用户名: 密码: 验证码:
分子尺度开关与整流器件的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用密度泛函理论和非平衡格林函数相结合的第一性原理方法,较为系统地研究了分子尺度体系如石墨烯纳米带、硼氮纳米带、有机小分子、碳纳米管的电子结构和电子输运性质。我们重点探讨原子掺杂、化学修饰、吸附、机械扭转以及磁序列排布等方面对分子器件电子输运性质的影响,并在器件中观察到分子整流行为以及基于自旋过滤效应、磁致电阻效应和负微分电阻效应的分子开关行为。主要内容如下:
     研究了氮掺杂的扶手椅型石墨烯纳米带器件的电子输运性质。在这个器件中,氮原子被用来替代其中一个电极的中心碳原子或者边缘碳原子。计算结果表明,器件的电子输运性质强烈地依赖于石墨烯纳米带的宽度和氮杂质的位置,我们在器件中观察到了明显的整流效应,并且发现整流效应可以通过石墨烯纳米带的宽度和氮杂质的位置来进行调控。进一步的研究发现,左右电极能带之间狭窄的匹配范围以及相应的分子轨道与电极杂质态之间弱的耦合是器件中出现明显整流现象的根本原因。
     研究了边缘氢化的锯齿形石墨烯纳米带异质结的自旋输运性质。计算结果表明,完美的自旋过滤效应和整流比超过10~5的整流效应可以通过锯齿形石墨烯纳米带的边缘氢化来实现。此外,研究发现自旋过滤效应和整流效应可以通过异质结的宽度来进行调控。进一步的研究表明,这些效应的出现与锯齿形石墨烯纳米带的π和π子带所固有的输运选择规则有关。
     研究了分子间相互作用对双层石墨烯纳米带器件电子输运行为的影响。研究结果表明,通过调节双层石墨烯纳米带之间的π π相互作用,我们可以观察到分子开关和分子整流现象。经分析,我们认为这些输运现象是由分子轨道与电极耦合强度的改变所导致的。
     研究了氟化硼氮纳米带体系的电子结构以及相应的自旋输运性质。计算结果表明,氟原子在纳米带上的吸附位置或者氟原子浓度的改变能诱导体系发生半导体到半金属性质的跃变。此外,利用第一性原理量子输运计算方法,我们在氟化的硼氮纳米带器件中观察到了负微分电阻和类似于滑动变阻器的输运行为。这些结果表明氟化的硼氮纳米带器件能够被设计为多功能的分子自旋电子器件,这对进一步提升原子级电路的集成度有非常重要的意义。
     研究了一种由锰卟啉、亚苯基和次乙炔基组成的自旋电子器件的输运性质。我们在这个器件中观察到了有趣的自旋过滤效应和磁致电阻效应。尤其值得注意的是,通过改变锰卟啉和苯环π输运通道之间的交叠程度,自旋过滤效率和磁致电阻率能被有效地增强。此外,基于负微分电阻的分子开关行为也被发现。进一步的分析表明,自旋向上和自旋向下电子态的分布差异导致了自旋过滤效应的发生,而器件中各部分电子态的不匹配是导致磁致电阻效应和负微分电阻效应出现的根本原因。
     此外,我们研究了一个Fe-Porphyrin-Like碳纳米管自旋电子器件的自旋输运性质。结果表明,器件的磁致电阻率与其磁序列排布有关。在外部磁场的作用下,通过改变器件的磁序列分布,器件的磁致电阻率能从大约19%增长到大约1020%。我们认为磁序列分布是实现高性能自旋电子器件的一个关键因素。
By applying the density-functional theory and the nonequilibrium Green’sfunctions, we systematically study the electronic structures and electron trasnsportproperties of the molecular systems, inculuding graphene nanoribbons, boron nitridenanoribbons, organic single molecule and carbon nanotube. We mainly discuss theeffects of doping, chemical functionalization, adsorption, mechanical torsion andmagnetic ordering on the electron trasnsport properties of the molucualar devices. Themolecular rectifying behavior and switching behaviors based on spin-filtering effect,magnetoresistance effect and negative differential resistance effect are observed.
