用户名: 密码: 验证码:
罗布泊盐湖盐类矿物特征、成因与成钾作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罗布泊盐湖位于塔里木盆地东端,是世界上最大的干盐湖之一。沉积了十分罕见的巨量钙芒硝,其孔隙中赋存了超大规模卤水钾盐矿床,是我国继柴达木盆地之后发现的第二大钾盐成矿聚集区。但仍存在一些关键科学问题尚未完全查明,如:罗布泊盐湖巨量钙芒硝是如何形成的?卤水钾盐聚集与钙芒硝沉积有何种关系?深入研究以上问题,对丰富罗布泊成钾理论以及在该盐湖扩大寻找钾盐资源均具有重要意义。论文通过对罗北凹地LDK01孔781.5米岩芯进行系统的盐类矿物鉴定,阐述了主要盐类矿物特征及分布规律。开展了卤水蒸发实验、铀系测年、钙芒硝流体包裹体成分分析、成矿环境与物质来源等研究,重点探讨了罗布泊盐湖钙芒硝的成因,以及钙芒硝巨量堆积对富钾卤水形成的控制作用。
     在罗北凹地共鉴定出29种盐类矿物,其分布特征反映了气候干湿交替变化过程中,湖泊水体由淡水向咸水转化,再向高盐度的卤水逐渐浓缩的过程。罗布泊地区首次发现硫锶钾石矿物,主要产于钙芒硝岩中,指示了该地区存在富锶的物质来源补给,对钙芒硝成因研究具有重要意义。
     通过质谱铀系测年发现,多数钙芒硝晶体受到过后期改造,有不同程度的铀丢失。指示了罗布泊多数钙芒硝矿物与卤水反应过程中,不断地结晶生长。推断罗布泊巨量钙芒硝形成是一个连续过程:第一阶段,早期古湖水经蒸发作用析出石膏晶体。第二阶段,大量石膏析出之后,可能存在富“硫酸根”和富“钙”入流水的补给,与原先卤水混合,水型发生变化,
     一部分钙芒硝晶体直接从卤水中析出;一部分钙芒硝晶体系卤水中硫酸钠交代已形成的石膏而成。第三阶段,钙芒硝晶体与卤水发生反应,不断地结晶生长,最后形成由中粗晶及巨晶组成的蜂窝状钙芒硝岩。
     在国内首次将激光剥蚀ICP-MS测试方法应用于盐类矿物单个包裹体成分研究,成功打开并获得罗布泊主要盐类矿物单个流体包裹体成分,结果显示各种离子含量在石膏、钙芒硝、白钠镁矾和石盐流体包裹体中依次升高,变化规律与正常卤水演化趋势相吻合。钙芒硝包裹体钾离子的含量平均为5.85g/L,高于正常海水浓缩到石盐开始沉积时的钾离子含量(3g/L),表明罗布泊盐湖演化到钙芒硝沉积阶段时,卤水中钾离子已得到一定富集。综合研究后提出罗布泊钙芒硝巨量堆积对富钾卤水形成的控制作用:大量钙芒硝发生堆积,形成蜂窝状孔隙,初步富集钾离子的卤水赋存于孔隙中;然后因地表卤水蒸发作用,卤水存在上下对流运动,上部卤水比重增加而下沉,替换下部较轻的卤水,并与周围钙芒硝晶体发生反应。钙芒硝与晶间卤水均处于动态变化中,晶间卤水在不断地上下流动,同时钙芒硝晶体也在不断地结晶生长。在这种垂向对流系统中,蒸发浓缩作用导致钾离子不断富集,最后形成目前的钙芒硝晶间富钾卤水。
The Lop Nur playa, one of the largest playa lakes in the world, is located in the eastern part of the Tarim Basin, Xinjiang. The Lop Nur gradually evolved into a salt lake from the late Middle Pleistocene to the Late Pleistocene. Huge amounts of glauberite minerals were deposited, accompanied by large-scale potash-bearing brines gathered. However, some key issues, such as the genesis of glauberite minerals and the relationship between potash-bearing brines gathered and huge amounts of glauberite minerals, remain less well known. Study on them will have important theoretical significance to search for potash resources further in the Lop Nur playa. Core samples from LDK01(781.5m in depth) in Luobei depression were studied on by identification of salt minerals in this study. Characteristics and distribution of the major minerals were presented. The genesis of huge amounts of glauberite minerals in the Lop Nur playa were analysed based on brine evaporation experiments and uranium-series dating conducted. It is vital that fluid inclusions in glauberite minerals were "opened", for the first time, and the chemical composition information were obtained. Moreover, the metallogenic environment and material sources were studied. The relationship between massive accumulation of glauberite minerals and potassium-rich brine formation was discussed eventually.
