimension order, so,usually computing speed of numerical integral is almost unacceptable. According tothe features of the integrand, these high-dimensional integrals are arranged with thehigh dimensional convolution form, and we calculate the high dimensional parametricintegral convolution theorem and the fast Fourier transform method, which greatlyimproves the computational speed. The theoretical model calculation results show thatthe singularity inversion imaging algorithm based on inverse scattering series canconstruct the complex underground medium for effective imaging, and at the sametime suppress the multiple waves in the process of imaging.
     The mineral seismic field test will be done and both the singularity inversionimaging results and the conventional reflection imaging results will be get andcompared. The mineral seismic field test will be done using French Sercel seismicinstrument and the vibroseis as the source. Two kinds of observation system are testedin seismic data acquisition in the experiments, one is the conventional reflectionseismic observation system of unilateral excitation raceway mode, the other is theobservation system of detector array fixed and shot rolling. The conventionalreflection seismic data of the first kind of observation system are processed to becompared with the imaging results. The singularity inversion imaging of seismicacquisition data containing all two observation system are studied, and good imagingresults are obtained.
引文
[1]中华人民共和国国土资源部.中国矿产资源报告[M].北京:地质出版社,2012.
    [2]范振林.中国矿产资源消耗与经济社会发展[J].现代矿业,2013,2(2):1-3.
    [3]国土资源部.全国矿产资源规划(2008-2015年)[EB/OL].http://www.mlr.gov.cn/xwdt/zytz/200901/t20090107_113776.htm,2009-01-07.
    [4]袁爱国,王庆飞,徐浩.国内金属矿产资源供应力的现状与对策分析[J].资源与产业,2007,9(2):68-71.
    [5]滕吉文,刘建明,刘财等.第二深度空间金属矿产探查与东北战略后备基地的建立和可持续发展[J].吉林大学学报(地球科学版),2007,37(4):633-651.
    [6]滕吉文.强化第二深度空间金属矿产资源探查,加速发展地球物理勘探新技术与仪器设备的研制及产业化[J].地球物理学进展,2010,25(3):729-748.
    [7]尹军杰,王伟,王赟等.地震散射波模拟成像方法在铜陵某矿区的应用[J].地球物理学进展,2009,24(4):1367-1376.
    [8]徐明才,高景华,柴铭涛等.寻找隐伏金属矿的地震方法技术研究[J].物探与化探,1997,21(06):468-474.
    [9]吕庆田,侯增谦,史大年等.铜陵狮子山金属矿地震反射结果及对区域找矿的意义[J].矿床地质,2004,23(03):390-398.
    [10]籍同冰,徐明才.俄罗斯金属矿地震勘探[J].物化探译丛,1995,(04):25.
    [11]徐明才,高景华,柴铭涛等.用于金属矿勘查的地震方法技术[J],物探化探计算技术,2007,29(增刊):138-143.
    [12]徐明才,高景华,荣立新等.地震方法探测太行山山前断裂的活动特征[J],Applied Geophysics,2010,7(04):392-398.
    [13] Eaton D W, Milkereit B, and Adam E.3-D Seismic exploration: Exploration [A],Fourth Decennial Conference on Mineral Exploration, Proceedings[C],1997:65–80.
    [14] Eaton D W, Milkereit B, and Salisbury M. Seismic methods for deep mineralexploration: Matrure technologies adapted to new targets [J]. The leading Edge,2003,22(6):580-585.
    [15]李灿苹,刘学伟,王祥春等.地震波的散射理论和散射特征及其应用[J].勘探地球物理进展,2005,28(2):81-89.
    [16]勾丽敏,刘学伟,雷鹏等.金属矿地震勘探技术方法研究综述——散射波地震勘探方法[J].勘探地球物理进展,2007,30(2):85-90.
    [17] Pretorius C C, Trewick W F, and Irons C. Application of3-D seismic to mineplanning at Vaal Reefs gold mine, number10shaft, Republic of South Africa[J].Geophysics,2000,65(6),1862–1870.
