用户名: 密码: 验证码:
水下结构降噪预报波叠加法理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辐射噪声一直是衡量潜艇作战性能及生存能力的重要指标,是敌方声学武器探测的主要目标,直接影响到潜艇的声隐身性能,因此对类似潜艇动力舱段的水下典型结构降噪预报具有重要意义。而在潜艇表面粘贴声学覆盖层作为主要的降噪手段之一,其降噪效果的理论预报与试验测试显得极为重要,为此应该有针对性地开展水下典型结构降噪预报研究。在这方面研究中存在一些技术难点,其中包括如何获取有效的测量数据;如何减少测量水听器数量,缩减测量成本;尤其是怎样高效地利用水下结构粘贴或不粘贴覆盖层其中一个工况下的声场数据,估算出另一工况下的辐射声场,从而减少测量工况数量等工程应用问题。针对水下结构降噪预报研究中存在的这些技术问题,本文做了如下研究:
     首先介绍了波叠加法的研究背景,阐述了其在声场预报、近场声全息、噪声源识别方面的国内外研究动态,分析了水下结构声学覆盖层的降噪机理和降噪预报的研究方法,讨论了各方法的优缺点,明确了将波叠加法应用于水下结构声学覆盖层降噪预报存在的技术难点,针对这方面的研究需求,确定了论文将要研究的主要内容。
     然后,研究了在自由场条件下,波叠加法降噪预报理论,即由水下结构无覆盖时声场预测有覆盖时声场。首先研究阐述基于振速和声压测量的波叠加法原理,分析正则化滤波对波叠加法计算精度的影响,讨论粘弹性材料阻抗传递原理及与结构界面耦合的处理方法;然后以脉动球、单点激励球壳声辐射为算例,并引入复矢径虚源,分别验证基于振速、基于声压测量的波叠加法有效性;讨论了影响声场计算精度的因素,以有限元ANSYS与边界元SYSNOISE软件联合计算的测量面声压为输入条件,研究了水下有限长单点径向激励简支圆柱壳粘贴均匀粘弹性材料的降噪效果。
     接着又研究了半自由场波叠加法降噪预报理论,即在半自由场条件下,由水下结构无覆盖时声场预测有覆盖时声场。首先研究基于声压测量的半自由场波叠加法原理,给出虚源点与声场点之间界面反射系数的计算方法,以及半自由场条件下,虚源镜像与软件计算测量面声压的方法。数值仿真计算了半自由场条件下,单点径向激励的球壳和简支圆柱壳粘贴均匀粘弹性材料的降噪效果,并与软件计算的数值解和自由场的计算结果进行对比分析。
     研究了粘贴覆盖层后的水下结构单工况降噪预报理论,即由水下结构有粘弹性覆盖时声场预测无覆盖时声场。首先研究在水下结构已经粘贴粘弹性材料的条件下,基于声压测量的波叠加法,对水下结构进行降噪预报的基本原理。然后研究有限元+边界元软件计算粘贴粘弹性材料的水下结构声场的参量设定方法,在验证有限元软件计算粘弹性材料位移和声场有效的前提下,软件计算粘贴均匀粘弹性材料的球壳和有限长简支圆柱壳的测量面声压,以此为输入条件,采用波叠加法,结合粘弹性材料阻抗传递和界面耦合理论,计算球壳、圆柱壳粘贴粘弹性层前的辐射声压,从而预测水下结构粘贴粘弹性层的降噪效果。
     研究水下结构粘贴复合结构覆盖的降噪预报理论,针对具有空腔复合结构的粘弹性材料,在小穿孔率、结构规则且分布均匀条件下,采用材料声学参数等效法,引入波叠加法,研究其对水下结构的降噪效果;对具有典型指数型喇叭腔复合结构的粘弹性材料,采用变截面波导理论,引入波叠加法,研究其粘贴在水下结构表面的降噪效果;对于具有压电分层结构的半主动复合材料,采用声阻抗匹配法优化其外接损耗电路参数,然后结合压电阻抗传递原理和波叠加法,对其在水下结构的降噪效果进行理论预报。
     最后,开展基于波叠加法的水下结构粘贴粘弹性覆盖降噪预报试验研究,采用波叠加法,结合粘弹性材料阻抗传递和界面耦合理论,通过水下结构一个工况下的测量面声压,预测其在另一个工况下的声场。对水下双层圆柱壳粘贴粘弹性覆盖的降噪效果进行单工况预报,将预报的场点声压及降噪效果,与试验的实测结果进行对比分析。针对内部具有周期、规则的小孔径空腔的粘弹性覆盖,分别采用材料等效参数法和变截面波导理论进行阻抗传递和界面耦合的研究,对圆柱壳单工况正向、反向的预报方法都进行了验证。通过误差的对比分析,对波叠加法应用于水下结构粘弹性覆盖单工况降噪预报的有效性进行评估,为其在工程的应用提供有效的技术支撑。
Radiation noise is an important index to measure the operational performance andviability of submarine, it is the main detection target of enemy acoustic weapons, and itdirectly affects the submarine acoustic stealth performance, so it is important for noiseprediction for underwater typical structures of similar power cabin submarine. Acousticcovering layer in the submarine surface is main means of noise reduction, the theoreticalprediction and test of the noise reduction effect is extremely important, so the paper works onthe underwater noise prediction research of underwater typical structures. But the study ofnoise prediction has some technical difficulties, including the way to obtain validmeasurement data; the way to reduce the number of measuring hydrophone;the way to reducemeasuring cost; the way to estimate the acoustic radiation of other conditions and reducingthe number of engineering based on data of underwater adhesions sound field and noadhesions sound field. Considering problems of the existing noise prediction of underwaterstructure, this paper worked on the following research:
