用户名: 密码: 验证码:
藏中拉屋铜矿区生态恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山作为能源与原料基地,对于能源生产起着关键性的作用。但在实际生产过程中,由于矿产资源的分布具有较强的地域性,而且很多矿产资源埋藏于较深的地底,对其进行开采必然会造成生态环境的破坏或土地占用,加之开采过程中会排放各种带有毒性的矿物废弃物,会逐步形成废弃地,成为持续污染源。而作为人类赖以生存的基础,土地是必不可少的自然资源之一,大量的废弃地污染不仅对土地资源造成严重破坏,而且极大的影响了矿山的地质环境,最终导致资源的损毁,地质灾害频发,对人类的生产生活和自然环境造成不可弥补的损失。
     在本文笔者以恢复生态学的相关理论作为研究思想,以自然恢复为主,以人工恢复为原则,对我国西藏中部地区的拉屋铜矿区的土壤状况、生物量、生物多样性、物种情况以及矿区生产力等方面进行了深入探讨,经过综合研究,得出如下结论:
     (1)拉屋矿区废弃地的基质主要以砾石和块石为主,占79.8~91.8%;砂粒以下细粒含量很少,占8.2~20.2%,因此,矿区废弃地通气透水,不易保水,土温变化大,吸附有效养分能力差,保肥力差,是造成植物定居困难的重要因素之一。在矿山生态恢复过程中,应十分注重对土壤物理性质的改良。
     (2)矿山不同土壤类型基质养分特征分析表明,矿区样地基质pH值变化范围在6.03~7.33,有机质含量在1.2-4.1%,土壤全N在0.04-6.81g/kg,全P含量在0.65~6.81g/kg;重金属Cu的含量为原土壤的3.45-38.00倍,Zn的含量为原土地的12.05-24.49倍,Pb和Cd分别为2.57-19.46与2.45-45.86倍;有效含量分别是5.66-36.73、18.46-30.05、13.48-44.98和2.06-12.24倍,与全国土壤重金属元素平均值相比较都明显偏高。说明矿山在开采破坏之后,因雨水冲刷,矿质营养低。尽管矿区土壤速效K含量丰富,但有机质和速效P、N严重缺乏。总体矿山废弃地肥力水平差,保肥、保水能力低且受Cd、Cu、Zn重度复合污染。因此,对植被的生长极为不利。在对土地利用进行修复的过程中,应该对有机质和其他养分的修复进行充分考虑,以改善土壤结构,从根本上提高土壤的自我协调能力。
     (3)在拉屋矿区范围内的土壤均受到Zn、Cu、Cd、Pb等重金属不同程度的污染,从中心范围200米以外逐渐减弱;相对于对照土壤而言,原土壤的微生物量、酶活性等指标都受到很大的抑制,土壤的qC02和基础呼吸受到很大刺激,通过多元回归分析得出,在各种重金属的复合污染之下,突然的微生物活性受到极大的影响。通过这种微生物活性的指标分析能够有效的揭示出矿区土壤的重金属符合污染实际情况,可以将其作为对拉屋矿区土壤质量评价和分类的重要依据。通过主成分分析与线性相关分析表明,重金属含量与微生物群落数量与活性呈显著线性相关,其中重金属参数的主成分(H-PC)与土壤微生物参数第一主成分(M-PC1)具有最强的相关性,表明了土壤微生物参数第一主成分(M-PC1)能有效的反映藏中矿区重金属污染的情况。
     (4)土壤重金属含量与细菌、放线菌数量呈一定负相关关系,说明矿区重金属污染明显降低了土壤微生物区系大小。研究还表明细菌、放线菌及真菌数量的变异系数(CV%)分别为1.56、1.97、0.29,说明三大微生物对重金属胁迫的敏感性不一样,即放线菌>细菌>真菌。矿区不同污染程度土壤的细菌、放线菌有明显差异,土壤重金属污染降低了土壤微生物细菌、放线菌、氨化细菌、硝化细菌与纤维分解菌的数量和微生物量C含量,提高了基础呼吸与qC02。
     (5)拉屋矿区的原生态草地植物的多样性和丰富度指数会在一定范围之内随海拔变化而变化,当海拔4660m时达最高,后逐渐降低。7、8月份丰富度、多样性指数高,6月、9月丰富度及多样性指数低。表现出在不同的海拔范围内,处于同一生长期的原生态草地植物物种分布和组成存在一定差异,即使在同一海拔高度,物种由于季节的不同也会表现出不同的生长变化。此外,通过研究得知,在植被的不同物种中对于资源的竞争主要为水和光热资源,次之是土壤养分、颗粒和地貌等。水分和温度是影响植物生态位变化的主要因素。在不同的群落中,物种之间的竞争关系也存在着较大差异,即使是同一种植物,有时也会形成不同的竞争关系。这种差异性主要是由较为稳定的地貌、土壤条件、气温、生态位以及逐年变动的降水情况共同造成的。所以,在选择矿山生态恢复物种的过程中,应该按照原生态草地草本植物的季节分布特征、种群生态位特征以及海拔分布特征,对物种组合进行不同的选择,从而实现多样化的矿山生态恢复,促进矿山植被的蓄水功能、保土功能及保持养分的功能,以此构建一个具有多样化稳定而高效的群落,从而促进生态系统恢复的良性化和稳定性。
     (6)土壤有机质的含量对植物生产力影响十分显著。试验研究发现,通过有机土的混合能够极大的提升垂穗披碱草种子的发芽速度,提高发芽几率,当表层土壤有机土含量达到一半时,其发芽率已趋近最高;在高原环境条件下,垂穗披碱草生物量的形成与气温、降水季节的变化有着明显的关系和地域特色。其产量高峰期一般是出现在8月上旬。在此之前的增长模式符合于Logistic生长方程。因此,在矿山实际恢复过程中,除增施有机肥外,充分利用矿山水热关系,提高优势物种生产力,促进优势物种对矿山生态恢复的作用。