     Twenty-nine salt minerals were identified using thin section identification method, X-ray diffraction, scanning electron microscope and energy spectrum analysis methods. Fourteen new minerals, such as kalistrontite, celestite and glaserite, were firstly discovered in the Lop Nur area. The distribution characteristics of salt mineral in core LDKO1indicate that lake water experienced three stages:fresh water, saline water and high-salinity brine during the period of dry-wet climate oscillations. New discovery of kalistrontite in the glauberite rocks suggests that the strontium-rich water maybe had recharged the salt lake of Lop Nur. It will have important significance to genesis study of the glauberite minerals.
     Most single glauberite crystals were found to have experienced late reformation with loss of uranium by mass spectrometry U-series dating. It indicated that the glauberite crystals varied constantly during interaction with the brines. The huge amounts of glauberite deposition in the Lop Nur is a continuous process. The first stage:gypsum crystals precipitated by evaporation in the early ancient lake. The second stage:While the brines type changed, some glauberite crystals directly precipitated from the brines, others were formed by replacement of gypsum. The third stage:glauberite crystals grew constantly during interaction with the brines. The glauberite rock with "honeycomb pores", made up of coarse grains and megacrysts, formed finally.
     The analytical procedure of fluid inclusion composition by laser ablation ICP-MS has initially been established. Fluid inclusions in salt minerals in the Lop Nur playa were measured in this method. The results showed that contents of elements in fluid inclusions in gypsum, glauberite, bloedite and halite increased successively. The pattern of variation was consistent with the normal brine evolution trend. The composition of fluid inclusions indicated that the K-rich brines during the glauberite intergranular and the huge amounts of glauberite minerals were not formed in the same period. The potassium average content in glauberite inclusions is5.85g/L, which revealed that potassium in the brine was preliminary riched while the Lop Nur evolution to the glauberite deposition stage. Therefore, the relationship between massive accumulation of glauberite minerals and potassium-rich brine formation could be that:Brines containing potassium were reserved in the "honeycomb" pores. Then, the brines in glauberite intergranular occurred strong evaporation. It caused that shallow brine declined because of larger density and the light brine moved upward, forming the vertical convection system. The brines and glauberite crystals varied constantly under the interaction. In such vertical convection system, potassium ions were continuously enriched due to the concentration by evaporation. The current K-rich brines during the glauberite intergranular were formed eventually.
引文
Arakel A V, Cohen A.1991. Dposition and early diagenesis of playa glauberite in the Karinga Creek drainage system,NorthernTerritory,Australia. Sedimentary Geology,70:41-59.
    Ayora C, Fontarnau R.1990. X-ray microanalysis of frozen fluid inclusions [J]. Chemical Geology, 89:135-148.
    Ayora C, Garcia-Veigas J, Pueyo J J.1994a. X-ray microanalysis of fluid inclusions and its application to the geochemical modeling of evaporite basins [J]. Geochimica et Cosmochimica Acta,58:43-55.
    Ayora C, Garcia-Veigas J, Pueyo J J.1994b. The chemical and hydrological evolution of an ancient potash-forming evaporite basin in Spain as constrained by mineral sequence, fluid inclusion composition, and numerical simulation [J]. Geochimica et Cosmochimica Acta,58: 3379-3394.
    Benison K C, Goldstein R H.1999. Permian paleoclimate data from fluid inclusions in halite [J]. Chemical Geology,154:113-132.
    Cao Y T, Liu C L, Xuan Z Q, Jiao P C, Chen Y Z, Wang C L.2011. Discovery, Genesis and Significance of Metallic Minerals in Evaporate Series in the Kuqa Basin. Acta Geologica Sinica-English Edition,85(6):1448-1465.
    Cendon D I, Ayora C, Pueyo J J et al.2003. The geochemical evolution of the Catalan potash subbasin, South Pyrenean foreland basin (Spain) [J]. Chemical Geology,200:339-357.