     The paper introduces the background of the wave superposition method, and states thedynamic research at home and abroad on the acoustic field prediction, near field acousticholography, noise source identification of the dynamic research, and analyses the researchmethod of noise reduction mechanism and noise prediction structure acoustic covering layerunder water, and discusses the advantages and disadvantages of each method, and points outthe technical difficulties in applying the wave superposition method to the structural acousticunderwater noise prediction, according to the research needs in this area, the main contents ofthe thesis are determined.
     The paper works on noise prediction theory based on wave superposition method underthe condition of free field, namely predicting sound field of underwater structure coveredbased on underwater structure not covered. Firstly, the paper explains the principle of wavesuperposition method based on measurement of vibration velocity and sound pressure, andanalysis the effect of regularization filter on calculation accuracy of the wave superpositionmethod, the paper discusses the viscoelastic material impedance transfer principle andprocessing method coupled with the structure of the interface; taking pulsating sphere, singlepoint excitation spherical sound radiation as an example, the paper introduces the complexantero-posterior diameter, and the paper respectively verifies the significance of the wavesuperposition method based on measurement of vibration velocity and sound pressure; the paper discusses the factors that influence the accuracy of sound field, the initial conditions ofsurface pressure measurement based on ANSYS finite element and boundary elementSYSNOISE software, the paper studies the noise reduction effect of radial finite singleunderwater incentive simply supported cylindrical shell paste the uniform viscoelasticmaterial.
     The paper works on noise reduction prediction theory based on wave superpositionmethod with the half free field, namely, predicting the sound field of underwater structurecovered by the sound field of underwater structure not covered. The paper firstly works onwave superposition method of the half free field based on sound pressure measurement, thecalculation method of reflection coefficient between virtual source point and sound point, themethod of virtual image source calculation and software measurement are given under ahalf-free field condition. Under numerical simulation of the half-free field condition, the noisereduction effect of spherical shell and cylindrical shell with simply supported edges pastesingle radial excitation are calculated, and the simulation results are compared with thenumerical result of software and calculation of free field results.