     (7)通过对试验结果的分析可以得出:对高原矿山采取生态恢复策略,应该充分结合生物和工程措施进行,在选择生物恢复物种措施时,应该充分重视物种的季节特征、生态位分布特征以及矿区的自然条件,选择生长速度较快、根系较为发达、耐旱、耐高温的优势物种作为矿山生态恢复的首选。并采取施肥、客土等一系列辅助手段,加快矿山生态恢复的速度。
     (8)通过对矿山气象因子、不同样段土壤(基质)理化性质、成熟种植技术、矿山种植技术实验、植物生长限制因子等方面的分析和研究。得出道路建设破坏面技术恢复、矿渣堆积滑坡体恢复、道路建设形成的滑坡体恢复和尾矿库恢复等4项种植技术模式以及披碱草、老芒麦,辅助植物介菜型油菜混播(50:35:15),创建适宜植物定植的水、温等表面微环境;先锋植物在分蘖形成、分蘖完成时叶面施肥(水、N),积累先锋植物碳水化合物和糖分,增强先锋植物安全越冬能力;95:5种子与保水剂颗粒混合播种,覆地膜,再覆遮阴网,保湿、增温,促进先锋植物种子发芽、幼苗快速生长,建立定植群落等关键技术和相似生态环境矿山的生态恢复技术体系。
     总体来看,矿山生态恢复并不只是追求快速恢复矿山生态环境,而是应该从整体出发,以矿山生态系统的稳定、生物多样化以及矿山生态恢复的各种效益为目标,对矿山整体生态系统进行综合考虑的建设工程。
Mine as a base for energy and raw materials for energy production plays a critical role. But in the actual production process, the distribution of mineral resources has a strong regional, and many mineral resources buried deeper underground, its exploitation will inevitably cause damage to the ecology or land occupied, coupled with the mining process emissions from a variety of minerals with toxic waste will gradually form a wasteland, a continuing source of pollution. As the basis for human survival, the land is one of the essential natural resources, a large number of abandoned land pollution not only cause serious damage to land resources, but also a great impact on the mine geological environment, and ultimately lead to resource damage, geological disasters, causing irreparable damage on the production of human life and the natural environment. In this article the author in order to restore the ecology theory as a research idea to the natural recovery mainly to artificially restore the principle of soil conditions on the copper area of the house pull of China's central Tibet, biomass, biodiversity, species as well as The mining area productivity, such as in-depth, comprehensive study, the following conclusions:
     (1) pull the house mining wasteland matrix mainly of gravel and stone, accounting for79.8to91.8%; sand the following fines content rarely, accounting for8.2to20.2%, therefore, abandoned mining area ventilation permeable and difficult water soil temperature changes, the adsorption of available nutrient poor, ensure fertility, is one of the important factors to cause the plants to settle difficulties. Mine ecological restoration process should be paid great attention to the improvement of soil physical properties.
