用户名: 密码: 验证码:
高硅锌矿高温酸转化沉硅基础理论及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着优质锌矿资源的日益枯竭,在我国分布较为广泛的难选难冶高硅锌矿资源的开发利用越来越受到人们的重视。发展高硅锌矿全湿法炼锌的工艺方法对于提高我国湿法炼锌工艺水平,扩大可供矿源有重要意义。因此,探索解决高硅锌矿酸浸矿浆中可溶硅带来的矿浆过滤难问题的方法以及实现锌与硅的高效分离已成为该领域的关键课题之一。本论文从高硅锌矿中随锌一同浸出进入溶液的H4Si04入手,围绕依据酸性体系中H4Si04的高温热力学性质使其在胶凝前转化成易过滤SiO2沉淀的思路展开研究工作,以不同类型高硅锌矿为研究对象,以优化酸性体系中锌与硅高效分离的高温酸转化环境和提高锌浸出回收率为目的,对高硅锌矿高温酸转化基础理论和调控技术进行研究,为解决高硅锌矿在常规湿法炼锌中酸浸矿浆液固分离难的问题并为实现高硅锌矿的工业化应用奠定基础。本论文开展的主要研究工作及研究成果如下:
     (1)采用化学物相组成、XRD、SEM-EDS等分析手段对三种不同类型的高硅锌矿—异极矿、硅锌矿和高硅硫氧混合锌矿进行了工艺矿物学分析。异极矿矿样中主要物相为异极矿和石英,各占矿物成分的44.31%和41.41%。硅锌矿矿样中主要的锌矿物为硅锌矿,脉石矿物主要为石英。高硅硫氧混合锌矿组成复杂,矿物种类繁多,矿样中锌主要以异极矿和闪锌矿形态存在;其它伴生矿物有方铅矿、白铅矿、黄铁矿、陨硫铁等;脉石矿物主要为石英,并伴有少量方解石、白云母等。
     (2)分析了高硅锌矿高温酸转化过程热力学趋势。异极矿和硅锌矿在高温酸转化体系中发生化学反应的热力学趋势很大,且其热力学趋势依次为异极矿>硅锌矿。异极矿和硅锌矿浸出时进入溶液的H4Si04的热力学稳定区随温度的升高逐渐变小直至消失,而由其转化形成的Si02热力学稳定区则扩大,高温条件有利于H4Si04转化成Si02。在温度超过392K的温度场作用下,H4Si04在热力学上是可以自发地转化形成二氧化硅的。SiO2的热力学稳定区随可溶硅活度的提高亦明显扩大,且在高温水溶液中Si02能在很宽的E-pH范围稳定存在。提高温度和可溶硅活度将使H4SiO4转化形成SiO2的反应更容易进行。
     (3)研究了高硅锌矿高温酸转化过程的动力学机理。异极矿高温酸转化过程遵循固膜扩散控制,其表观活化能为44.9kJ/mol。纯硅锌矿高温酸转化过程的总速率受单个微粒周围固态产物层扩散控制,其表观活化能为22.06kJ/moo1。硅锌矿和异极矿高温酸转化过程中锌浸出的总速率受固相内扩散控制。高温酸转化体系下,硅锌矿和异极矿分解释放出可溶硅和锌,而以H4SiO4形态进入溶液中的可溶硅在393K的温度场作用下转化形成易过滤的二氧化硅沉淀,极大地改善了矿浆的液固分离性能,实现了高硅锌矿高温酸转化过程中锌与硅的高效分离。
     (4)研究了高硅锌矿的高温酸转化行为。高硅锌矿中以异极矿和硅锌矿形态存在的可溶硅随锌一同浸出,进入溶液的H4SiO4转化形成SiO2沉淀的主要影响因素为温度,在温度达到413~433K范围,溶液中H4SiO4转化形成SiO2沉淀的效果最佳。在优化工艺技术参数下,不同类型高硅锌矿中锌的浸出率均达97%以上,而铁和二氧化硅在转化产物中得以富集,实现了锌的可控提取。高温酸转化技术是处理高硅锌矿的有效方法。
     (5)开展了高温酸转化体系下多组元溶液逆流循环浸出锌富集实验,探讨了溶液中锌的富集规律,以及铁、硅等元素的变化规律。通过4次逆流循环浸出高温酸转化实验,溶液中主金属锌浓度得到了较好的富集,其含量达125.62g/L;铁、硅等浓度变化不明显,二者含量均在0.5g/L左右;且矿浆过滤性能良好。
With the increasing exhaustion of high-quality zinc ore resources, more and more attention has been paid to the exploitation and utilization of refractory high-silicon zinc ore resources that are widespread in China. Developing the new method of zinc hydrometallurgy process for high-silicon zinc ores has important implications for expanding raw material sources of zinc smelting and improving the level of zinc hydrometallurgy process in our country. Thus, realizing the effective separation of zinc and silicon and exploring the method of solving the problem of filtration difficulty that is brought out by the soluble silicon present in acid leaching slurry of high-silicon zinc ores is one of key research subjects in the field. In order to optimize high-temperature acid conversion environments of the effective separation of zinc and silicon in acidic system and improve the leaching and recovery rate of zinc, this paper starts with H4SiO4that can be simultaneously formed and dissolved into leaching solution with the extraction of zinc from high-silicon zinc ores, focusing on this idea that H4SiO4could be transformed into SiO2before gelation based on the