     The paper works on backward noise prediction theory under the adhesive layer ofunderwater structure, and it means predicts uncovered sound field using underwater structurewith viscoelastic coating sound field. Firstly, the paper states backward noise reductionprediction theory based on wave superposition method of pressure measurement underunderwater structure has pasted the viscoelastic material. Secondly, the paper works onparametric setting method of underwater structure sound field based on the paste ofviscoelastic materials of finite element and boundary element software, the softwarecalculates surface pressure of viscoelastic material spherical shell and cylindrical shell offinite length, and the result is considered as the initial condition, wave superposition methodare used and combined with viscoelastic material impedance transfer and interfacial couplingtheory, the radiation pressure of spherical shell and cylindrical shell with viscoelastic layer ofpaste are calculated, and thus the effect of reducing the underwater structure adhesiveviscoelastic layer is predicted.
     The paper works on noise prediction theory of structure that is pasted by underwatercomposite structure, considering the viscoelastic materials with hollow composite structure,and it is in a small perforation ratio, structure rule and uniform distribution, Using theacoustic parameters equivalent method, the wave superposition method is introduced, thepaper works on the noise reduction effect of underwater structure; considering the nodestructure under water for a viscoelastic material, the paper uses acoustic impedance matching method to optimize the external loss circuit parameters, and then combined with thepiezoelectric impedance transfer principle and wave superposition method, the noisereduction effect of underwater structure is theoretical predicted.
     Finally, the paper works on noise reduction coverage of underwater structure pasteviscoelastic prediction experiments based on the wave superposition method, consider usingwave superposition method, combined with viscoelastic material impedance transfer andinterfacial coupling theory, by measuring the surface sound pressure through a workingunderwater structure and then predict sound pressure of another condition of the field. Thepaper works on the single condition forecast on the noise reduction of underwater doublecylindrical shell sticking visco-elastic covering, and then the sound pressure and noiseprediction effect are compared with the experimental results. Consider viscoelastic smallaperture cavity has a cycle, rules for internal coverage, the paper respectively works onimpedance transfer and interface coupling based on the equivalent parameter method andvariable cross-section waveguide theory, the forecast method for cylindrical shell workingforward and reverse are verified. By the analysis of error comparison, the wave superpositionmethod that is applied to elastic underwater structure adhesive cover noise reductionprediction is effectively evaluated, the conclusion is applied in the application of engineeringto provide effective technical support.