     We investigate the electronic transport properties of nitrogen-doped armchairgraphene nanoribbons devices. For the electronic devices, an N dopant is consideredto substitute the center or edge carbon atom of one electrode. The results show thatthe electronic transport properties are strongly dependent on the width of the ribbonand the position of the N dopant. Obvious rectifying effect can be observed and can bemodulated by changing the width of the ribbon or the position of the N dopant.Further studies show that the corresponding narrow matching region between theenergy bands of both electrodes and very weak coupling between the correspondingmolecular orbital and the doping state of the electrode lead to obvious rectifyingeffect of the device.
     We investigate the spin transport properties of edge hydrogenated zigzag edgedgraphene nanoribbon heterojunctions. Results show that a perfect spin-filtering effectand a rectifying behavior with a ratio larger than105can be realized bydihydrogenation, which can also be modulated by changing the widths of the twocomponent ribbons. Further analysis shows that these interesting effects are attributedto the intrinsic transmission selection rule of π and π subbands in zigzag edgedgraphene nanoribbon.
     We investigate the effect of the weak intermolecular interaction on electronictransport properties in a bilayer graphene nanoribbon device. The results show thatswitching and rectifying phenomena can be observed by adjusting the π πinteraction between two graphene nanoribbon molecules. It is suggested that thechange of the coupling strength between molecular orbitals and electrodes isresponsible for these transport phenomena.
     We investigate the electronic structures and transport properties of fluorinated zigzag-edged boron nitride nanoribbons. The results show that the transition betweenhalf-metal and semiconductor in zigzag-edged boron nitride nanoribbons can berealized by fluorination at different sites or by the change of the fluorination level.Moreover, the negative differential resistance and varistortype behaviors can also beobserved in such fluorinated zigzag-edged boron nitride nanoribbon devices. Theseresults indicate that these two systems can be designed as multifunctional molecular dspintronic evices, which is important to further improve the level of integration offuture atomic-scale circuits.
     We investigate the transport properties of manganese porphyrin-based spintronicdevices constructed by two manganese porphyrin molecules connected withp-phenylene-ethynylene group. The interesting spin filtering and magnetoresistanceeffects can be observed in the device. Especially, after the overlap of π channelsbetween manganese porphyrin and phenyl ring parts are broken, the spin filteringeffciency and magnetoresistance ratio of the device can be effectively increased.Moreover, electrically induced switching behavior based on negative differentialresistance is also observed in our model. The distribution difference of electronicstates for spin-up and spin-down states leads to the spin-filtering effect in the device,while electronic states mismatching in the various parts of the device is responsiblefor magnetoresistance and negative differential resistance effects.
     Moreover, We investigate the spin-dependent transport properties of aFe-porphyrin-like carbon nanotube spintronic device. The results show thatmagnetoresistance ratio is strongly dependent on the magnetic ordering of theFe-porphyrin-like carbon nanotube. Under the application of the external magneticfield, the magnetoresistance ratio of the device can be increased from about19%toabout1020%by tuning magnetic ordering of the Fe-porphyrin-like carbon. Ourresults confirm that magnetic ordering is a key factor for obtaining ahigh-performance spintronic device.