high-temperature thermodynamic properties of H4SiO4in acidic system, using the different kinds of high-silicon zinc ores as the main research objects, the research on the basic theory and adjust technology of high-temperature acid conversion for high-silicon zinc ores has been carried out for solving the problem that is brought out by the liquid-solid separation difficulty of acid leaching slurry obtained from the traditional hydrometallurgical process for extracting zinc from high-silicon zinc ores and for laying the basis for realizing the industrial application of high-silicon zinc ores. The main research work and research results are as follows in this dissertation:
     (1) The analysis of technological mineralogy on the three different kinds of high-silicon zinc ores (hemimorphite, willemite and high-silicon mixed sulphide-oxide zinc ores) was carried out by means of chemical phase composition, XRD and SEM-EDS. The main mineral phases present in the ore sample of hemimorphite include hemimorphite (44.31%) and quartz (41.41%). The major zinc-bearing phase in the ore sample of willemite is willemite, and the gangue mineral is mainly quartz. There are various minerals in the high-silicon mixed sulphide-oxide zinc ores, and its composition is complex. The major zinc-containing phases in the ore sample are sphalerite and hemimorphite, and the main phase composition of lead is galena and cerussite. The iron from the ore sample is presented mainly with the form of pyrite and troilite. Quartz is the main gangue mineral accompanied with a little calcite and muscovite.
     (2) The thermodynamic trend of high-temperature acid conversion for high-silicon zinc ores was analyzed. The thermodynamic trend in the chemical reaction involved in hemimorphite and willemite is quite significant under the system of high-temperature acid conversion, and the thermodynamic trend in the chemical reaction of hemimorphite is higher than willemite. The thermodynamic stable region for H4SiO4that can be simultaneously formed during leaching of hemimorphite and willemite becomes smaller and eventually vanishes as temperature increases. However, the thermodynamic stable region for SiO2formed by the transformation of H4SiO4increases with the increase of temperature. Higher temperatures may be helpful for turning H4SiO4into SiO2. Thermodynamically, H4SiO4is transformed spontaneously into SiO2under the influence of the temperature field of above392K. The thermodynamic stable region for SiO2becomes larger as the activity of the solute silicon increases, and SiO2present in the high-temperature aqueous solution is stable in a broad range of E-pH. Improving the activity of the solute silicon and temperature will make the conversion of H4SiO4into SiO2easier to occur.