引文
[1] Morse. P. M, Feshbach. H. Method of Theoretical physics. New York: Mc Graw-Hill.1953
    [2]商德江.复杂弹性壳体水下结构振动和声场特性研究.哈尔滨工程大学博士论文.2000
    [3] Everstine. G. C, Henderson. F. M. Coupled finite element/boundary elementapproach for fluid-structure interaction. J. Acoustic. Soc. Am.1990,87(5):1938-1947P
    [4] Lyon. R. H. Statistical energy analysis of dynamical systems theory and applications.MIT Press.1975
    [5] Burroughs. C. B, Fischer. R. W, Kern. F. R. An introduction to statistical energyanalysis. J. Acoustic. Soc. Am.1997,101(4):1779-1789P
    [6]姚德源,王其政.统计能量分析原理及其应用.北京:北京理工大学出版社.1995
    [7] Jun. D. Design sensitivity analysis and optimization of high frequency structure-acoustic problems using energy finite element method and energy boundary elementmethod. USA: university of Iowa,2004
    [8] Geers. T. L, Zhang. P. Doubly asymptotic approximations for submerged structureswith internal fluid volumes formulation ASME Transactions. Journal of AppliedMechanics.1994(69):893-899P
    [9] Ergin. A. The response behaviour of a submerged cylindrical shell using the doublyasymptotic approximation method. Computers&Structures.1997,62(6):1025-1034P
    [10] Geers. T. L, Felippa. C. A. Doubly asymptotic approximations for vibration analysisof submerged structures. J. Acoustic. Soc. Am.1983,73(4):1152-1159P
    [11] Zhang. S. Y, Chen. X. Z. The volume source boundary point method and itsapplication to an acoustic radiation calculation. Journal of Vibration Engineering.1998,11(4):395-400P
    [12] Zhang. S. Y, Chen. X. Z, Wang. Y. C. The distributed source boundary point method(DSBPM) and its application to the calculation for acoustic radiation caused byvibrating body. Acta Acustica.1999,24(2):149-154P
    [13] Koopmann. G. H, Song. L, Fahnline J. A method for computing acoustic fields basedon the principle of wave superposition. J. Acoust. Soc. Am.1989,86(5):2433-2438P
    [14] Burgess. G. J, Mahajerin. E. A. A comparison of the boundary element andsuperposition methods. Computers&Structures.1984,19(5-6):697-705P
    [15] Bell. W, Meyer. W, Zinn. B. Predicting the acoustics of arbitrarily shaped bodiesusing an integral approach. AIAA Journal.1977,15(6):813-820P
    [16] Kupradze. V. D, Aleksidze. M. A. The method of functional equations for theapproximate solution of certain boundary value problems. ComputationalMathematics and Mathematical Physics.1964(4):82-12P
    [17] Song. L, Koopmann. G. H, Fahnline. J. Numerical errors associated with the methodof superposition for computing acoustic fields. J. Acoust. Soc. Am.1991,89(6):2625-2633P
    [18] Fahnline. J, Koopmann. G. H. A numerical solution for the general radiation problembased on the combined methods of superposition and singular value decomposition. J.Acoust. Soc. Am.1991(90):2808-2819P