     (2) mining of different soil types Nutrient characteristics analysis showed that the mining area sample matrix pH value range of6.03to7.331.2to4.1%organic matter content, soil total N in0.04~6.81g/kg, total P content of0.65~6.81g/kg;3.45-38.00times the original soil content of Cu, Zn12.05-24.49times the original land, Pb and Cd were2.57-19.46and2.45-45.86times; effective content is5.6636.73,18.46to30.05,13.48to44.98and2.06to12.24times, compared with the national heavy metal elements, the average is significantly higher. Mines in mining after the destruction of rainwater falls on mineral nutrition. Mine soil available K, organic matter and available P, N, is a serious lack. Fertility level of the overall mining wasteland, and fertilizer, low water retention capacity and subject of Cd, Cu and Zn in severe compound pollution. Therefore, the growth of vegetation is extremely unfavorable. Repair of organic matter and other nutrients in the repair process of land use, it should be fully taken into account in order to improve the soil structure, and fundamentally improve the soil self-coordination.
     (3) pull the housing within the mining area of the soil are subject to the Zn, Cu, Cd, Pb and other heavy metals polluted to varying degrees, gradually weakened from the center area200meters away; relative to the control soil, the original soil microbial biomass, enzyme activity were greatly inhibited the soil qCO2and basal respiration were under great stimulus, obtained by multiple regression analysis, under the combined pollution of heavy-metal, the sudden microbial activity to be greatly affected. Index analysis of the microbial activity can reveal the mine soil heavy metals in the actual situation of the pollution, can be used as an important basis on mine soil quality assessment and classification of pull housing. By principal component analysis and linear correlation analysis showed that the heavy metal content and the quantity and activity of microbial communities was a significant correlation, the principal component of the parameters of heavy metal (H-to-PC) and soil microbial parameters, principal component (M-PC1) has The strongest correlation, indicating that the first principal component of the soil microbial parameters (M-PC1) can effectively reflect the situation of Tibet in the mining area of heavy metal pollution.
     (4) soil heavy metals and bacteria, actinomycetes showed some negative correlation between the description of Heavy Metal pollution significantly reduced the size of the microbial flora. The study also showed that bacteria, actinomycetes and fungi, the number of the coefficient of variation (CV%) were1.56,1.97,0.29, three micro-organisms to heavy metal stress sensitivity is not the same, namely actinomycetes> bacteria> fungi. Mining areas of different degree of pollution of soil bacteria, actinomycetes, soil heavy metal contamination of soil microbial bacteria, actinomycetes bacteria, ammonification bacteria, nitrifying bacteria and fiber decomposition of the number of bacteria and microbial biomass C content, basal respiration The and qCO2.
     (5) pull the housing mine the original ecology of grassland plant diversity and richness indices will be within a certain range with elevation changes and changes in the highest when the altitude of4660m, and then decreases. July and August, richness, diversity index, June, September richness and diversity indices. Showing the distribution of the original ecology of grassland plant species in different altitude ranges in the same growing season and to form there are some differences, even in the same altitude, the species due to the different seasons also showed different growth and change. In addition, the study indicated that the competition for resources in the different species of vegetation for water and light and heat, followed by soil nutrients, particles, and landscapes. Moisture and temperature are the main factors affecting changes in plant niche. The competition between the species in different communities, there are also a big difference, even if it is the same kind of plants sometimes form different competitive relationship. This difference is more stable landscape, soil conditions, temperature, niche, and yearly changes in precipitation in common cause. Therefore, in the process of mine ecological restoration species, it should be distributed according to the season of the original ecology of grassland herbs characteristics, population niche characteristics and altitude distribution characteristics of species combinations of different options, in order to achieve a variety of mines ecological restoration, promote the natural reservoir of the mining vegetation, and soil conservation function and maintain nutrients, in order to build a diversified stable and efficient community, thereby contributing to the benign and stability of ecosystem restoration.
     (6) soil organic matter content is very significant impact on plant productivity. The pilot study found that, through a mixture of organic soil can greatly enhance the Elymus nutans grass seed germination speed and improve germination probability of topsoil organic soil content reaches half its germination rate approaching the maximum; environmental conditions in the highlands, the nutans Elymus biomass formation and the temperature and precipitation in the seasonal changes have a clear relationship and geographical characteristics. Its peak production period is usually in early August. Prior to this pattern of growth in line with the logistic growth equation. Mine the actual recovery process, in addition to organic manure, make full use of mine water heat relations, improve the productivity of the dominant species, and promote the role of the dominant species on the mine ecological recovery.
     (7) can be obtained through the analysis of test results:mining on the plateau to take ecological restoration strategy should be fully integrated with the biological and engineering measures, select the biological recovery of species measures, we should pay full attention to the seasonal characteristics of the species, niche distribution characteristics natural conditions of the mining area, select grew faster, more developed root system, drought, cold resistant, the dominant species of choice for ecological restoration as mine. And take a series of supplementary means of fertilization, and new soil, to accelerate the speed of the mines ecological restoration.