     (3) The kinetics mechanism of high-temperature acid conversion process was investigated for high-silicon zinc ores. The high-temperature acid conversion reaction of hemimorphite followed a shrinking core model with "ash" layer diffusion as the main rate-controlling step. The apparent activation energy was determined to be44.9kJ/mol. The high-temperature acid conversion process of pure willemite was well interpreted by the grain model with product layer diffusion as the main rate-controlling step and the shrinking core model was used to represent the reaction of each grain. The apparent activation energy was found to be22.06kJ/mol. The total rate of zinc extraction was controlled by solid-state diffusion during high-temperature acid conversion of hemimorphite and willemite. Under the system of high-temperature acid conversion, hemimorphite and willemite broke down quickly and liberated zinc and soluble silicon, and then the soluble silicon entering the solution in the form of H4SiO4was transformed into SIO2precipitation under the influence of the temperature field of393K. The formation of silicon dioxide precipitation having excellent filtration property greatly improved the separative performance of liquid-solid from slurry, and realized the effective separation of zinc and silicon during high-temperature acid conversion of high-silicon zinc ores.
     (4) The high-temperature acid conversion behavior of high-silicon zinc ores was studied. The soluble silicon in the ore sample of high-silicon zinc ores exists as hemimorphite and willemite and can be simultaneously dissolved in H4SiO4form with the extraction of zinc from high-silicon zinc ores. The main factor influencing the conversion of H4SiO4into SiO2precipitation is temperature. The result for turning H4SiO4into SiO2precipitation is best when investigating at the temperature ranging from413to433K. Under the optimum conditions, the extraction of zinc from the different kinds of high-silicon zinc ores was above97%, and the iron and silica concentrated in the conversion product. The controlled extraction of zinc would be realized based on the said conditions. The high-temperature acid conversion technology is an effective method for the treatment of high-silicon zinc ores.
     (5) The countercurrent circulating leaching and zinc concentration experiments of multicomponent solution were carried out under the system of high-temperature acid conversion. On the basis, the migration enrichment of zinc, iron and silica in leaching solution and their distributing law were discussed. Through the countercurrent circulating leaching experiments that experienced4cycles under the said system, the zinc concentration of leaching solution got the maximum enrichment, and the zinc content reached to125.62g/L. The change in the concentration of iron and silica was not obvious, and the contents of iron and silica were about0.5g/L in leaching solution. Meantime, the leaching slurry having excellent filtration property was obtained.
引文
[1]U.S. Geological Survey. Mineral Commodity Summaries[EB]. http://minerals.usgs.gov/minerals/pubs/mcs/,2013.02.19.
    [2]张长青,芮宗瑶,陈毓川,王登红,陈郑辉,娄德波.中国铅锌矿资源潜力和主要战略接续区[J].中国地质,2013,40(1):248-272.
    [3]石道民,杨敖.氧化铅锌矿的浮选[M].昆明:云南科技出版社,1996.
    [4]梅光贵,王德润,周敬元,王辉.湿法炼锌学[M].长沙:中南大学出版社,2001.
    [5]Guo X, Zhong J, Song Y, Tian, Q. Substance flow analysis of zinc in China[J]. Resources, Conservation and Recycling,2010,54(3):171-177.
    [6]International Lead and Zinc Study Group. Zinc-Annual Review 2012[EB]. http://www.ilzsg.org/generic/pages/file.aspx?file_id=1257&field_name=document%20aa_file_id_7,2013.02.19.
    [7]黄仲权.我国铅锌工业发展的现状与对策建议[J].世界有色金属,2004,(8):4-6.
    [8]马茁卉.我国铅锌资源现状及发展政策建议[J].西部资源,2008,34(2):21-25.
    [9]李四林,马瑶瑶.我国铅锌矿资源开发治理模式及政策研究[J].安全与环境工程,2010,17(6):88-93.
    [10]王忠实,蒋继穆.中国锌冶炼现状[J].有色冶炼,1996,25(6):1-5.
    [11]宁孝生,谭洎曾,陈本忠.高硅硫化锌精矿焙烧料新的湿法处理工艺[J].矿冶工程,1996,16(2):47-47.