    [19] Miller. R. D, Thomas. E. T, Huang. H, et al. A comparison between the boundaryelement method and the wave superposition approach for the analysis of the scatteredfields from rigid bodies and elastic shells. J. Acoust. Soc. Am.1991,89(5):2185-2196P
    [20] Burton. A. J, Miller. G. F. The application of integral equation methods to thenumerical solution of some exterior boundary value problems. Proceedings of theRoyal Society of London.1971(323):201-210P
    [21] Kirkup. S. M, Henwood. D. J. Methods for speeding up the boundary elementsolution of acoustic radiation problems. Journal of Vibration and Acoustics.Transactions of the ASME.1992,114(4):374-380P
    [22] Ingber. M. S, Hickox. C. E. A modified Burton-Miller algorithm for treating theuniqueness of representation problem for exterior acoustic radiation and scatteringproblems. Engineering Analysis Boundary Elements.1992,9(4):323-329P
    [23]李冰茹,王宣银,葛辉良.圆柱壳体近场辐射噪声预报与实验研究.浙江大学学报.2010,44(3):563-568页
    [24]李加庆,陈进,杨超,贾文强.波叠加声场重构精度的影响因素分析.物理学报.2008,57(7):4258-4264页
    [25]郭志勇,向阳,陈彪.波叠加法在结构辐射声功率计算中的应用.应用声学.2010,29(1):48-52页
    [26]郭志勇.安静型结构设计方法的研究.武汉理工大学硕士学位论文.2009
    [27]陈剑,高煜,许滨,程昊,毕传兴.用于高频声辐射计算的能量源波叠加方法.应用科学学报.2008,26(6):613-617页
    [28]陈剑,高煜,许滨,毕传兴,程昊.计算结构随机振动辐射声场的统计波叠加方法.振动工程学报.2009,22(3):246-249页
    [29]向阳,Gary. H. Koopmann.基于波叠加原理的辐射声场的计算研究.武汉理工大学学报.2005,29(1):1-4页
    [30]于飞,陈剑,李卫兵,陈心昭.一种稳健的全波数声场重构技术.中国科学.2004,34(9):1069-1080页
    [31]于飞,陈剑,李卫兵,陈心昭.腔体内三维声场重构与预测的波叠加方法.自然科学进展.2005,15(1):90-96页
    [32]于飞,陈心昭,李卫兵,陈剑.空间声场全息重建的波叠加方法研究.物理学报.2004,53(8):2607-2613页
    [33]王岩,王进军,潘蕾.基于波叠加和BAHIM的内部声场可视化实现.电声技术.2009,33(2):9-13页
    [34]程广利,张明敏.水下目标低频散射特性的波叠加解法.武汉理工大学学报.2010,34(2):250-253页
    [35]程广利,张明敏,刘成元. Helmholtz表面积分方程中奇异性解决方法研究.系统仿真学报.2009,21(5):1286-1288页
    [36]程广利,张明敏.基本解方法解水下刚性目标三维Helmholtz外散射问题.声学技术.2009,28(3):232-234页
    [37]程广利,刘成元,张明敏.混合法研究水下刚性目标全波数散射特性.武汉理工大学学报.2009,33(4):745-748页
    [38]高煜.基于波叠加方法的声辐射与声学灵敏度算法的若干关键问题研究.合肥工业大学博士学位论文.2009
    [39]高煜,程昊,陈剑.基于波叠加方法的半自由场声辐射灵敏度分析.农业机械学报.2008,39(7):173-177页
    [40]张永斌,毕传兴,陈剑,陈心昭.基于波叠加的结构—声学灵敏度分析的伴随变量方法.机械工程学报.2009,45(4):177-182页
    [41]张永斌,徐亮,毕传兴,陈心昭.基于声压—振速测量的单面声场分离技术.物理学报.2009,58(12):8364-8371页
    [42]贾文强,陈进,李加庆,杨超.波叠加联合波束形成的局部声场重建技术研究.振动与冲击.2010,29(1):125-129页
    [43]张海滨,蒋伟康,薛玮飞,廖长江.基于HELS法的多源相干声场重建研究.振动与冲击.2008,27(1):93-97页
    [44]毕传兴,陈剑,陈心昭.基于分布源边界点法的多源声场全息重建和预测理论研究.中国科学E辑技术科学.2004,34(1):111-120页
    [45]蒋伟,王冬海.基于声波叠加法的基阵声场计算和波束合成.计算机仿真.2007,24(8):286-290页
    [46]向宇,黄玉盈.基于复数矢径的波叠加法解声辐射问题.固体力学学报.2004,25(1):35-41页
    [47]徐亮,陈心昭,毕传兴,陈剑,王慧.近场声全息分辨率增强的正交球面波插值方法.浙江大学学报.2009,43(10):1808-1811页
    [48] Maynard. J. D, Williams. E. G, Y. Lee. Nearfiled acoustic holography I: Theory ofgeneralized holography and development to NAH. J. Acoust. Soc. Am.1985,78(4):1395-1413P
    [49] Veronesi. W. A, Maynard. J. D. Nearfiled acoustic holography (NAH) II Holographicreconstruction algorithms and computer implementation. J. Acoust. Soc. Am.1987,81(5):1307-1322P