引文
[1] Moore G E. Cramming More Components onto Integrated Circuits. ElectronicsMagazine,1965,38(8):114–117
    [2] Feynman R P. There is plenty of room at the bottom. Engineering andScience,1960,23(5):22–36
    [3] Gao D Q, Scholz F, Nothofer H G, et al. Fabrication of asymmetric molecularjunctions by the oriented assembly of dithiocarbamate rectifiers. Journal of TheAmerican Chemical Society,2011,133(15):5921-5930
    [4] Park H, Park J, Lim A K, et al. Nanomechanical oscillations in a single-C60transistor. Nature,2000,407(6800):57-60
    [5] Franklin A D, Luisier M, Han S J, et al. Sub-10nm Carbon Nanotube Transistor.Nano Letters,2012,12(2):758–762
    [6] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect inatomically thin carbon films. Science,2004,306(5696):666-669
    [7] Sutter P, Cortes R, Lahiri J, et al. Interface formation in monolayergraphene-boron nitride heterostructures. Nano Letters,2012,12(9):4869-4874
    [8] Mann B, Kuhn H. Tunneling through Fatty Acid Salt Monolayers. Journal ofApplied Physics,1971,42(11):4398–4405
    [9] Gimzewski J K, Stoll E P, Schlittler R R. Scanning tunnelling microscopy onindividal molecules of copper phthalocyanine adsorbed on polycrystalline silversurfaces. Surface Science,1987,181(1-2):267–277
    [10] Xu B Q, Tao N J. Measurement of single-molecule resistance by repeatedformation of molecular junctions. Science,2003,301(5637):1221-1223
    [11] Tour J M. Molecular electronics: synthesis and testing of components. AccountsChemical Research,2000,33(11):791-804
    [12]刘欢,翟锦,江雷.纳米材料的自组装研究进展.无机化学学报,2006,22(4):585-597
    [13] Reed M A, Zhou C, Muller C J, et a1. Conductance of a Molecular Junction.Science,1997,278(5336):252-254
    [14] Fabrizio E D, Grella L, Gentili M, et a1.Fabrication of5nm resolutionelectrodes for molecular devices by means of electron beam lithography.Japanese Journal of Applied Physics,1997,36(2): L70-L72
    [15] Reed M A. The electrical measurement of molecular junction. Annals of theNew York Academy of Sciences,1998,852:133–144
    [16] Li C Z,He H X,Tao N J. Quantized tunneling current in the metallic nanogapsformed by electrodeposition and etching. Applied Physics Letters,2000,77(24):3995
    [17] Chen J, Reed M A, Rawlett A M, et al. Large On-Off ratios and negativedifferenfftial resistance in a molecular electronic device. Science,1999,286:l550-155l
    [18] Song H, Kim Y, Jang Y H, et al.Observation of molecular orbital gating. Nature,2009,462:1039-1043
    [19] Park H K, Lira A K L, Paul Alivisatos A, et a1. Fabrication of metallicelectrodes with nanometer separation by electromigration. Applied PhysicsLetters,1999,75(2):301
    [20] Mujica V. Kemp M. Ratner M A. Electron conduction in molecular wires. II.Application to scanning tunneling microscopy. The Journal of chemical physics,1994,101:6856-6864
    [21] Tian W D, Datta S, Hong S H, et a1. Conductance spectra of molecular wires.The Journal of chemical physics,1998,109(7):2874--2882
    [22] Lang N D. Resistance of atomic wires. Physical Review B,1995,52(7):5335-5342
    [23] Wang C K, Fu Y, Luo Y. A quantum chemistry approach for current-voltagecharacterization of molecular junctions. Physical Chemistry Chemical Physics,2001,3(22):5017–5023
    [24] Luo Y, Wang C K, Fu Y. Effects of chemical and physical modifications on theelectronic transport properties of molecular junctions. The Journal of chemicalphysics,2002,117(22):10283–10290
    [25] Xue Y Q,Dutta S,Ratner M A. Charge transfer and "band lineup" in molecularelectronic devices: A chemical and numerical interpretation. The Journal ofchemical physics,2001,115(9):4292-4299