    [12]金忠.高硅锌精矿的湿法冶炼[J].白银科技,1995,61(2):14-16.
    [13]Hirt W C, Rice D A, Gum K. Selective flocculation of zinc concentrate to reduce silica contamination[J]. Minerals and Metallurgical Processing,1994,11(3):174-177.
    [14]邱廷省,罗仙平,陈卫华,赵洪文,尹书刚,蒋启斌.提高会东铅锌矿铅锌选矿指标的试验研究[J].金属矿山,2004,9:34-36.
    [15]《铅锌冶金学》编委会.铅锌冶金学[M].北京:科学出版社,2003.
    [16]徐斌,杨俊奎,钟宏,姜涛.高硅氧化锌矿浸出工艺的研究[J].昆明理工大学学报(理工版),2010,35(5):10-14.
    [17]魏昶,王吉坤.湿法炼锌理论与应用[M].昆明:云南科技出版社,2003.
    [18]Hitzman M W, Reynolds N A, Sangster D, Allen C R, Carman, C E. Classification, genesis, and exploration guides for nonsulfide zinc deposits[J]. Economic Geology,2003, 98(4):685-714.
    [19]周德林,窦明民,陈世明.高硅氧化锌矿全湿法冶炼工艺的研究,应用与发展[J].有色金属:冶炼部分,1995,(3):1-6.
    [20]杨再兴,杨晓冬,李树龙,杨丽周.高硅氧化锌矿的处理[J].世界有色金属,2008,(7):42-43.
    [21]Moradi S, Monhemius A J. Mixed sulphide-oxide lead and zinc ores:Problems and solutions[J]. Minerals Engineering,2011,24(10):1062-1076.
    [22]戴元宁.滇云摘虹[M].昆明:云南科学技术出版社,2007.
    [23]赵纯禄.铁闪锌矿浮选工艺过程的特性[J].有色金属:选矿部分,1995,(5):4-7.
    [24]秦善,王长秋.矿物学基础[M].北京:北京大学出版社,2006.
    [25]潘兆橹.结晶学及矿物学(下册)[M].第三版.北京:地质出版社,1994.
    [26]杨永强,李丽.非硫化物型锌矿床的地质特征和成因机制[J].世界地质,2010,29(1):56-59.
    [27]徐采栋,林蓉,汪大成.锌冶金物理化学[M].上海:上海科学技术出版社,1979.
    [28]汪正然,陈武.矿物学[M].上海:上海科学技术出版社,1965.
    [29]黄典豪.云南乐红铅锌矿床氧化带中异极矿的矿物学特征及其意义[J].岩石矿物学杂志,2000,19(4):349-354.
    [30]刘琰,邓军,杨立强,王庆飞,周应华,高帮飞.表生异极矿成因研究及其找矿意义[J].矿物岩石,2005,25(2):1-6.
    [31]张俊辉.浅谈氧化铅锌矿的浮选现状[J].四川有色金属,2004,4:13-17.
    [32]戴安邦,陈荣三.水溶液中硅酸聚合理论[J].1979自然杂质年鉴,1980:91-98.
    [33]常发科.高硅型锌矿直接酸浸的试验研究[J].云南冶金,1995,24(1):36-38.
    [34]李锋,金作美,王励生.浸出高硅锌焙砂中硅胶聚沉的规律[J].中国有色金属学报,2001,11(6):1114-1117.
    [35]谭欣,李长根.国内外氧化铅锌矿浮选研究进展(Ⅱ)[J].国外金属矿选矿,2000,37(4):2-6.
    [36]邵广全,李颖,张心平,刘万峰.低品位复杂难处理氧化铅锌矿选矿工艺研究[J].矿冶,2006,15(3):21-26.
    [37]李若贵.常压富氧直接浸出炼锌[J].中国有色冶金,2009,3:12-15.
    [38]陈本忠.高硅锌精矿的湿法冶炼[A].《矿冶工程》杂志编辑部.长沙矿冶研究院第三届青年学术会议论文集[C].长沙:矿冶工程杂志社,1992,132-135.