    [18]朱梅生,何雪洲.国外浅部地震勘探技术的应用[J].物探化探译丛,1995,3(98):1-10.
    [19]崔占荣.安徽铜陵狮子山矿区金属矿地震方法技术研究[A],勘查地球物理勘查地球化学文集[C],1996:26-35.
    [20]孙明,林君.金属矿地震散射波场的数值模拟研究平[J].地质与勘探,2001,37(04):68-70.
    [21]孙明,林君.轻便可控震源与夯击震源在金属矿地震勘探中的对比实验研究[J].现代地质,2002,16(4):439-442.
    [22]孙明,林君.τ-p变换在金属矿地震数据处理中的应用[J].物探与化探,2001,25(6):432-436.
    [23]孙明,林君,高游,张秉仁.新疆土屋斑岩铜矿区地震反射法可行性研究[J].物探与化探,2003,27(5):341-344.
    [24]梁光河,蔡新平,张宝林等.浅层地震勘探方法在金矿深部预测中的应用[J].地质与勘探,2001,37(6):29-33.
    [25]梁光河,蔡新平.地震勘探在山东蓬家夼金矿深部预测中的应用[J].矿产与地质,2001,15(6):743-748.
    [26]徐明才,高景华,荣立新等.散射波地震方法在蔡家营多金属矿区的试验研究[J].物探与化探,2003,7(1):49-54.
    [27]吕庆田,侯增谦,史大年等.铜陵狮子山金属矿地震反射结果及对区域找矿的意义[J].矿床地质,2004,23(03):390-398.
    [28]吕庆田,史大年,赵金花等.深部矿产勘查的地震学方法:问题与前景——铜陵矿集区的应用实例[J].地质通报,2005,24(3):211-218.
    [29]安岩,邹建,王玉风等.浅层折射波在覆盖层厚度探测中的研究及应用[J]勘察科学技术,2011,(05):51-54.
    [30] Thornburgh H R. Wave-front diagrams in seismic interpretation [J]. Bull AmrtAssoc Petroleun Geologists,1930,14(2):85-200.
    [31] Hagedoorn J G. The plus-minus method of interpreting seismic refractionsections [J]. Geoph Prosp,1959,7(2):158-182.
    [32] Hales, F. W., An accurate graphical method for interpreting seismic refractionlines[J]. Geophys. Prosp.,1958,6:285–314.
    [33] Barthelmes, A.J.. Application of continuous profiling to refraction shooting[J]Geophysics,1946,11:24-42.
    [34]]Tarrant, L. H.. A rapid method of determining the form of a seismic refractor from line profile results[J]. Geophys. Prosp.,1956,4:131-139.
    [35] Barry K M. Delay time and its application to refraction profile interpretation[C]Musgrave A W. Seismic refraction prospecting. Tulsa,Okla:Soc ExplGeophy,1967:348-361.
    [36] Palmer D. The generalized reciprocal method of seismic refractioninterpretation[M]. Tulsa,Okla.:Soc Expl Geophy,1980.
    [37]Palmer D. An introduction to the generalized reciprocal method of seismicrefraction interpretation[J]. Geophy-sics1981,46:1508-1518.
    [38] Flatte, S.M, R. Dashen, W.J.Munk, K.M.Waston and F.Zachariasen. SoundTransimission Throungh a Fluctuating Ocean [M], Cambridge Univ.Press: NewYork,1979.
    [39] Aki K,Richards P. Quantitative Seismology: Theory and Methods [M], W. H.Freeman, New York,1980.
    [40] Wu R S, Aki K. Scattering characteristics of elastic waves by An elasticheterogeneity [J]. Geophysics.1985,50:582-595.
    [41] Sato H. Attenuation and Envelope Formation for Three componentSeismograms of Small Local Earthquakes in Randomly InhomogeneousLithosphere[J]. Geophys. Res,1984,89:1221-1241.