     Overall, the mine ecological recovery is not just the pursuit of the fast recovery of ecological environment in mining, but should be starting from the overall, to mine the stability of ecosystems, biodiversity and ecological restoration of mine the benefits of goal of mine as a whole ecosystem considering the construction project.
     (8) From analysising and researching meteorological factor of mine, physical and chemical properties of different sectional soil(stromal), mature planting technology, the test of planting technology in the mine, and the limiting factor of plants growing, we can get the following achievements:about4modes of seeding technology, including thetechnological restoration of the failure surface of road construction, the restoration of landslide of slag accumulation, the restoration of the landslide which road constuction formed, and the restoration of the tailings, and the mixed seeding(50:35:15) of the Elymus, the Sibiricus, the Brassica juncea which is auxiliary plant,which can create the appropriate surfacial microenvironment of water and temperature of plant colonization. Forever, fertilizing the foliar of pioneer plant can accumulate carbohydrates and sugars and strengthen its overwintering ability safely. In addition, the mixed seeding(95:5) of seed and grain of aquasorb,the recvering of film and shade network, the moisture and the warming can promote seed germination and rapid growth of seedling, as well as establish the crucial technology and thetechnology system of ecological restoration of similar ecological envirnment in mining.
引文
1.包志毅,陈波.工业废弃地生态恢复中的植被重建技术[J].水土保持学报,2004,18(3):163-164.
    2.鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000
    3.北京林学院主编.土壤学[M].北京:中国林业出版社,1982.120-123.
    4. BradshawA.,程志勤译.西欧废弃地的管理与恢复[J].生态学报,1990,10(1):28-35.
    5.卞正富,张国良.矿山土复垦利用试验[T]中国环境科学,1999,19(1):82-84.
    6.卞正富,张国良。生物多样性指数在矿山上地复垦中的应用[J].煤炭学报,2000.22(1):76-80.
    7.陈法扬.城市化过程中的废弃采石场治理技术探讨[J].中国水土保持,2002(5):39-40.
    8.陈法扬.生态修复与可持续发展[A].全国水土保持生态修复研讨会论文汇编[C],2004,32-37.
    9.陈法扬.生态修复与可持续发展[A].全国水土保持生态修复研讨会论文汇编[C]2004,34-39.
    10.陈芳清,卢斌,王祥荣.樟村坪磷矿废弃地植物群落的形成与演替.生态学报,2001,21(8):1347-1354.
    11.陈芳清,张丽萍,卢斌.隔河岩水电站废弃地植被的初始生态恢复[J].三峡大学学报:白然科学版,2003,25(2):180-154.
    12.陈芳清,张丽萍,谢宗强.三峡地区废弃地植被生态恢复与重建的生态学研究[J].长江流域资源与环境200413(3):284-289.
    13.成延鏊,田均良.西藏土壤环境背景值及其分布特征[M].北京:科学出版社,1993:104-109
    14.程积民,贾恒义,彭详林.施肥草地植被群落结构和演替的研究[J].水土保持研究,1996,3(4):124-128.
    15.党志,刘丛强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展[J].地球科学进展,2001,16(1):86-89.
    16.杜国祯,孙国钧,王兮之.垂穗披碱草个体大小依赖的繁殖分配与种群密度的关系[J].草业学报,1999,8(2):26-33
    17.樊金栓.中国北方煤矸石堆积地生态环境特征与植被建设研究[D].北京:北京林业大学,2006.
    18.方晰,田大伦,谢荣秀.湘潭锰矿矿渣废弃地植被修复前的土壤诊断[J].生态学报,2006,26(5):1494-1501.
    19.高国雄,高保山,周心澄,等.国外工矿区土地复垦动态研究[J].水土保持研究,2001,8(3):98-103.
    20.高国雄,高保山,周心澄,等.国外工矿山土地复垦动态研究[J].水土保持,2001,3(1):98-103.
    21.古锦汉,冯光钦,梁亦肖,等.矿山迹地恢复树种选择技术研究[J].湖南林业科技2006,33(5):18-20.
    22.顾梦鹤,杜小光,文淑均,等.施肥和刈割对垂穗披碱草(Elymus nutans)、中华羊茅(Festuca sinensis)和羊茅(Festuca ovina)种间竞争力的影响[J].生态学报,2008,28(6):2472-2479
    23.关松荫.土壤酶及其研究法[M].北京:中国农业出版社,1986,14-15,294-333.
    24.郭逍宇,张金屯,宫辉力,等.安太堡矿山恢复过程主要种生态位梯度变化研究[J],西北植物学报,2004,24(12):2329-2334.
    25.郭逍宇,张金屯,宫辉力,等.安太堡矿山恢复过程主要种生态位梯度变化研究[J],西北植物学报,2004,24(12):2330-2333.