    [39]姚兴云.锌精炼工艺中二氧化硅的沉淀试验[J].中国有色冶金,2012,41(6):1-5.
    [40]刘风林,金作美,王励生.高硅硫化锌精矿氧化焙烧中硅酸锌生成反应的动力学[J]. 中国有色金属学报,2001,11(3):514-517.
    [41]孙德堃.国内外锌冶炼技术的新进展[J].中国有色冶金,2004,6(3):1-4.
    [42]陈爱良,赵中伟,贾希俊,龙双,霍广生,李洪桂.高硅难选氧化锌矿中锌及伴生金属碱浸出研究[J].金川科技,2010,(2):42-47.
    [43]刘三军,欧乐明,冯其明.氧化锌矿的碱法浸出研究[J].矿产保护与利用,2004,(4):39-43.
    [44]彭容秋.重有色金属冶金工厂技术培训教材(锌冶金分册)[M].长沙:中南大学出版社,2005.
    [45]余楚蓉.国外氧化锌矿的冶炼[J].重有色冶炼,1980,2:23-33.
    [46]Dufresne R E. Quick leach of siliceous zinc ores[J]. Journal of Metals,1976,28(2):8-12.
    [47]Frenay J. Leaching of oxidized zinc ores in various media[J]. Hydrometallurgy,1985, 15(2):243-253.
    [48]Chen A, Zhao Z W, Jia X, Long S, Huo G, Chen X. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore[J]. Hydrometallurgy, 2009,97(3-4):228-232.
    [49]Santos F M F, Pina P S, Porcaro R, Oliveira V A, Silva C A, Leao V A. The kinetics of zinc silicate leaching in sodium hydroxide[J]. Hydrometallurgy,2010,102(1-4):43-49.
    [50]Ding Z, Yin Z, Wu X, Hu H, Chen Q. Leaching kinetics of willemite in ammonia-ammonium chloride solution[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science,2011,42(4):633-641.
    [51]Ding Z, Yin Z, Hu H, Chen Q. Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution[J]. Hydrometallurgy,2010,104(2):201-206.
    [52]刘智勇,刘志宏,曹志阎,李启厚,杨天足.硅锌矿在(NH4)2SO4-NH3-H2O体系中的浸出机理[J].中国有色金属学报,2011,21(11):2929-2935.
    [53]Liu Z, Liu Z, Li Q, Yang T, Zhang X. Leaching of hemimorphite in NH3-(NH4)2SO4-H2O system and its mechanism[J]. Hydrometallurgy,2012,125-126:137-143.
    [54]Liu Z, Liu Z, Li Q, Cao Z, Yang T. Dissolution behavior of willemite in the (NH4)2SO4-NH3-H2O system[J]. Hydrometallurgy,2012,125-126:50-54.
    [55]Yuan T, Cao Q, Li J. Effects of mechanical activation on physicochemical properties and alkaline leaching of hemimorphite [J]. Hydrometallurgy,2010,104(2):136-141.
    [56]曹琴园,李洁,陈启元.机械活化对异极矿碱法浸出及物理性能的影响[J].中国有色金属学报,2010,20(2):354-362.
    [57]Zhao Z, Long S, Chen A, Huo G, Li H, Jia X, Chen X. Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution[J]. Hydrometallurgy,2009, 99(3-4):255-258.
    [58]赵中伟,龙双,陈爱良,霍广生,贾希俊,李洪桂,阎海泉.难选高硅型氧化锌矿机械活化碱法浸出研究[J].中南大学学报(自然科学版),2010,41(4):1246-1250.
    [59]Tungkaviveshkul T, Thiravetyan P, Tanticharoen M. Mechanism for bioleaching of zinc silicate residue by organic acid producing microorganisms[J]. Biohydrometallurgical Processing,1995,1:385-393.
    [60]Castro I d M, Fietto J L R, Vieira R X, Tropia M J M, Campos L, Paniago E B, Brandao R L. Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures[J]. Hydrometallurgy,2000,57(1):39-49.