    [42] Bernd Milkereit E K Bener, et al., Development of3D seismic explorationtechnology for deeep nickel-copper-deposits-A case history from the Sudburybasin [J]. Canada Geophysics.2001,65(6).
    [43] Wu. R S,Huang Li. Scattered field calculation in heterogenous media using aphase-screen propagator: Expanded Abstracts of the Technical Program[A].SEG’62nd Annual Meeting[C],1992:1289-1292.
    [44] Wu. R S,Huang Li,Xie X B.Back scattered wave calculation using the D Ewolf a pproximation and a phase-screen propagator: Expanded Abstracts of theTechnical Program[A]. SEG’65th Annual Meeting[C],1995:1293-1296.
    [45] Eaton D W. Weak elastic-wave scattering from massive sulfide orebodies[J].Geophysics,1999,64(1):289-299.
    [46] Pai D M. Crosshole seismic using vertical eigenstates [J].Geophysics,1990,55(7):815-820.
    [47] Dickens T A. Diffraction tomography for crosswell imaging of nearly layeredMedia [J].Geophysics,1994,59(5):694.
    [48]吴如山,[美]安艺敬一.地震波的散射衰减[M].李裕澈,卢寿德等译.北京:地震出版社,1993.
    [49]杨文采,杜剑渊.高分辨率地震层析成像和级联法[M].北京:计算地球物理丛书,1993.
    [50]符力耘,杨慧珠,牟永光.非均匀介质散射问题的体积分方程数值解法[J].力学,1998,4:488.
    [51]李小凡.大延伸非均匀介质中地震波全弹性散射理论Ⅰ-弹性波单次散射理论研究[J].力学学报,2002,34(4):559-568.
    [52]李小凡.大延伸非均匀介质中地震波全弹性散射理论Ⅱ-弹性波多次散射理论[J].力学学报,2002,34(5):734-755.
    [53]黄雪继.地震波散射场相位移法波动方程正演模拟[D].北京:中国地质大学出版社,2003.
    [54]王伟,尹军杰,刘学伟等.等效偏移距方法及应用[J].地球物理学报,2007,50(6):1823-1830.
    [55]尹军杰,王伟,王赟等.地震散射波模拟成像方法在铜陵某矿区的应用[J].地球物理学进展,2009,24(4):1367-1376.
    [56] Wong J. Crosshole seismic imaging for sulfide orebody delineation nearSudbury, Ontario[J], Canada. Geophysics,2000,65(6):1900-1907.
    [57] Bellefleur G, Müller C, Snyder D, and Matthews L. Downhole seismic imagingof a massive sulfide orebody with mode-converted waves, Halfmile lake, NewBrunswick, Canada[J]. Geophysics,2004,69(2):318-329.
    [58]董世泰,杜春.井中地震勘探仪器的现状与发展[J],物探装备,2002,12(04):227-235.
    [59]郭建.VSP技术应用现状及发展趋势[J].勘探地球物理进展,2004,27(1):3-8.
    [60]曹辉.井中地球物理技术综述[J]物探装备.2004,27(04):235-240.
    [61]陈生昌,马在田等,三维VSP数据的波动方程偏移成像[J].天然气工业,2008,28(03):51-54.
    [62]杨文采.地球物理反演和地震层析成像[M].北京:地质出版社,1989.
    [63]杨文采、李幼明等.应用地震层析成像[M].北京:地质出版社,1993.
    [64] ZHAO YONGGUI, WANG CHAOFAN, CHEN YAN MIN, et al Seismictomography and its application in mining [J]. Chinese Journal of Geophysics,1996,39(4):585
    [65]吴振利,李家虝,阮爱国.地震层析成像及其国内研究进展[J].东海海洋,2003,21(3):54-64.
    [66]和锐,杨建思,张翼.地震层析成像方法综述[J].CT理论与应用研究,200716(01):35-48.