    Cendon D I, Ayora C, Pueyo J J, Taberner C, Blanc-Valleron M M.2008. The chemical and hydrological evolution of the Mulhouse potash basin (France):Are "marine" ancient evaporites always representative of synchronous sea water chemistry? Chemical Geology,252: 109-124.
    Chilingar G V.1956. Origin of glauberite deposits in Karabugaz gulf; a review. AAPG Bulletin 40(5):1032.
    Das N, Horita J and Holland H D.1990. Chemistry of fliud inclusions in halite from the Salina Group of the Michigan Basin:Implications for Late Silurian seawater and origin of sedimentary brines. Geochimica et Coshmochimica Acta,54:319-327.
    Dellwig I F.1955. Origin of the Salina salt of Michigan [J]. Journal of Sedimentary Petrology,25: 83-110.
    Durrant S F.1999. Laser ablation inductively coupled plasma mass spectrometry:achievements, problems, prospects. J. Anal. At. Spectrom,14(9):1385-1403.
    Frezzotti M L, Tecce F,Casagli A.2011. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration,112:1-20.
    Garcia-Veigas J, Rosell L, Zak I, Playa E, Ayora C, Starinsky A.2009. Evidence of potash salt formation in the Pliocene Sedom Lagoon (Dead Sea Rift, Israel). Chemical Geology,265: 499-511.
    Ghazi A Mohamad, Stephen Shuttleworth.2000, Trace element determination of single fluid inclusions by laser ablation ICP-MS:Applications for halites from sedimentary basins [J]. The Analyst,125 (1):205-210.
    Goldstein R H.2001. Paleoencironment:clues from fluid inclusions [J]. Science,294(2): 1009-1011.
    Hardie L A.1968. The origin of the recent non-marine evaporite deposit of Saline Valley, Inyo County, California. Geochimica et Cosmochimica Acta,32:1279-1301.
    Hardie L A, Lowenstein T K, Spencer R J.1985. The problem of distinguishing between primary and secondary features in evaporates [A]. In:Schreiber B C, Harber H I, eds. Sixth International Symposium on Salt [C]. Alexandia, Virginia, USA:The Salt Institute,11-39.
    Harvie C E, Moller N, Weare J H.1984. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-H2O system to high ionic strengths at 25℃ [J]. Geochimica et Cosmochimica Acta,48:723-752.
    Holser W T.1963. Chemistry of brine inclusions in Permian salt from Hutchinson, Kansas. Symposium on Salt, v.1. Northern Ohio Geological Society, Cleveland, Ohio,86-95.
    Horita J, Friedman T J, Lazar B, Holland H D.1991. The composition of Permian sea water. Geochimica et Cosmochimica Acta,55:417-432.
    Horita J, Weinberg A, Das N, Holland H D.1996. Brine inclusions in halite and the origin of the Middle Devonian Prairie evaporates of Western Canada. J. Sed. Res,66:956-964.
    Horita J, Zimmermann H, Holland H D.2002. Chemical evolution of seawater during the Phanerozoic:Implications from the record of marine evaporates [J]. Geochimica et Cosmochimica Acta.66 (21):3733-3756.
    Kaufmann R, Long A, Bentley H, Davis S.1984. Natural chlorine isotope variations. Nature,309: 338-340
    Kovalevych V M, Marshall T, Peryt T M, Petrychenko O Y, Zhukova S A.2006. Chemical composition of seawater in Neoproterozoic:Results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Research,144:39-51.
    Kovalevich V M, Peryt T M, Petrichenko O I.1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Jour. Geol,106:695-712.
    Land L S, Eustice R A, Mack L E, et al.1995. Reactivity of evaporites during burial:An example from the Jurassic of Alabama [J]. Geochimica et Cosmochimica Acta,59:3765-3778.
    Lazar B, Holland H D.1988, The analysis of fluid inclusions in halite. Geochemica et Cosmochimia Acta,52:485-490.
    Liu C L, Wang M L, Jiao P C, Li S D, Chen Y Z.2006. Features and formation mechanism of faults and potash-forming effect in the Lop Nur Salt Lake, Xinjiang, China. Acta Geologica Sinica-English Edition,80(6):936-943.
    Longerich H P, Jackson S E, Gunthe r D.1996. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom,11(9):899-904.