    [26] Havu P, Havu V, Puska M J, et al. Nonequilibrium electron transport intwo-dimensional nanostructures modeled using Green’s functions and thefinite-element method. Physical Review B,2004,69(11):115325
    [27] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties ofmolecular electronic devices. Physical Review B,2001,63(24):245407
    [28] Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method fornonequilibrium electron transport. Physical Review B,2002,65(16):165401
    [29] Stokbro K. First-principles modeling of molecular single-electron transistors.Journal of Physical Chemistry C,2010,114(48):20461-20465
    [30] Smirnov S, Grifoni M. Kondo effect in interacting nanoscopic systems: Keldyshfield integral theory. Physical Review B,2011,84(23):235314
    [31] Cho W J, Cho Y, Min S K, et al. Chromium porphyrin arrays as spintronicdevices. Journal of the American Chemical Society,2011,133(24):9364-9369
    [32] Kim W Y, Kim K S. Prediction of very large values of magnetoresistance in agraphene nanoribbon device. Nature Nanotechnology,2008,3(7):408-412
    [33] Hao H, Zheng X H, Song L L, et al. Electrostatic spin crossover in a molecularjunction of a single-molecule magnet Fe2. Physical Review Letters,2012,108(1):017202
    [34] Esaki L. New Phenomenon in Narrow Germanium p-n Junctions. PhysicalReview,1957,109(2):603-604
    [35] Rawlett A M, Hopson T J, Nagahara L A, et al.Electrical measurements of adithiolated electronic molecule via conducting atomic force microscopy.Applied Physics Letters,2002,81(16):3043-3045
    [36] Long M Q, Chen K Q, Wang L L, et al. Negative differential resistance inducedby intermolecular interaction in a bimolecular device. Applied Physics Letters,2007,91(23):233512
    [37] Fan Z Q, Chen K Q, Wan Q, et al. Electronic transport properties in abimolecular device modulated with different side groups. Journal of AppliedPhysics,2010,107(11):113713
    [38] Fan Z Q, Chen K Q. Negative differential resistance and rectifying behaviors inphenalenyl molecular device with different contact geometries. Applied PhysicsLetters,2010,96(5):053509
    [39] Fan Z Q, Chen K Q, Wan Q, et al. Theoretical investigation of the negativedifferential resistance in squashed C60molecular device. Applied PhysicsLetters,2008,92(26):263304
    [40] Long M Q, Chen K Q, Wang L L, et al. Negative differential resistancebehaviors in porphyrin molecular junctions modulated with side groups.Applied Physics Letters,2008,92(24):243303
    [41] Qiu M, Zhang Z H, Deng X Q, et al. End-group effects on negative differentialresistance and rectifying performance of a polyyne-based molecular wire.Applied Physics Letters,2010,97(24):242109
    [42] Li X F, Chen K Q, Wang L L, et al. Effect of length and size of heterojunctionon the transport properties of carbon-nanotube devices. Applied Physics Letters,2007,91(13):133511
    [43] Ren Y, Chen K Q. Effects of symmetry and Stone-Wales defect onspin-dependent electronic transport in zigzag graphene nanoribbons. Journal ofApplied Physics,2010,107(4):044514
    [44] He J, Chen K Q, Fan Z Q, et al. Transition from insulator to metal induced byhybridized connection of graphene and boron nitride nanoribbons. AppliedPhysics Letters,2010,97(19):193305
    [45] Seminario J M, Zacarias A G, Tour J M. Theoretical study of a molecularresonant tunneling diode. Journal of The American Chemical Society,2000,122(13):3015-3020
    [46] Di Ventra M, Kim S G, Pantelides S T, et al. Temperature effects on thetransport properties of molecules. Physical Review Letters,200l,86(2):288-291