    [67] Moses H E. Calculation of scattering potential from reflectioncoefficients.Phys.Rev.,1956,102:559~567
    [68] Prosser R T. Formal solutions of inverse scattering problems:[J].Math.Phys.,1969,10(8):1819-1822
    [69] Cohen J K, Bleistein N. Velociity inversion procedure for acoustic waves[J].Geophysics,1979,44(06):1077-1087.
    [70] Bleistein N, Cohen J K, Hagin F G. Computional and asymptotic of velocityInversion [J].Geophysics,1982,47(11):1497-1511.
    [71] Prosser R T. Formal solutions of inverse scattering problems:∥[J].Math.Phys.,1976,17(11):1975-2653
    [72] Prosser R T. Formal solutions of inverse scattering problems:∥[J].Math.Phys.,1980,21(11):2648-2653
    [73] Prosser R T. On the solutions of the Gel’fand-Levitan equation[J].Math.Phys.,1984,25:1924-1929
    [74] Newton R G. Scattering theory of wave and particles[M]. New York:Springer-Verlag,1982.
    [75] Beylkin G. The inversion problem and application of the generalized RadonTransform [J]. Comm. on Pure and Applied Math.,1984,37:579-599.
    [76] Beylkin G. Imaging of discontinuities in the inverse scattering problem byinversion of a causal generalized Radon transform [J]. J Math. Phys.,1985,26(1):99-108.
    [77] Clacerbout J F. Fundamentals of Geophysical data peocessing[M]. England:Blackwell Scientific Publications,1985.
    [78] Miller D, Oristaglio M, and Beylkin G. A new slant on seismic imagingmigration and integral geometry[J]. Geophysics,1987,52(7):943-964.
    [79] Bleistein N. On the imaging of reflectors in the earth [J]. Geophysics,1987,52(7):931-942.
    [80] Cohen J K, Hagin F G., and Bleistein N. Three-dimensional Born inversion withan arbitrary reference[J]. Geophysics,1986,51(8):1552-1558.
    [81] Dong W, Emanue M J, Bording P, and Bleistein N. A computer implementationof2.5-D common-shot inversion [J].Geophysics,1991,56(9):1384-1394.
    [82] Weglein A B. Gasparotto F A. Carvalho P M. Stolt R H. An inverse scatteringseries method for attenuating multiples in seismic reflection data[J]. Geophysics,1997,62(6):1975-1989.
    [83] Weglein A B. How can the inverse scattering method really predict and subtractall multiples from a multidimensional earth with absolutely no subsurfaceinformation[J]. The Leading Edge,1999,18(1):132-136.
    [84] Weglein A B. A new, clear and meaningful definition of linear inversion:Implications for seismic inversion of primaries and removing multiples[A].79thAnnual International Meeting, SEG, Expanded Abstracts[C],2009:3059–3063.
    [85] Matson K H. The relationship between scattering theory and the primaries andmultiples of reflection seismic data[J]. Journal of Seismic Exploration,1996,5:63-78.
    [86] Matson K H, Weglein A B. Removal of elastic interface multiples from landand ocean bottom data using inverse scattering[A]. Annual Meeting Abstracts,Society Of Exploration Geophysicists[C],1996,61(5):1526-1530.
    [87] Ikelle L T. Using even terms of the scattering series for deghosting and multipleattenuation of ocean-bottom cable data [J]. Geophysics,1999,64(2):579–592
    [88] Ikelle L T, Amundsenz L, and Yoo S. An optimization of the inverse scatteringmultiple attenuation method for OBS and VC data[J]. Geophysics,2002,67(4):293–1303.
    [89] Zhang H and Weglein A B. Direct nonlinear inversion of multiparameter1Delastic media using the inverse scattering series[J]. Geophysics,2009,74(6):WCD15-WCD27.