    [61]蓝卓越,胡岳华,黎维中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程,2002,22(3):63-65.
    [62]杨大锦,谢刚,李荣兴,张皓东.低品位氧化锌矿锌浸出性能及浸出过程动力学研究[J].中国稀土学报,2006,24:147-150.
    [63]杨大锦,谢刚,贾云芝,杨德明,彭建蓉.低品位氧化锌矿堆浸实验研究[J].过程工程学报,2006,6(1):59-62.
    [64]Qin W, Li W, Lan Z, Qiu G Simulated small-scale pilot plant heap leaching of low-grade oxide zinc ore with integrated selective extraction of zinc[J]. Minerals Engineering,2007, 20(7):694-700.
    [65]张显生,石明忠,许永红,吴绍华,刘贤政.高硅天然氧化锌矿浸出新工艺的研究[J].有色金属(冶炼部分),2003,(2):14-15.
    [66]舒毓璋,宝国峰,张琦,杨龙.硫化锌精矿焙砂与氧化锌矿联合浸出工艺P].中国:CN1303231C,2007.03.07.
    [67]崔同昆.某高硅氧化锌矿混合浸出试验研究[J].湿法冶金,2011,30(4):287-289.
    [68]Hua Y, Lin Z, Yan Z. Application of microwave irradiation to quick leach of zinc silicate ore[J]. Minerals Engineering,2002,15(6):451-456.
    [69]Xu H, Wei C, Li C, Deng Z, Li J, Li M, Li X. Pressure acid leaching of zinc silicate ore[J]. Lead & Zinc 2010,2010,565-572.
    [70]Xu H, Wei C, Li C, Fan Q Deng Z, Li M, Li X. Sulfuric acid leaching of zinc silicate ore under pressure[J]. Hydrometallurgy,2010,105(1-2):186-190.
    [71]Li C, Xu H, Deng Z, Li X, Li M, Wei C. Pressure leaching of zinc silicate ore in sulfuric acid medium[J]. Transactions of Nonferrous Metals Society of China,2010,20(5): 918-923.
    [72]李存兄,魏昶,徐红胜,邓志敢,杨秀丽,樊刚.兰坪高硅氧化锌矿矿物组成及高温酸浸热力学分析[J].矿冶,2010,19(2):38-42.
    [73]李存兄,魏昶,樊刚,李旻廷,李兴彬,李勇.高硅低品位氧化锌矿氧压酸浸研究[J].矿冶,2009,18(2):45-49.
    [74]杨秀丽,魏昶.某难处理高硅氧化锌矿加压酸浸工艺[J].矿冶工程,2009,29(5):65-69.
    [75]李存兄,魏昶,樊刚,杨秀丽,徐红胜,邓志敢,李旻廷,李兴彬.高硅氧化锌矿加压酸浸处理[J].中国有色金属学报,2009,19(9):1678-1683.
    [76]张世超.我国非能源类矿业海外拓展企业战略与风险控制研究[D].长沙:中南大学,2009.
    [77]王高尚,韩梅.中国重要矿产资源的需求预测[J].地球学报,2002,23(6):483-490.
    [78]De Wet J R, Singleton J D. Development of a viable process for the recovery of zinc from oxide ores[J]. Journal of the Southern African Institute of Mining and Metallurgy,2008, 108(5):253-259.
    [79]Gnoinski J. Skorpion Zinc:optimization and innovation[J]. Journal of the South African Institute of Mining and Metallurgy,2007,107(10):657-662.
    [80]Kumar R, Biswas A. Zinc recovery from Zawar ancient siliceous slag[J]. Hydrometallurgy,1986,15(3):267-280.
    [81]Perry W. Refining zinc silicate ore by special leaching technique[J]. Chemical Engineering,1966,73(21):182-184.
    [82]Matthew I G, Elsner D. Hydrometallurgical treatment of zinc silicate ores[J]. Metallurgical Transactions B (Process Metallurgy),1977,8B(1):73-83.