    26.郝蓉,白中科,赵景选,等.黄土区大型露天煤矿废弃地恢复过程中的植被动态.生态学报,2003,23(5):1470-1476.
    27.胡振琪,凌海明.金属矿山污染土地修复技术及实例研究[J].金属矿山,2003,6:53-56.
    28.贾文锦.辽宁土壤[M].沈阳:辽宁科技出版社,1992.
    29.蒋高明.英国圣.海伦斯Bofd Moss Tip煤矿废弃地恢复实验研究[J].植物学报,1993, 35(12):951-962.
    30.金靖博,陆月皎,孙德军.恢复生态学及其在林区矿山植被修复中的应用[J].林业勘查设计,2008,2:44-45.
    31.李光明,潘桂棠,等.西藏岗底斯成矿带矿产资源远景评价与展望[J].成都理工大学学报,2004,31(1):23-25.
    32.李晋川.王文英.卢崇恩.安太堡露天煤矿新垦土地恢复的探讨[J].河南科学,1999,17:92-95.
    33.李明顺,唐绍清,张杏辉,等.金属矿山废弃地的生态恢复实践与对策[J].矿业安全与环保,2005,32(4):16-18.
    34.李瑞,张克斌,杨晓晖,等.荒漠化草原人工封育区植物生态位研究[J].水土保持研究,2006,13(2):213-216.
    35.李若愚,侯明明,卿华,等.矿山废弃地生态恢复研究进展[[J].矿产保护与利用,2007,1:50-54.
    36.李树志,周锦华,怀新.矿区生态破坏防治技术[M]北京:煤炭工业出版社,1998.
    37.李树志,周锦华,张怀新.矿山生态破坏防治技术[M].北京:煤炭-工业出版社,1998.
    38.李伟涛.矿业废弃地景观更新理论研究[D].哈尔滨:东北林业大学,2007.
    39.李贤忠,朱存福,青辉,等.4种不同种源小桐子种子发芽试验[J].林业调查规划,2010.08,35(4):34-37.
    40.李永庚,蒋高明.矿山废弃地生态重建研究进展[J1.生态学报,2004.1,24(1):95-100.
    41.李元,杨济龙,王勋陵,胡之德.紫外辐射增加对春小麦根际土壤微生物种群数量的影响[J].、中国环境科学,1999,19(2):157-160.
    42.列别捷夫著.植物生理学[M].杨汗金译.厦门:厦门大学出版社,1991:268.
    43.刘海龙.采矿废弃地的生态恢复与可持续景观设计[C].北京市科学技术委员会.首届北京生态建设.
    44.刘海龙.采矿废弃地的生态恢复与可持续景观设计[J].生态学报,2004,24(2):23-329.
    45.刘敬勇.矿区土壤重金属污染及生态修复[J].中国矿业,2006,15(2);66-69.
    46.刘树庆.保定市污灌区土壤的Pb、Cd污染与酶活性关系研究[J].土壤学报,1996,33(2):175-182.
    47.龙健,黄昌勇,滕应,姚槐应.矿区废弃地土壤微生物及其生化活性.生态学报,2003,23(3):496-503.
    48.卢宝荣.披碱草×球茎大麦属间杂种的减数分裂研究[J].遗传学报,1997,024(003):0263-0270
    49.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.107-108,269-271.
    50.罗亚平,李明顺,李金城,等.广西锰矿废弃地生态恢复的现状与治理对策[J].现代农业科技,200813:356-359.
    51.马克平.生物群落多样性的测度方法[M].北京:中国科学技术出版社,1994:141-165.
    52.马宗仁,郭博.短芒披碱草和老芒麦在水分胁迫下游离脯氨酸积累的研究Ⅰ牧草抗旱性与脯氨酸积累能力关系的标准[J].中国草地,1991,4:12-16
    53.马宗仁.短芒披碱草和老芒麦在水分胁迫下游离脯氨酸积累的研究Ⅱ关于牧草间脯氨酸积累差异原因[J].草业科学,1992,9(5):53-57
    54.莫测辉,蔡全英,全江海.城市污泥在矿山废弃地复垦的应用探讨[J].生态学杂志,2001,20(2):44-46.
    55.倪显祥.不同浸种处理对水稻生长和产量的影响比较[J].现代农业科技,2010,10:62-63.
    56.聂湘平,蓝崇饪,张志权,等.锌对大叶相思——根瘤菌共生固氮体系的影响.植物生态学报,2002,26(3):265-267.
    57.彭少麟.恢复生态学及植被重建[J].生态科学,1996,15(2):26-31.