    [90] Zhang H and Weglein A B. Direct nonlinear inversion of1D acoustic mediausing inverse scattering subseries[J]. Geophysics,2009,74(6):WCD29-WCD39.
    [91]黄联捷,杨文采.参考波速线性变化时声波方程逆散射反演[J].地球物理学报,1991,34(1):89~98.
    [92]杨文采.波动方程的逆散射与迭代线性化反演[J].石油物探,1995,34(3):114-121.
    [93]杨文采.地震波场反演的BG逆散射方法[J].地球物理学报,1995,38(3):358-366.
    [94]李世雄等.广义Radon变换在散射层析成像法中的应用[J].地球物理学报,1990,33.
    [95]袁晓晖,王妙月.密度和压缩系数的散射层析成像法[J].地球物理学报,1991,34(06):753-761.
    [96]刘洪,李幼铭,吴如山.三维散射算子及其在逆散射中的应用[J].地球物理学进展,1994,9(2):54-83.
    [97]刘洪,袁江华,勾永峰等.地震逆散射波场和算子的谱分解[J].地球物理学报,2007,50(1):240-247.
    [98]王忠仁,何樵登.叠前共炮点道集的奇性反演研究[J].地球物理学报,1998,41(增刊):326-336.
    [99]辛可锋,王华忠,马在田.一种高精度的偏移速度分析方法——广义屏偏移加Born反演[J].勘探地球物理进展,2002,03:20-26.
    [100]成谷,张宝金,马在田等.积分道与基于Born散射的一维声波方程速度反演[J].地球物理学进展,2003,18(1):122-127.
    [101]丁科,宋守根.含多次波数据的逆散射奇性反演[J].石油地球物理勘探,2004,39(3):287-290.
    [102]徐基祥,王平,林蓓.地震波逆散射成像技术潜力展望[J].中国石油勘探,2006,(4):61-66.
    [103]刘洪,刘国峰,武威等.多维波动方程逆散射的基础理论研究[J].石油物探,2007,46(6):569-581.
    [104]王伟,尹军杰,刘学伟等.等效偏移距方法及应用[J].地球物理学报,2007,50(6):1823-1830.
    [105]李翔,胡天跃.逆散射理论在去噪方面的研究与应用[A].中国地球物理学会第二十四届年会论文集[C],2008.
    [106]李翔,胡天跃.逆散射级数法去除自由表面多次波[J].地球物理学报,2009,52(6):1633-1640.
    [107]赵保宗,孙永清,李学聪.基于波动方程的多次波压制方法应用研究[J].地球物理学进展,2010,25(1):272-281.
    [108]刘华锋,陈小宏,李景叶.逆散射级数方法与SRME方法预测自由表面多次波的比较[A].中国地球物理学会第二十七届年会论文集[C],2011.
    [109]何樵登.地震波理论[M].北京:地质出版社,1998.
    [110]贺振华.反射地震资料偏移处理与反演方法[M].重庆:重庆大学出版社,1989.
    [111]杨顶辉.双相各向异性介质中弹性波方程的有限元解法及波场模拟[J].地球物理学报,2002,45(4):575-583.
    [112] Fu L Y and Wu R S. Infinite boundary element absorbing boundary for wavepropagation simulations [J]. Geophysics,2000,65(2):596-602.
    [113]王德利,何樵登,韩立国.裂隙型单斜介质中多方位地面三分量记录模拟[J].地球物理学报,2005,48(2):386-393.
    [114]郑海山,张中杰.横向各向同性(VTI)介质中非线性地震波场模拟[J].地球物理学报,2005,48(3):660-671.
    [115]薛东川,王尚旭,焦淑静.起伏地表复杂介质波动方程有限元数值模拟方法[J].地球物理学进展,2007,22(2):522-529.
    [116] Ge Z X, and Chen X F. An efficient approach for simulating wave propagationwith the boundary element method in multilayered media with irregularinterfaces[J]. Bulletin of the Seismological Society of America,2008,98(6):3007-3016.