    [83]Bodas M G. Hydrometallurgical treatment of zinc silicate ore from Thailand[J]. Hydrometallurgy,1996,40(1-2):37-49.
    [84]范斌.矿石中锌的浓酸熟化浸出[J].湿法冶金,1999,(3):60-62.
    [85]戴安邦,江龙.硅酸及其鹽的研究Ⅰ硅酸聚合的速度和楼制[J].化学学报,1957,2:90-98.
    [86]Her R K. The colloid chemistry of silica and silicates[M]. New York:Cornell University Press,1955.
    [87]O'Connor D J, Sexton B A, Smart R S. Surface analysis methods in materials science[M]. Berlin:Springer-Verlag,2003.
    [88]Iler R K. The chemistry of silica:solubility, polimerization, colloid and surface properties, and biochemistry[M]. New York:John Wiley & Sons,1979.
    [89]杨大锦,朱华山,陈加希.湿法提锌工艺与技术[M].北京:冶金工业出版社,2006.
    [90]马荣骏.湿法冶金原理[M].北京:冶金工业出版社,2007.
    [91]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983.
    [92]尹杏,刘常青,陈启元,张平民.异极矿的标准生成热力学函数[J].中南大学学报(自然科学版),2012,43(6):2054-2058.
    [93]Roine A. HSC Chemistry Ver.6.0[CP]. Pori:Outokumpu Research Oy,2006.
    [94]Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions[M].2nd English Edition. Houston:National Association of Corrosion Engineers,1974.
    [95]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,1981.
    [96]Barin I. Thermochemical data of pure substances[M].3rd Edition. New York:VCH Weinheim,1995.
    [97]Bard A J, Parsons R, Jordan J. Standard potentials in aqueous solutions[M]. New York: CRC press,1985.
    [98]Dean J A. Lange's chemistry handbook[M].15th Edition. New York:McGraw-Hill,1999.
    [99]Lide D R. Handbook of Chemistry and Physics[M].82nd Edition. Boca Raton:CRC Press; 2000.
    [100]Souza A D, Pina P S, Santos F M F, da Silva C A, Leao V A. Effect of iron in zinc silicate concentrate on leaching with sulphuric acid[J]. Hydrometallurgy,2009,95(3-4):207-214.
    [101]Souza A D, Pina P S, Lima E V, da Silva C A, Leao V A. Kinetics of sulphuric acid leaching of a zinc silicate calcine[J]. Hydrometallurgy,2007,89(3-4):337-345.
    [102]Abdel-Aal E A. Kinetics of sulfuric acid leaching of low-grade zinc silicate ore[J]. Hydrometallurgy,2000,55(3):247-254.
    [103]Terry B, Monhemius A J. Acid dissolution of willemite ((Zn, Mn)2SiO4) and hemimorphite (Zn4Si2O7(OH)2H2O)[J]. Metallurgical Transactions B (Process Metallurgy),1983,14B(3):335-346.
    [104]Espiari S, Rashchi F, Sadrnezhad S K. Hydrometallurgical treatment of tailings with high zinc content[J]. Hydrometallurgy,2006,82(1-2):54-62.
    [105]Georgiou D, Papangelakis V. Sulphuric acid pressure leaching of a limonitic laterite: chemistry and kinetics[J]. Hydrometallurgy,1998,49(1):23-46.
    [106]Levenspiel O. Chemical reaction engineering[M].3rd Edition. New York:John Wiley & Sons,1999.
    [107]Sohn H Y, Wadsworth M E. Rate processes of extractive metallurgy[M]. New York: Plenum Publishing Corporation,1979.
    [108]李洪桂.湿法冶金学[M].长沙:中南大学出版社,2002.
    [109]郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003.
    [110]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004.
    [111]杨显万,邱定蕃.湿法冶金[M].第2版.北京:冶金工业出版社,2011.
    [112]Bayrak B, Lacin O, Sarac H. Kinetic study on the leaching of calcined magnesite in gluconic acid solutions[J]. Journal of Industrial and Engineering Chemistry,2010,16(3): 479-484.