    Lowenstein T K, Brennan S T.2002. Fluid Inclusions in Paleolimnological Studies of Chemical Sediments Tracking Environmental Change Using Lake Sediments. In:Last WMandSmol JP eds. Developments in Paleoenvironmental Research:Springer Netherlands,189-216.
    Lowenstein T K, Hardie L A.1985. Criteria for the recognition of salt-pan evaporates [J]. Sedimentology,32:627-644.
    Lowenstein T K, Li J R, Brown C B.1998. Paleotemperatures from fluid inclusions in halite: Method verification and a 100000 year paleotemperarure record, Death Valley, CA [J]. Chemical Geology,150:223-245.
    Lowenstein T K, Timofeeff M N, Brennan S T, Hardie L A, and Demicco R.V.2001. Oscillations in Phanerozoic Seawater Chemistry:Evidence from Fluid Inclusions. Science,294: 1086-1088.
    Ma L C, Lowenstein T K, Li B G, et al.2010. Hydrochemical characteristics and brine evolution paths of Lop Nor Basin, Xinjiang Province, Western China. Applied Geochemistry, 25:1770-1782.
    Ma L C, Li B G, Jiang P A, et al.2009. Investigation of evaporate deposits in the "Great Ear" area of Lop Nur salt plain, Xinjiang Province, China. In:American Geophysical Union, Fall Meeting, abstract# H51C-0777.
    Mees F.1999. Textural featrure of Holocene perennial saline lake deposits of the Taoudenni-Agorgott basin, northern Mali. Sedimentary Geology,127(1-2):65-84.
    Norman M D, Griffin W L, Pearson N J, Garcia M O, O'Reilly S Y.1998. Quantitative analysis of trace element abundances in glasses and minerals:a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. J. Anal. At. Spectrom,13(5):477-482.
    Oi T, Nomura M, Musashi M, Ossaka T, Okamoto M, Kakihana H.1989. Boron isotopic compositions of some boron minerals. Geochimica et Cosmochimica Acta,53(12):3189-3195.
    Orti F, Gundogan I, Cahit Helvaci C.2002. Sodium sulphate deposits of Neogene age:the Kirmir Formation, Beypazari Basin, Turkey. Sedimentary Geology 146(3-4):305-333.
    Pasteris J D, Wopenka B, Seitz J C.1988. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions. Geochimica et Cosmochimia Acta, 52:979-988.
    Petrichenko O I, Naukova Dumka, Kiev.1973. Methods of study of inclusions on minerals of Saline deposits [A]. In:Roedder E, ed. Fluid Inclusion Research Proceeding COFFI [C]. Ann Arbor:University of Michigan Press,214-274.
    Petrychenko O Y, Peryt T M,Chechel E I.2005. Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites. Chemical Geology,219:149-161.
    Renfro A R.1974. Genesis of Evaporite-Associated Stratiform Metalliferous Deposits; A Sabkha Process. Economic Geology,69(1):33-45.
    Rhodes T E, Gasse F, Lin R, et al.,1996 A Late Pleistocene-Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeography, Palaeoclimatology, Palaeoecology,120(1-2):105-121
    Ririe G T.1989. Evaporites and strata-bound tungsten mineralization. Geology,17(2):139-143.
    Risacher^F, Clement A._2001. A computer program_for_the_simulation of evaporation of natural waters to high concentration. Computers & Geosciences,27(2):191-201
    Roberts S M, Spencer R J.1995. Paleotemperatures preserved in fluid inclusions in halite [J]. Geochimica et Cosmochimia Acta,59(19):3929-3942.
    Roedder E, Belkin H E.1979. Application of studies of fluid inclusions in Permian Salado Salt, NM, to problems of sitting the waste isolation pilot plant [A]. In:McCarthy G J ed. Scientific Basis for Nuclear Waste Management [C]. New York:Plenum Press,313-321.
    Rosasco G J, Roedder E.1979. Application of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals. Geochimica et Coshmochimica Acta,43:1907-1915.
    Salvany J M, Garc'a-Veigas J, Orti'F.2007. Glauberite-halite association of the Zaragoza Gypsum Formation (Lower Miocene, Ebro Basin, NE Spain). Sedimentology,54(2):443-467.