    58.全国土壤普查办公室.中国土壤普查技术[M].北京:农业出版社,1992
    59.任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2001.
    60.沈景林,谭刚,乔海龙,等.草地改良对高寒退化草地植被影响的研究[J].草地学报,2000,(5):49-54.
    61.束文圣,蓝崇任,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].1997,8(3):314-318.
    62.束文圣,叶志鸿,张志权,等.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,2003,23(8):1629-1639.
    63.束文圣,张志权,蓝祟饪.国矿业废弃地的复垦对策研究.生态科学,2002,19(2):24-30.
    64.宋爱云,刘世荣,史作民.卧龙自然保护区亚高山草甸物种多样性研究[J].林业科学研究,2006,19(6):767-772.
    65.苏加楷,耿华株,马鹤林,等.野生牧草的引种驯化[M].化学工业出版社,2004
    66.苏静,欧今次仁,尼霞次仁,王文华,袁涛,程金平.德兴铜矿周边地区土壤酶活性研究[J].环境污染与防治,2007,29(5):357-360,370.
    67.孙波,赵其国,张桃林,等.土壤质量与持续环境(Ⅲ)土壤质量评价的生物学指标[J].土壤,1997,5:225-234.
    68.滕应,黄昌勇,龙健,等.铅锌银尾矿污染区土壤酶活性研究[J].中国环境科学,2002,22(6):551-555.
    69.王刚,蒋文兰.人工草地种群生态学研究[M].甘肃科学技术出版社,1998:134-152.
    70.王宏镇,文传浩,谭晓勇,等.云南会泽铅锌矿矿渣废弃地植被重建初探[J].云南环境科学,1998}I7(2):43-46.
    71.王颖,穆春生,王彦靖,等.松嫩草地主要豆科牧草种子萌发期耐旱性差异研究[J].中国草地学报,2006,28(1):7-12.
    72.温仲明,焦锋,卜耀军,等.植被恢复重建对环境影响的研究进展[J].西北林学院学报,2005,20(1):10-15
    73.夏既胜,刘晓芳,谭树成,等.露天矿区生态问题及生态重建方法探讨[J].金属矿山,2009,(6):163-165.
    74.夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996.
    75.谢荣秀,田大伦,方晰.湘潭锰矿废弃地土壤重金属污染及其评价[J].中南林学院学报,2005,25(20):38-41.
    76.徐友宁,何芳,袁汉春,等.中国西北地区矿山环境地质问题调查与评价[M].北京:地质出版社,2006.
    77.徐友宁.矿山地质环境调查研究现状及展望[J].地质通报,2008,27(8):1235-1244.
    78.许光辉,李振高.微生物生态学[M].南京:东南大学出版社,1991,175-182
    79.许光辉,郑洪元,张德生,等.长白山北坡自然保护区森林土壤微生物生态分布及其生化特性的研究[J].生态学报,1984,4(3):207-222.
    80.薛立,陈红跃,邝立刚.湿地松混交林地土壤养分,微生物和酶活性的研究[J].应用生态学报,2003,14(1):157-159.
    81.薛生国.湘潭锰矿矿业废弃地生态恢复技术试验研究[D].株洲:中南林学院,2002.
    82.杨芳,徐秋芳.土壤微生物多样性研究进展[J].浙江林业科技,2002,22(6):39-55.
    83.杨世勇,谢建春,刘登义.铜陵铜尾矿复垦现状及植物在铜尾矿的的定居[J].长江流域资源与环境,2004,13(5):488-492.
    84.杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究.生态学报,2001,21(11):1932-1941.
    85.杨玉盛,邱仁辉,俞新妥,等.杉木连栽土壤微生物及生化特性的研究[J].生物多样性,1999,7(1):1-7.
    86.姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006.
    87.叶文虎,栾胜基.环境质量评价学[M].北京:高等教育出版社,1997.
    88.余海波,周守标,宋静,等.铜尾矿库能源植物稳定化修复过程中定居植物多样性研究[J].中国农学通报,2010,26(18):341-346.
    89.余启高,姚茂桂.浓硫酸处理对黄柏种子发芽的影响[J].安徽农学通报,2010,16(19):32-33.
    90.俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-421.
    91.张崇邦.东北麦田土坡微生物、小型动物及其生化活性的季节变化动态[J].植物营养与肥料学报,2002,8(3):372-376.
    92.张光灿,刘霞,王燕.煤矿山生态重建过程中风化研石山植被生长及土壤水文效应[J].水土保持学报,2002,16(5):20-23.
    93.张国萍,倪日群,赵新亮,等.水引发对干旱胁迫下水稻种子发芽与幼苗生长的影响[J].种子,2002,21(2):20-22.