    [50] Kim. Y. H, Kim. S. M. An analysis of the sound radiation characteristics of the KingSong-Dok bell using cylinder acoustic holography. J. Acoust. Soc. Korea.1997,16(4):94-100P
    [51] Ruhala. R. J, Burroughs. C. B. Application of nearfield acoustical holograpy to tire/pavement interaction noise emissions SAE972047. Proceeding of the1997SAENoise and Vibration Conference.1997:1397-1406P
    [52] Lee. M, Bolton. J. S, Mongeau. L. Application of cylindrical near-field acousticalholography to the visualization of aero-acoustic sources. J. Acoust. Soc. Am.2003,114(2):842-858P
    [53] Hald. J. Time domain acoustical holography and its application. Sound and vibration.2001(2):6-24P
    [54] Chao. Y. C. An implicit least-square method for the inverse problem of acousticradiation. J Acoust. Soc. Am.1987,81(5):1288-1292P
    [55] Wang. Z, Wu. S. F. Helmholtz Equation-Least Method for reconstructing theacoustic pressure field. J. Acoust. Soc. Am.1997,102(4):2020-2032P
    [56] Wu. S. F, Yu. J. Reconstructing interior acoustic pressure fields via HelmholtzEquation-least Square method. J. Acoust. Soc. Am.1998,104(4):2054-2060P
    [57] Wu. S. F, Rayess N, Zhao X. Visualization of acoustic radiation from a vibratingbowling ball. J Acoust. Soc. Am.2001,109(6):2771-2779P
    [58] Wu. S. F. Hybrid near-field acoustic holography. J. Acoust. Soc. Am.2004,115(1):207-217P
    [59] Rayess. N, Wu. S. F. Experimental validation of the HELS method for reconstructingacoustic radiation from a complex vibrating structure. J. Acoust. Soc. Am.2000,(107):2955-2964P
    [60]何元安.大型水下结构近场声全息的理论与实验研究.哈尔滨工程大学博士学位论文.2000
    [61]毕传兴.基于分布源边界点法的近场声全息理论与实验研究.合肥工业大学博士学位论文.2004
    [62]毕传兴,陈心昭,周蓉,陈剑.球面波源叠加法与球面波源边界点法实现声全息的比较研究.科学通报.2005,50(6):512-523页
    [63]毕传兴,陈剑,陈心昭.半自由声场的全息重建和预测技术研究.声学学报.2004,29(4):379-384页
    [64]毕传兴,陈心昭,陈剑.半自由声场的全息重建和预测实验研究.物理学报.2004,53(12):4268-4276页
    [65]毕传兴,陈心昭,陈剑,于飞,李卫兵.多源混合声场全息重建和预测方法与实验.中国科学G辑物理学力学天文学.2005,35(2):184-200页
    [66]毕传兴,陈心昭,陈剑,周蓉.基于等效源法的近场声全息技术.中国科学E辑工程科学材料科学.2005,35(5):535-548页
    [67]毕传兴.基于分布源边界点法的近场声全息理论与实验研究.合肥工业大学博士学位论文.2004
    [68]毕传兴,陈心昭,周蓉,陈剑.球面波源叠加法与球面波源边界点法实现声全息的比较研究.科学通报.2005,50(6):512-523页
    [69]毕传兴,陈心昭,徐亮,陈剑.基于等效源法的Patch近场声全息.中国科学E辑:技术科学.2007,37(9):1205-1213页
    [70]毕传兴,张永斌,徐亮,陈心昭.基于声压振速测量的平面近场声全息实验研究.物理学报.2010,59(2):1108-1115页
    [71]杨超,陈进,贾文强.基于统计最优和波叠加的联合局部近场声全息.声学学报.2009,34(3):249-255页
    [72]杨超,陈进,李加庆,薛玮飞.局部近场声全息的仿真与实验研究.振动与冲击.2007,(12):138-141页
    [73]于飞.基于波叠加方法的声全息技术与声学灵敏度分析.合肥工业大学博士学位论文.2005
    [74]张小正,毕传兴,徐亮,陈心昭.基于波叠加法的近场声全息空间分辨率增强方法.物理学报.2009,59(8):5564-5571页
    [75]张永斌,毕传兴,陈剑,陈心昭.基于等效源法的平面近场声全息及其实验研究.声学学报.2007,32(6):489-496页
    [76]李卫兵,陈剑,于飞,毕传兴,陈心昭.统计最优平面近场声全息原理与声场分离技术.物理学报.2005,54(3):1253-1260页
    [77]李卫兵.基于统计最优和波叠加方法的近场声全息技术研究.合肥工业大学博士学位论文.2006
    [78]徐亮,毕传兴,陈剑,陈心昭.基于波叠加法的patch近场声全息及其实验研究.物理学报.2007,56(5):2776-2783页
    [79]徐亮,毕传兴,陈剑,陈心昭.基于波数域外推方法的近场声全息.机械工程学报.2007,43(9):84-90页