    Schwarcz H P, Agyei E K, McMullen C C.1969. Boron isotopic fractionation during clay adsorption from sea-water. Earth and Planetary Science Letters,6(1):1-5.
    Shepherd T J, Ayora C, Cendon D I, Chenery S R, and Moissette A.1998. Quantitative solute ananlysis of single fluid inclusions in halite by LA-ICP-MS and cryo-SEM-EDS: Complementary microbeam techniques. European Journal of Mineralogy,10:1097-1108.
    Shepherd T J, Chenery S R.1995. Laser ablation ICP-MS elemental ananlysis of individual fluid inclusions:An evaluation study. Geochimica et Coshmochimica Acta,59:3997-4007.
    Shepherd T J, Naden J, Chenery S R, et al.2000. Chemical analysis of palaeogroundwaters:a new frontier for fluid inclusion research [J]. Journal of Geochemical Exploration,69:415-418.
    Siemann M G, Ellendorff B.2001. The composition of gases in fluid inclusions of late Permian (Zechstein) marine evaporites in Northern Germany [J]. Chemical Geology,173:31-44.
    Smooth J P, Lowenstein T K.1991. Depositional environments of non-marine evaporates. In: Evaporites, Petroleum and Mineral Resources(Ed.J.Lmelvin), Dev.Sedimental,50:189-347.
    Sorby H C.1858. On the microscopical structure of crystals indicating the origin of rocks and minerals. Geological Society of London Journal,14:453-500.
    Stose G W.1919. Glauberite crystal cavities in the Triassic rocks in the vicinity of Gettysburg, Pennsylvania. Am. Mineralqpist,4(1):1-4.
    Swihart G H, Moore P B.1986. Boron isotopic composition of marine and nonmarine evaporite borates. Geochimica et Cosmochimica Acta,50(6):1297-1301.
    Thiede D S, Cameron E N.1978. Concentration of Heavy Metals in the Elk Point Evaporite Sequence, Saskatchewan. Economic Geology,73(3):405-415.
    Timofeeff M N, Blackburn W H, Lowenstein T K.2000. ESEM-EDS:An imp roved technique for major element chemical analysis of fluid inclusions [J]. Chemical Geology,164(3-4): 171-182.
    Timofeeff M N, Lowenstein T K, Brennan S T, et al.2001. Evaluating seawater chemistry from fluid inclusions in halite:Examples from modern marine and nonmarine environments [J]. Geochimica et Cosmochimica Acta,65 (14):2293-2300.
    Timofeeff M N, Lowenstein T K, Da Silva M A M,et al.2006. Secular variation in the major-ion chemistry of seawater:Evidence from fluid inclusions in Cretaceous halites. Geochimica Et Cosmochimica Acta,70:1977-1994.
    Vengosh A, Chivas A, McCulloch M T.1989. Direct determination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chemical Geology:Isotope Geoscience section,79(4):333-343.
    Vengosh A, Kolodny Y, Starinsky A, et al.1991. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochimica et Cosmochimica Acta,55(10):2901-2910.
    Wang M L, Liu C L, Jiao P C, Yang Z C.2005. Minerogenic Theory of the Superlarge Lop Nur Potash Deposit, Xinjiang, China. ACTA GEOLOGICA SINICA,79(1):53-65.
    Wang M L, Pu Q Y.2000. Quaternary Climate and Environment in the Lop Nur, Xinjiang. ACTA GEOLOGICA SINICA,74(2):273-278.
    Warren J K.1997. Evaporites, brines and base metals:brines, flow and "the Evaporite that was" Australian Journal of Earth Sciences,44:149-183.
    Warren J K.2000. Evaporites, brines and base metals:low-temperature ore emplacement controlled by evaporite diagenesis. Australian Journal of Earth Sciences,47:179-208.
    Xiao Y K, Beary E S, Fassett J D.1988. An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes,85(2):203-213.
    Xiao Y K, Zhang C G.1992. High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion. International Journal of Mass Spectrometry and Ion Processes,116(3):183-192.
    伯英,刘成林,焦鹏程,叶先仁.2012.罗布泊地下卤水中幔源稀有气体及其意义.中国地质,39(4):978-984.
    蔡春芳,陈传平,李伟,刘常青,马亭,梅博文.1997.塔里木盆地流体-岩石相互作用研究[M].北京:地质出版社.