    94.张继义,赵哈林,张铜会,等.科尔沁沙地植物群落恢复演替系列种群生态位动态特征[J].生态学报,2003,23(12):2741-2746.
    95.张力君,庄光辉.9种禾草对干旱胁迫的生理反应[J].内蒙古农业大学学报,2000,21(4):14-19
    96.张玲,叶正钱,李廷强,杨肖娥.铅锌矿区污染土壤微生物活性研究[J].水土保持学报,2006,20(3):136-140.
    97.张璐,苏志尧,李镇魁,等.广东石坑峻森林植物生活型谱随海拔梯度的变化[J].华南农业大学学报,2004,28(2):78-52.
    98.张志权,黄铭洪,土壤种子库与矿业废弃地植被恢复研究:定居植物对重金属的吸收和再分配.植物生态学报,2001,25(3):306-311.
    99.张志权,束文圣,蓝崇钰等.引入土壤种子库对铅锌尾矿废弃地恢复的作用[J].植物生态学报.2000,24(5):336-374.
    100.张众彭启乾披碱草属牧草种子萌发生物学特性的研究[J].中国草地,1990,2:51-54.
    101.赵方莹,北京铁矿废弃地植被恢复技术与效果研究[M],2008.
    102.赵群芬,陈光升.重庆四面山常绿阔叶林群落多样性与海拔梯度的关系[J].四川师范大学学报(自然科学版),2004,27(4):405-409.
    103.赵汝林.新世纪初西藏矿业发展浅析[J].中国矿业,2003,12(8):1-3.
    104.赵淑清,方精云,宗占江,等·长白山北坡植物群落组成、结构及物种多样性的垂直分布[J].生物多样性,2004,12(1):164-173
    105.中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990,336-392.
    106.中国科学院.西藏自然资源[M].北京:科学出版社,1998:6-46.
    107.中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985
    108.仲雷,马耀明,等.西藏中部“一江两河”地区地表通量的卫星遥感估算[J].冰川冻土,2011,33(2):310-312.
    109.周瑞莲,张普金,徐长林.长期低温作用下垂穗披碱草保护酶活性变化及其牧草生态适应性进行研究[J].草业学报,1995,4(3):30-35
    110.朱海平,姚槐应,张勇,等.不同培肥管理措施对土壤微生物生态特征的影响[J].土壤通报,2003,34(2):140-142.
    111.朱祖祥.中国农业百科全书一土壤卷[M].北京:农业出版社,1996:263-264.
    112. Acosta-Martinez V, Tabatabai M A. Arylamidase activity in soil:effect of trace elements and relationships to soil properties and activities of amidohydrolases [J]. Soil Biology & Biochemistry,2001,33:17-23.
    113.Baath E. Effects of heavy metals in soil on microbial processes and populations:a review. Water[M], Air, Soil Pollut,1989,47:335-379.
    114. BegonM, Harper JL,Townsend C R. Ecology:Individuals, Populations and Communities[M]. Oxford:Blackw-ellScience,1996
    115. Bradshaw AD.Restoration of mined lands:using natural Proeesses[J].Eeological Engineering, 1997, (8):255-269.
    116. Brookes P C. Use of microbial parameters in monitoring soil pollution by heavy metals[J]. Biology and Fertility of Soils,1995,19,269-279.
    117. BrownSpecies Diversity. In:Myers A A, Gil-ler P S-AnalyticalBiogeography:An Integrated Approach to the Study of Animal and PlantDistribution[M]. New York:Chapman & Hal,1988: 57-89
    118. Burton C M, Burton P J, Hebda R, et al. Determining the optimal sowing density for mixture of native Plants used to revegetate degraded ecosystems[J].Restoration Ecology,2006, 14(3): 379-390.
    119. Burton C M, Burton P J, Hebda R, et al. Determining the optimal sowing density for mixture of native Plants used to revegetate degraded ecosystems [J].Restoration Ecology,2006,14(3): 379-390.
    120. CaimsJ.Jr.The status of the theoretiea landap Pliedseienee ofretoration ecology[J].The Environmental Professional,1991, (13):186-194.
    121. Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Lavelle P. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils[J].Appllied Soil Ecology,2004,25:99-109.
    122. Darina Hodacova. Karel Prach. Spoil heaps from brown coal mining:technical reclamation versus spontaneous re-vegetation [J].Restoration Ecology 2003, 11(3):385-390.
    123. Deng S P, Tabatabai M A. Cellulase activity of soils:effect of trace elements[J]. Soil Biology & Biochemistry,1995,27:971-979.