    [47] Geng H, Hu Y B, Shuai Z G, et al. Molecular design of negative differentialresistance device through intermolecular interaction. Journal of PhysicalChemistry C,2007,111(51):19098-19102
    [48] Cornil J, Karzazi Y, Bredas J L. Negative differential resistance in phenyleneethynylene oligomers. Journal of The American Chemical Society,2002,124(14):3516-3517
    [49] He J, Chen K Q, Sun C Q. The weak pi-pi interaction originated resonanttunneling and fast switching in the carbon based electronic devices. AIPAdvances,2012,2(1):012137
    [50] Aviram A, Ratner M A. Molecular rectifiers. Chemical Physics Letters,1974,29(2):277-283
    [51]张小姣.低维碳基分子器件的电荷输运机理研究及计算设计:[湖南大学博士学位论文].长沙:湖南大学,2012,1-104
    [52] Li Z Y, Kosov D S. Orbital interaction mechanisms of conductance enhancementand rectification by dithiocarboxylate anchoring group. Journal of PhysicalChemistry B,2006,110(39):19116-19120
    [53] Deng X Q, Zhou J C, Zhang Z H, et al. Electrode metal dependence of therectifying performance for molecular devices: A density functional study.Applied Physics Letters,2009,95(10):103113
    [54] Troisi A, Ratner M A. Conformational molecular rectifiers. Nano letters,2004,4(4):591-595
    [55] Pan J B, Zhang Z H, Deng X Q, et al. Rectifying performance of D-pi-Amolecules based on cyanovinyl aniline derivatives. Applied Physical Letters,2010,97(20):203104
    [56] Taylor J, Brandbyge M, Stokbro K. Theory of rectification in tour wires: Therole of electrode coupling. Physical Review Letters,2002,89(13):138301
    [57] Fischer C M, Burghard M, Roth S. Molecular rectification in organic quantumwells. Synthetic Metals,1995,71(1-3):1975-1976
    [58] Zhao J, Zeng C G, Cheng X, et al. Single C59N molecule as a molecular rectifier.Physical Review Letters,2005,95(4):045502
    [59] Diez-Perez I, Hihath J, Lee Y, et al. Rectification and stability of a singlemolecular diode with controlled orientation.Nature Chemistry,2009,1(8):635-641
    [60] Moodera J S, Hao X, Gibson G A, et al.Electron-spin polarization in tunneljunctions in zero applied field with ferromagnetic EuS barriers. PhysicalReview Letters,1988,61(5):637-640
    [61] Pilevarshahri R, Rungger I, Archer T, et al. Spin transport in higher n-acenemolecules. Physical Review B,2011,84(17):174437
    [62] Zhou M, Cai Y Q, Zeng M G, et al. Mn-doped thiolated Au25nanoclusters:Atomic configuration, magnetic properties, and a possible high-performancespin filter. Applied Physics Letters,2011,98(14):143103
    [63] Hao H, Zheng X H, Dai Z X, et al.Spin-filtering transport and switching effectof MnCu single-molecule magnet. Applied Physics Letters,2010,96(19):192112
    [64] Thomson W. On the electro-dynamic qualities of metals: effects ofmagnetization on the electric conductivity of nickel and of iron. Proceedings ofthe Royal Society of London,1856–1857,8:546–550
    [65] Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of(001)Fe/(001)Cr magnetic superlattices. Physical Review Letters,1988,61(21):2472-2475
    [66] Zhu L, Yao K L, Liu Z L. Molecular spin valve and spin filter composed ofsingle-molecule magnets. Applied Physics Letters,2010,96(8):082115
    [67] Schmaus S, Bagrets Alexei, Nahas Y, et al.Giant magnetoresistance through asingle molecule. Nature Nanotechnology,2011,6(3):185-189
    [68] Urdampilleta M, Klyatskaya S, Cleuziou J P, et al. Supramolecular spin valves.Nature Materials,2011,10(7):502-506
    [69] Long M Q, Wang L L, Chen K Q, et al. Coupling effect on the electronictransport through dimolecular junctions. Physics Letters A,2007,365(5-6):489-494