    曹养同,刘成林,焦鹏程,宣之强,陈永志.2010.库车盆地铜矿化与盐丘系统的关系.矿床地质,29(3):553-562.
    陈郁华,1983.黄海海水25℃等温蒸发时的析盐序列及某些微量元素的分布规律.地质学报,(4):379-390.
    陈忠,马海州,曹广超,张西营,周笃珺,姚远,谭红兵,高章洪.2007.柴达木盆地尕海湖区冰消期晚期以来的气候环境演变.地球化学,36(6),578-584.
    程其畴.1988.新疆巴州河流水文特征.水文,(5):47-51.
    单林.1979.盐类矿物及一些人工晶体中的包裹体及其气化现象.东华理工学院学报(自然科学版),(2):48-54.
    单林,张文智.1981.几种盐类矿物中的包裹体及其汽化现象的初步研究.地质论评,27(3):213-216.
    葛晨东,王天刚,刘兴起,等.2007.青海茶卡盐湖石盐中流体包裹体记录的古气候信息.岩石学报,23(9):2063-2068.
    樊自立,李培清,张丙乾.1987.关于罗布泊是否游移的问题.见:罗布泊科学考察与研究[C].夏训诚.北京:地质出版社,141-156.
    高建华,高怀忠,朱井泉,韩淑静.1985.云南安宁盐矿床钙芒硝光轴角(2v)变化的初步研究.地球科学,10(4):35-43.
    谷树起,蔺焕珠.1986.水钙芒硝的实验研究.科学通报,(9):684-688.
    胡明月,何红蓼,詹秀春,等.2008.基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用.分析化学,36(7):947-953.
    胡圣虹,胡兆初,刘勇胜,等.2001.单个流体包裹体元素化学组成分析新技术一一激光剥蚀电感耦合等离子体质谱(La-Icp-Ms)地学前缘,8(4):434-440.
    侯可军,李延河,肖应凯,刘峰,田有荣.2010LA-MC-ICP-MS硼同位素微区原位测试技术.科学通报,(22):2207-2213.
    李俊周,孙大鹏.1996.大柴达木盐湖硼同位素地球化学研究.地球化学,25(3):277-285.
    李世珍,肖应凯,魏海珍,张崇耿.2004.硼同位素的负热电离质谱测定及其进展.盐湖研究,11(4):13-19.
    李新贤,党新成.1995.开都河、博斯腾湖、孔雀河水质现状及灰色预测分析.干旱区研究,12(1):55-61.
    林振耀,郑度.1992.新疆塔里木盆地东缘水汽输送探讨.干旱区研究,(2):1-7.
    刘成林,陈永志,陈伟十等.2006b.罗布泊盐湖更新世晚期沉积钙芒硝包裹体特征及古气候意义探讨.矿物学报,26(1):93-98.
    刘成林,陈永志,焦鹏程,等.2005.罗布泊卤水室内蒸发及天然石盐包裹体均一温度分析探讨.东华理工学院学报,28(4):306-312.
    刘成林,陈永志,焦鹏程,王弭力.2006a.罗布泊盐湖钙芒硝结晶实验与化学反应探讨.矿床地质,25(增刊):233-236.
    刘成林,焦鹏程,陈永志,王弭力.2010a.罗布泊断陷带内形成富钾卤水机理研究.矿床地质,29(4):602-608.
    刘成林,焦鹏程,陈永志,王弭力,宣之强.2008b.库车盆地第三系岩盐地层钾矿物组合发现及其意义[A].见:第九届全国矿床会议论文集[C].北京:地质出版社,374-375.
    刘成林,焦鹏程,王弭力,陈永志.2007.罗布泊盐湖巨量钙芒硝沉积及其成钾效应分析.矿床地质,26(3):322-329.
    刘成林,焦鹏程,王弭力,李树德,陈永志.2003a.新疆罗布泊第四纪盐湖上升流体及其成钾意义[J].矿床地质,22(4):386-392.
    刘成林,焦鹏程,王弭力,杨智琛,陈永志.2003b.罗布泊第四纪含盐系成岩作用特征研究[J].沉积学报,21(2):240-246.
    刘成林,马黎春、焦鹏程,孙小虹,陈永志.2010b.罗布泊盐湖化学沉积序列及其控制因素.矿床地质,29(4):625-630.