    124. Duque J F, Matin J, Pedraza A et al. A geomorphological design for the rehabilitation of an abandoned sand quarry in central Spain [J].Landscape and Urban Plann,1998,42:1-14.
    125. ErnstW H O. Mine vegetation in Europe[M] Shaw A J. Heavy MetalTolerance in Plants: EvolutionaryAspects. BocaRaton, Florida:CRC Press,1989:21-38
    126.GB15618-1995.中华人民共和国土壤环境质量标准[M].北京:中国标准出版社,1995.
    127. Gemmell RP.Colonization of Industrial Wasteland[M].London:Arnoldl977,21-47.
    128. Grant C D, Campbell C J, Charnock N R. Selection of species suitable for derelict mine site rehabilitation in New South Wales Australia[J].Water Air&Soil Pollution,2002,139:216-230.
    129. Grime J P.Control of species diversity in herbaceous vegetation[J].Journal of Environmental Management,1973(1):151-167.
    130. Hector A, Schmid B, Beierkuhnlein C, et al.Plant diversity and productivity experiments in European grasslands[J].Science,1999,286:1123-1127.
    131.Hiroki M.Effects of heavy metal contamination on soil microbial population[J].Soil Sci Plant Nur,1992,38:141-147.
    132. Holl K D. Long-term vegetation recovery on reclaimed coal surface mines in theeastern US[J].Journal of Applied Ecology 2002,39(6):963-969.
    133. Huang Q, Shindo H. Effects of copper on the activity and kinetics of free and immobilised acid phosphatase [J]. Soil Biology & Biochemistry,2000,32:1885-1892.
    134. Li YT, Rouland C, Benedetti M, Li FB, Pando A, Lavelle P, Dai J. Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress[J].Soil Biology & Biochemistry,2009,41:969-977.
    135. Long J, Huang CY, Teng Y, Yao HY. Preliminary study on soil microbes and soil biochemical activities in mining wasteland[J]. Acta Ecologica Sinica,2003,23(3):496-503.
    136. Lubke R A, Avis A M. A review of the concept sand application of rehabilitation following heavy mineral dune mining [J].Marine pollution Bulletin,1999,37(8):548-551.
    137. Martinez-RuizC, Femandez-SantosB.Effeet of substrat coarseness and exposure on Plant succession in uranium-mining wastes[J].Plant Ecology,2001,155(Ⅰ):79—89.
    138. Mikanova O. Effects of heavy metals on some soil biological parameters [J]. Journal of Geochemistry Exploration,2006,88:220-223.
    139. Naeem S, Thompson L J, Lawler S P, et al.Declining biodiversity can alter the performance of ecosystems[J].Nature,1994,368:734-736.
    140. oil shale mines in Estonia [J]. Restoration Ecology,2004,12(2):200-206.
    141. Pensa M,Sellin A, Luud A, et al. Ananalysis of vegetation restoration on opencast
    142. Prakash K J, Suresh N, Gopinathan M C, et al. Suitability of rhizobia-inoculated wild legumes Argyrolobium flaccidum, Astragalus graveolens, Indigofera gangetica and LesPedeza stenoeaipa in Providing a vegetational cover in an unreclaimed limestone quarry[J]. Plant and Soil,1995, 177:140-148.
    143. Rao A V, Tak R. Growth of different tree species and their nutrient uptake in limestone mine spoil as influenced by arbuscular mycorrhizal (AM)-fungi in Indian arid zone [J]. Journal of Arid Environments,2002,51(1):114-119.
    144. Renella G, Mench M, Landi L, Nannipieri P. Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils[J]. Soil Biology & Biochemistry,2005,37:133-139.
    145. Shu W S, Ye Z H, Lan C Y, Zhang Z Q, Wong M H. Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environment International[J].2001,26:389-394.
    146. Shu WS, Ye ZH, Zhang ZQ et al. Natural Colonization of Plants on Five Lead/Zinc Mine Tailings in Southern China. Restoration Ecology,2005,13(1):49-60.
    147. Tilman D, Downing J A.Biodiversity and stability ingrasslands[J].Nature,1994,367:363-365.
    148. Vasquez-Murrieta M S, Migueles-Gardu oI, Franco-Hernandez O, Govaerts B, Dendooven L. C and N mineralization and microbial biomass in heavy-metal contaminated soil[J].European Journal of Soil Biology,2006,42:89-98.
    149. Wang Y P, Shi J Y, Wang H, Lin Q, Chen X C, Chen Y X. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter[J]. Ecotoxicology and Environmental Safety,2007,67:75-81.
    150. Wong MH. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere,2003,50:775-780.
    151. Ye ZH, Shu WS, Zhang ZQ. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere,2002,47:1103-1111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700