    [113]Bayrak B, Lacin O, Bakan F, Sarac H. Investigation of dissolution kinetics of natural magnesite in gluconic acid solutions[J]. Chemical Engineering Journal,2006,117(2): 109-115.
    [114]殷群生,赵天从,钟廷科,林若娅.反应剂浓度非恒定条件下的两相反应动力学方程[J].金属学报,1990,26(1):B40-B47.
    [115]Bingol D, Canbazoglu M. Dissolution kinetics of malachite in sulphuric acid[J]. Hydrometallurgy,2004,72(1):159-165.
    [116]Zhou H M, Zheng S L, Zhang Y, Yi D Q. A kinetic study of the leaching of a low-grade niobium-tantalum ore by concentrated KOH solution[J]. Hydrometallurgy,2005,80(3): 170-178.
    [117]Olanipekun E. A kinetic study of the leaching of a Nigerian ilmenite ore by hydrochloric acid[J]. Hydrometallurgy,1999,53(1):1-10.
    [118]Rath P, Paramguru R, Jena P. Kinetics of dissolution of zinc sulphide in aqueous ferric chloride solution[J]. Hydrometallurgy,1981,6(3):219-225.
    [119]Sohn H, Szekely J. A structural model for gas-solid reactions with a moving boundary III: A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas[J]. Chemical Engineering Science,1972,27(4):763-778.
    [120]Sohn H, Szekely J. The effect of intragrain diffusion on the reaction between a porous solid and a gas[J]. Chemical Engineering Science,1974,29(2):630-634.
    [121]Davis J A, Kent D B. Surface complexation modeling in aqueous geochemistry [J]. Reviews in Mineralogy and Geochemistry,1990,23(1):177-260.
    [122]Crockford H D, Brawley D J. The solubility of lead sulfate in water and aqueous solutions of sulfuric acid[J]. Journal of the American Chemical Society,1934,56(12):2600-2601.
    [123]Kawulka P, Haffenden W J, Mackiw V N. Recovery of zinc from zinc sulfides by direct pressure leaching[P]. United States:US3867268; 1975.02.18.
    [124]Scott T R. Continuous, co-current pressure leaching of zinc-lead concentrates under acid conditions[C]. New York:American Institute of Mining, Metallurgical and Petroleum Engineers,1973,718-750.
    [125]Bolorunduro S A, Dreisinger D B, Van Weert G. Zinc and silver recoveries from zinc-lead-iron complex sulphides by pressure oxidation[J]. Minerals Engineering,2003, 16(4):375-389.
    [126]Habashi F, Bauer E L. Aqueous oxidation of elemental sulfur[J]. Industrial & Engineering Chemistry Fundamentals,1966,5(4):469-471.
    [127]Corriou J P, Kikindai T. The aqueous oxidation of elemental sulfur and different chemical properties of the allotropic forms Sγ and Sμ[J]. Journal of Inorganic and Nuclear Chemistry,1981,43(1):9-15.
    [128]Chase, M. W. NIST-JANAF Thermochemical Tables[M].4th Edition (Vol 9). Washington: American Chemical Society,1998.
    [129]Marcus P, Protopopoff E. Potential-pH diagrams for sulfur and oxygen adsorbed on nickel in water at 25 and 300℃[J]. Journal of The Electrochemical Society,1993,140(6): 1571-1575.
    [130]Cobble J, Murray Jr R, Turner P, Chen K. High-temperature thermodynamic data for species in aqueous solution[R]. California:San Diego State University, Department of Chemistry,1982.
    [131]Corriou J P, Gely R, Viers P. Thermodynamic and kinetic study of the pressure leaching of zinc sulfide in aqueous sulfuric acid[J]. Hydrometallurgy,1988,21(1):85-102.
    [132]Dutrizac J E, Dinardo O. The co-precipitation of copper and zinc with lead jarosite[J]. Hydrometallurgy,1983,11(1):61-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700