    [80]张海滨,蒋伟康,万泉.适用于循环平稳声场的基于波叠加法的近场声全息技术.物理学报.2008,57(1):313-321页
    [81]张海滨.循环平稳声场的非共形面近场声全息理论与实验研究.上海交通大学博士学位论文.2008
    [82] W. F. King, I. I. I, D. Bechert. On the sources of wayside noise generated byhigh-speed trains. Journal of Sound and Vibration.1979,66(3):311-332P
    [83] B. Barsikow. Experiences with various configurations of microph one arrays used tolocate sound sources on railway trains operated by the DB AG. Journal of Sound andVibration.1996,193(1):172-182P
    [84] H. Kook, G. B. Moeds, P. Davies, J. S. Bolton. An efficient procedure for visualizingthe sound field radiated by vehicles during standardized passbv tests. Journal ofSound and Vibratin.2000,233(1):137-156P
    [85] Christensen. J. J, Hald. J. Beamforming B&K Technical Review.2004(1):1-48P
    [86] Hald. J. Near-field Acoustical Holography with arrays smaller than the sound source.In proceedings of ICA.2001
    [87] Hald. J. Combined NAH and beamforming using the same array. B&K TechnicalReview.2005(1):11-39P
    [88]杨超.基于局部近场声全息的机械噪声源特征提取技术.上海交通大学博士学位论文.2009
    [89]贾文强,陈进,杨超,李加庆.基于局部近场声全息的噪声源辨识研究.中国机械工程.2009,20(21):2609-2612P
    [90]薛玮飞,陈进,杨超,李加庆,雷宣扬.混合波叠加法识别噪声源的理论与试验研究.振动、测试与诊断.2007,27(1):5-9页
    [91]薛玮飞,陈进,李加庆,张桂才,雷宣扬.机械噪声故障特征提取的波叠加法.机械科学与技术.2006,25(9):1105-1108页
    [92]薛玮飞,陈进,李加庆.机械噪声源识别的混合波叠加法.中国机械工程.2006,17(23):2503-2507页
    [93]薛玮飞,陈进,张桂才,雷宣扬,李加庆.基于混合波叠加法的声源识别理论与试验研究.振动与冲击.2006,25(6):79-84页
    [94]薛玮飞,陈进,李加庆.噪声源识别的混合波叠加法及其数值仿真研究.声学技术.2007,26(3):455-459页
    [95]李加庆,陈进,张桂才,陈少林,刘先锋.基于波叠加的噪声源识别方法.上海交通大学学报.2006,40(1):124-128页
    [96]李加庆,陈进,张桂才,陈少林,雷宣扬.自由场波叠加噪声源识别的仿真研究.振动与冲击.2006,25(4):58-62页
    [97]刘先锋,陈进,张桂才,雷宣扬,李加庆,陈少林.基于波叠加的噪声源识别实验研究.振动与冲击.2007,26(2):72-77页
    [98]肖庭延,于慎根,王彦飞等.反问题的数值解法,科学出版社,2003:8-9页
    [99] L M Brekhovskikh.分层介质中的波.科学出版社.1985:10-16页
    [100]何祚镛,赵玉芳.声学理论基础.国防工业出版社.1981:96-102页
    [101]王曼,何祚镛.水下复合层吸声结构中反向声能与振动能量传输的研究.应用声学.1995,16(3):14-19页
    [102]何祚镛.结构振动与声辐射.哈尔滨工程大学出版社.2001:105-110页
    [103]陶猛,卓琳凯.基于ANSYS的吸声覆盖层声学性能计算与分析.振动与冲击.2011,30(1):87-90页
    [104]杜灵根.水下吸声材料数值仿真与优化设计.哈尔滨工程大学硕士学位论文.2010
    [105]何祚镛,王曼.水下非均匀复合层结构吸声的理论研究.应用声学.1996,15(5):12-19页
    [106]卢涛.传递函数法研究消声瓦的吸声特性.大连理工大学硕士学位论文.2010
    [107]栾桂东,张金铎,王仁乾.压电换能器和换能器阵.北京大学出版社.2005:114-118页
    [108] J. M. Zhang, W. Chang, V. K. Varadan, V. V. Varadan. Passive underwater acousticdamping using shunted piezoelectric coatings. Smart Materials and Structures.2001(10):414-420P
    [109] L. D. Lafleur, F. D. Shields, J. E. Hendrix. Acoustically active surfaces usingpiezorubber. J Acoust Soc Am.1991,90(3):1230-1237P
    [110]常道庆.低频智能吸声结构的研究.中国科学院研究生院博士学位论文.2008
    [111] D. Razansky, P. D. Einziger, D. R. Adam. Effectiveness of acoustic power dissipationin lossy layers. J Acoust Soc Am.2004,116(1):84-89P
    [112] S. K. Yang, S. Y. Hisa. Chiral composites as underwater acoustic attenuators. IEEEJournal of Oceanic Engineering.2000,25(1):139-145P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700