    [70] Sen S, Chakrabarti S. Ferromagnetically coupled cobalt-benzene-cobalt: Thesmallest molecular spin filter with unprecedented spin injection coefficient.Journal of the American Chemical Society,2010,132(43):15334-15339
    [71] Di Ventra M, Pantelides S T, Lang N D. The benzene molecule as a molecularresonant-tunneling transistor. Applied Physics Letters,2000,76(23):3448-3450
    [72] Stokbro K, Taylor J, Brandbyge M, et al. Theoretical study of the nonlinearconductance of Di-thiol benzene coupled to Au(111) surfaces via thiol andthiolate bonds. Computational Materials Science,2003,27(1-2):151-160
    [73] Joachim C, Gimzewski J K, Schlittler R R, et al. Electronic transparence of asingle C60molecule. Physical Review Letters,1995,74(11):2102-2105
    [74] Zhang X J, Long M Q, Chen K Q, et al. Electronic transport properties in dopedC60molecular devices. Applied Physical Letters,2009,94(7):073503
    [75] Fan Z Q, Chen K Q. Controllable rectifying performance in a C60moleculardevice with asymmetric electrodes. Journal of Applied Physics,2011,109(12):124505
    [76] Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58
    [77]曹伟,宋雪梅,王波等.碳纳米管研究进展.材料导报,2007,21(VIII).77-82
    [78] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties ofgraphene. Reviews of Modern Physics,2009,81(1):109-162
    [79] Son Y W. Cohen Ma L, Louie S G. Energy gaps in graphene nanoribbons.Physical Review Letters,2006,97(21):216803
    [80] Li Z Y, Qian H Y, Wu J, et al. Role of symmetry in the transport properties ofgraphene nanoribbons under bias. Physical Review Letters,2008,100(20):206802
    [81] Wang X R, Ouyang Y J, Li X L, et al. Room-temperature all-semiconductingsub-10-nm graphene nanoribbon field-effect transistors. Physical ReviewLetters,2008,100(20):206803
    [82] Born M, Oppenheimer J R. Zur quantentheorie der molekeln. Annalen derPhysik,1927,84(20):457-484
    [83] Born M, Dynamical H K. Theory of crystal lattices. Oxford: Oxford UniversityPress,1954
    [84]徐光宪,黎乐民,王德民.量子化学——基本原理和从头计算法(第二版中册).科学出版社,2009,1-469
    [85] Hatree D R. The wave mechanics of an atom with a non-Coulomb central field.Proceedings of the Cambridge Philosophical Society,1928,24:111–132
    [86] Fock V. N herungsmethode zur losung des quanten-mechanischenMehrk rperprobleme. Zeitschrift für Physik,1930,61:126–148
    [87] Thmos H. The Calculation of Atomic Fields. Proceedings of the CambridgePhilosophical Society,1927,23:542–548
    [88] Fermi E. Un metodo statistico per la determinazione di alcune priorietadell'atome. Rend. Accad. Naz. Lincei,1927,6:602–607
    [89] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Physical Review,1964,136(3B):B864-B871
    [90]杨可松.掺杂二氧化钛的稳定性,电子结构及相关性质的第一性原理研究:[山东大学博士学位论文].山东:山东大学,2010,1-136
    [91] Kohn W, Sham L J. Self-Consistent equations including exchange andcorrelation effects. Physical Review,1965,140(4A):A1133-A1138
    [92] Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators:Hubbard U instead of Stoner I. Physical Review B,1991,44(3):943-954
    [93]李小飞.基于碳基分子体系电荷输运的量子调控机理与应用研究:[湖南大学博士学位论文].湖南:湖南大学,2012,1-134
    [94] Massimiliano Di ventra. Electrical transport in nanoscale systems. Landon:Cambridge,2008,209–248
    [95] Pan J B, Zhang Z H, Ding K H, et al. Current rectification induced byasymmetrical electrode materials in a molecular device. Applied PhysicalLetters,2011,98(9):092102
    [96] Shuan P, Qiang F, Tian H, et al. Design and control of electron transportproperties of single molecules. Proceedings of the National Academy ofSciences of the United States of America,2009,106(36):15259-15263
    [97] Areshkin D A, White, C T. Building blocks for integrated graphene circuits.Nano Letters,2007,7(11):3253-3259