    刘成林,王弭力,焦鹏程,陈永志.2009.罗布泊盐湖钾盐矿床分布规律及控制因素分析.地球学报,30(6):796-802.
    刘成林,王弭力,焦鹏程,陈永志,李树德.2002.罗布泊第四纪卤水钾矿储层孔隙成因与储集机制研究.地质论评,48(4):437-443.
    刘成林,王弭力,焦鹏程,樊卫东,陈永志,杨智琛,王敬国.2008a.罗布泊杂卤石沉积特征及成因机理探讨[J].矿床地质,27(6):705-713.
    刘卫国,肖应凯,彭子成,1999.柴达木盆地盐湖卤水硼、氯同位素的水化学特性探讨.盐 湖研究,7(3):8-12.
    刘卫国,肖应凯,韩凤清,彭子成.1998.昆特依盐湖氯同位素特征及古气候意义.海洋与湖沼,29(4):431-434.
    刘卫国,肖应凯,孙大鹏,祁海平,王蕴慧.1996.柴达木盆地氯同位素组成特征.地球化学,25(3):296-303.
    刘卫国,肖应凯,孙大鹏,周引民,王庆忠.1995.马海盐湖区卤水和盐类矿物的氯同位素特征及意义.盐湖研究3(2):29-33.
    刘兴起,倪培.2005.表生环境条件形成的石盐流体包裹体研究进展.地球科学进展,20(8):856-862.
    刘兴起,倪培,董海良,等.2007.内陆盐湖石盐流体包裹体均一温度指示意义的现代过程研究.岩石学报,23(1):113-116.
    孟凡巍,倪培,葛晨东,王天刚,王国光,刘吉强,赵超.2011.实验室合成石盐包裹体的均一温度以及古气候意义.岩石学报,27(5):1543-1547.
    莫珉.1987.钾锶矾在我国的首次发现及其找钾意义.矿物学报,7(2):154-159.
    祁海平,王蕴慧,肖应凯.1993.中国盐湖中硼同位素的初步研究.科学通报,38(7):634-637.
    曲懿华.1997.兰坪-思茅盆地与泰国呵叻盆地含钾卤水同源性研究℡兼论该区找钾有利层位和地区.化上矿产地质,19(2):81-98.
    曲懿华,钱自强,韩蔚田.2010.盐矿物鉴定手册.北京:地质出版社.
    谭红兵,马海州,肖应凯,魏海珍,张西营,马万栋.2005.塔里木盆地西部古岩盐氯同位素分布特征与找钾分析.中国科学:D辑,35(3):235-240.
    汤良杰.1992.塔里木盆地多层次滑脱构造与含油气远景探讨[J].地质学报,66(2):97-107.
    瓦里亚什科M.1965.钾盐矿床形成的地球化学规律[M].范立等译.北京:中国工业出版社.
    王弭力,樊卫东.1997.罗布泊罗北凹地特大型钾矿床特征及其成因初探.地质论评,43(3):249-249.
    王弭力,刘成林,李长华,魏宝和,何锦发,宣之强.1994.青海昆特依盐湖富钾卤水储层扫描电镜分析.化工地质,16(1):1-9.
    王弭力,刘成林,焦鹏程.2006.罗布泊盐湖钾盐矿床调查科研进展与开发现状.地质论评,52(6):757-764.
    王弭力,刘成林,焦鹏程,韩蔚田、宋松山、陈永志、杨智琛、樊卫东、李廷祺、李长华、 冯金星、陈建忠、王新民、于志鸿、李亚文.2001.罗布泊盐湖钾盐资源[M].北京:地质出版社.
    王进峰.1995.人地关系演化及其调控℡℡全球变化、自然灾害、人类活动中国典型区研究.北京:科学出版社.
    王云飞.1993.青海湖、岱海的湖泊碳酸盐化学沉积与气候环境变化.海洋与湖沼,24(1):31-36.
    魏东岩.1988.盐类沉积中的钙芒硝及其成因.矿物岩石,8(1):92-98.
    魏东岩.2001.论中国钙芒硝矿床.化工矿产地质,23(2):75-82.
    吴必豪,刘群,蔡克勤.1995.中国钾盐成矿条件与国外典型矿床的对比研究.地质矿产部矿床地质研究所.