    [117]李绪宣,于更新,符力耘等.应用边界元模拟方法分析复杂海底地震散射特征[J].中国海上油气,2011,23(6):357-361.
    [118] Jih R S, Mclaughlin K L, and Der Z A. Free-boundary conditions of arbitrarypolygonal topography in a two-dimensional explicit elastic finite-differencescheme[J]. Geophysics,1988,53(8):1045-1055.
    [119] Pérez-Ruiz J A, Luzo′n F, and Garc′a-Jerez A. Simulation of an irregular freesurface with a displacement finite-difference scheme[J]. Bulletin of theSeismological Society of America,2005,95(6):2216–2231.
    [120] Appelo D, Petersson N A. A stable Finite difference method for the elasticwave equation on complex geometries with free surfaces [J]. Commun. Comput.Phys.,2009,5(1):84-107.
    [121] Lan H Q and Zhang Z J. Three-Dimensional Wave-Field Simulation inHeterogeneous Transversely Isotropic Medium with Irregular Free Surface[J].Bulletin of the Seismological Society of America,2011,101(3):1354-1370.
    [122]裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J].石油地球物理勘探,2004,39(6):629-634.
    [123]董良国,郭晓玲,吴晓丰等.起伏地表弹性波传播有限差分法数值模拟[J].天然气工业,2007,27(10):38-41.
    [124]黄自萍,张铭,吴文青等.弹性波传播数值模拟的区域分裂法[J].地球物理学报,2004,47(6):1094-1100.
    [125]马德堂,朱光明.有限元法与伪谱法混合求解弹性波动方程[J].地球科学与环境学报,2004,26(1):61-64.
    [126]管西竹,符力耘,陶毅等.复杂地表边界元-体积元波动方程数值模拟[J].地球物理学报,2011,54(9):2357-2367.
    [127]褚春雷,王修田.非规则三角网格有限差分法地震正演模拟[J].中国海洋大学学报,2005,35(1):43-48.
    [128]孙小东,李振春,王小六.三角网格有限差分叠前逆时偏移方法研究[J].地球物理学进展,2012,27(5):2077-2083.
    [129] Alford R M, Kelly K R and Boore D M. Accuracy of finite differencemodelling of the acoustic wave equation[J]. Geophysics,1974,39:834-842.
    [130] Yang D H, Tong P, Deng X Y. A central difference method with lownumerical dispersion for solving the scalar wave equation.GeophysicalProspecting,2012,60(5):885-905.
    [131] Yang D H, Wang N, Liu F Q. A strong stability-preserving predictor-correctorMethod for the simulation of elastic wave propagation in anisotropic media.Communications in Com putational Physics,2012,12(4):1006-1032.
    [132] Ma X., Yang D.H., and Liu F.Q., A nearly-analytic symplectic partitionedRunge-Kutta method for2D elastic wave equations, Geophysical JournalInternational,2011,187,480–496.
    [133] Tong P., Yang D.H., Hua B.L, and Wang M.X,. A high-order stereo-modelingmethod for solving wave equations, Bulletin of the Seismological Society ofAmerica.2013,103(2):811-833.
    [134]王忠仁,柴治媛.伪随机编码震源信号的地震响应[J].地球物理学进展,2007,22(6):1736-1739.
    [135]王忠仁,樊丹丹,高健等.基于三元伪随机编码的可控震源信号设计方法[J].石油地球物理勘探,2009,44(5):534-536.
    [136]王忠仁,高健,林君.可控震源匹配扫描方法研究[J].地球物理学报,2010,53(11):2754-2759.
    [137]王忠仁,刘瑞,陈卫等.可控震源的互补组合激发技术[J],吉林大学学报(地球科学版),2013,43(6):2044-2049.
    [138]张俊瑜,孙惠荣等.高分辨率地震方法在喀拉通克铜镍矿区的应用研究:浅层地震方法技术应用研究专辑[M].北京:地质出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700