    吴国干,李华启,初宝洁,等.2002.塔里木盆地东部大地构造演化与油气成藏[J].大地构造与成矿学,26(3):229-234.
    夏训诚.1987.罗布泊科学考察与研究.北京:科学出版社.
    肖应凯,Shirodkar P,刘卫国,王蕴慧,金琳.1999.青海柴达木盆地盐湖硼同位素地球化学研究.自然科学进展,9(7):612-618.
    肖应凯,刘卫国,魏海珍.1998.硼同位素测定的进展及存在的问题.质谱学报,19(4):65-75.
    肖应凯,刘卫国,周引民,孙大鹏.1996.盐湖卤水及盐类矿物的氯同位素组成.科学通报41(22):2067-2070.
    肖应凯,金琳,刘卫国,祁海平,王蕴慧,孙大鹏.1994.大柴达木湖的氯同位素组成.科学通报,39(14):1319-1322.
    谢晓安,吴奇之,高岩,等.1997.塔里木盆地压扭断裂带构造特征与油气聚集[J].石油学报,18(2):13-17.
    刑大韦,韩风霞.1994.我国西北干旱地区环境与发展问题.干旱区资源与环境,8(4):1-8.
    徐鸿志,胡圣虹,胡兆初,姜劲峰,王晓红.2007.激光剥蚀电感耦合等离子体质谱研究富钴结壳生长环带的元素分布.分析化学,35(8):1099-1104.
    许伟生,姚志健,韩蔚田.1991.沉积硬石膏岩中铜、铅、锌、锶、钡的含量特征及其活化、迁移的试验研究.现代地质,5(1):79-90.
    严富华,叶永英,麦学舜.1983.新疆罗布泊罗4井的孢粉组合及其意义.地震地质,5(4):75-80.
    杨克明,熊永旭,李晋光,先蓉有.1992.中国西北地区板块构造与盆地类型.石油与天然气地质,(1):47-56.
    杨吉根.1994..我国东南四省五个岩盐矿床石盐中流体包裹体的初步研究.盐湖研究,2(3): 1-9.
    杨吉根.1995.江西清江盆地岩盐矿床三种盐矿物中流体包裹体的初步研究.化工矿产地质,17(1):47-54.
    杨清堂.1989.钙芒硝的成因和沉积环境简析.沉积学报,7(3):137-141.
    杨永强,翟裕生,候玉树,等.2006.沉积岩型铅锌矿床的成矿系统研究[J].地学前缘(中国地质大学,北京),13(3):200~205.
    杨智琛,刘成林.1997.罗布泊罗北凹地固体盐类矿物学研究进展.地质轮评,43(6):592-606.
    袁国映,张宇等.2012.罗布泊自然保护区.北京:科学出版社.
    袁见齐,蔡克勤,肖荣阁等.1991.云南勐野井钾盐矿床石盐中包裹体特征及其成因的讨论[J].地球科学-中国地质大学学报,16(2):137-142.
    袁见齐,霍承禹,蔡克勤.1982.盐类物质与一些金属、非金属矿床的关系.地球科学-武汉地质学院学报,18(3):223-238.
    张芳,耿文辉,王滋平.2001.兰坪-思茅盆地石盐矿床盐矿物包裹体特征.矿产与地质,15(2):113-115.
    张保珍,范海波,张彭熹,等.1990.察尔汗盐湖石盐的流质包裹体氢氧稳定同位素分析及其地球化学意义.沉积学报,8(1):3-17.
    张彭熹.1993.古代异常钾盐蒸发岩的成因:以柴达木盆地察尔汗盐湖钾盐的形成为例.北京:科学出版社.
    张汝藩,杨主恩等.1999.扫描电镜与微观地质研究[M].北京:学苑出版社.
    赵元艺,李波涛,焦鹏程等.2010.青海别勒滩干盐湖石盐流体包裹体均一温度分析及地质环境意义.矿床地质,29(4):684-696.
    郑绵平,赵元艺,刘俊英.1998.第四纪盐湖沉积与古气候.第四纪研究,(4):297-307.
    朱井泉,胡文瑄.1989.云南安宁盆地钙芒硝的类型与成因.石家庄经济学院学报,12(1):34-42.
    朱上庆.1987.蒸发岩建造与层控铜,缜,锌矿床.地球科学-中国地质大学学报,12(4):357-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700