    [98] Long, M Q, Tang L. Wang D, et al. Theoretical Predictions of Size-DependentCarrier Mobility and Polarity in Graphene. Journal of the American ChemicalSociety,2009,131(49):17728-17729
    [99] Ren H, Li Q X, Luo Y, et al. Graphene nanoribbon as a negative differentialresistance device. Applied Physics Letters,2009,94(17):173110
    [100] Zheng X H, Wang R N, Song L L, et al. Impurity induced spin filtering ingraphene nanoribbons. Applied Physics Letters,2009,95(12):123109
    [101] Kang J, Wu F M, Li J B, Doping induced spin filtering effect in zigzag graphenenanoribbons with asymmetric edge hydrogenation. Applied Physics Letters,2011,98(8):083109
    [102] Munoz-Rojas F, Fernández-Rossier J, Palacios J J. Giant magnetoresistance inultrasmall graphene based devices. Physical Review Letters,2009,102(13):136810
    [103] Qin R, Lu J, Lai L. et al. Room-temperature giant magnetoresistance over onebillion percent in a bare graphene nanoribbon device. Physical Review B,2010,81(23):233403
    [104] Wang Z F, Li Q X, Shi Q W, et al. Ballistic rectification in a Z-shaped graphenenanoribbon junction. Applied Physics Letters,2008,92(13):133119
    [105] Kargar A, Lee C. Graphene nanoribbon schottky diodes using asymmetriccontacts. In:9th IEEE Conference on Nanotechnology. Genoa,2009,243-245
    [106] Zheng X H, Wang X L, Abtew T A, et al. Building half-Metallicity in graphenenanoribbons by direct control over edge states occupation. Journal of PhysicalChemistry C,2010,114(9):4190-4193
    [107] Yu S S, Zheng W T, Jiang Q. Electronic properties of nitrogen-/boron-dopedgraphene nanoribbons with armchair edges. IEEE Transactions onNanotechnology,2010,9(1):78-81
    [108] Kan E J, Li Z Y, Yang J L, et al. Half-metallicity in edge-modified zigzaggraphene nanoribbons. Journal of the American Chemical Society,2008,130(13):4224-4225
    [109] Wu M H, Wu X J, Gao Y, et al. Materials design of half-metallic graphene andgraphene nanoribbons. Applied Physics Letters,2009,94(22):223111
    [110] Wu M H, Wu X J, Zeng X C. Exploration of half metallicity in edge-modifiedgraphene nanoribbons. Journal of Physical Chemistry C,2010,114(9):3937-3944
    [111] Li J, Li Z Y, Zhou G, et al. Spontaneous edge-defect formation anddefect-induced conductance suppression in graphene nanoribbons. PhysicalReview B,2010,82(11):115410
    [112] Akdim B, Pachtert R. Switching behavior of carbon chains bridging graphenenanoribbons: effects of uniaxial strain. ACS Nano,2011,5(3):1769-1774
    [113] Erdogan E, Popov I, Rocha C G, et al. Engineering carbon chains frommechanically stretched graphene-based materials. Physical Review B,2011,83(4):041401
    [114] Choi S M, Jhi S H. Self-Assembled metal atom chains on graphene nanoribbons.Physical Review Letters,2008,101(26):266105
    [115] Kan E J, Xiang H J, Wu F, et al. Ferrimagnetism in zigzag graphenenanoribbons induced by main-group adatoms. Applied Physics Letters,2010,96(10):102503
    [116] Brito W H, Miwa R H. Adsorption and diffusion of gold adatoms on graphenenanoribbons: An ab initio study. Physical Review B,2010,82(4):045417
    [117] Zhang Z Q, Liu B, Hwang K C, et al. Surface-adsorption-induced bendingbehaviors of graphene nanoribbons. Applied Physics Letters,2011,98(12):121909
    [118] Rigo V A, Miwa R H, da Silva Antonio J R. et al. Mn dimers on graphenenanoribbons: An ab initio study. Journal of Applied Physics,2011,109(5):053715
    [119] Wei D C, Liu Y Q, Wang Y, et al. Synthesis of N-doped graphene by chemicalvapor deposition and its electrical properties. Nano Letters,2009,9(5):1752-1758
    [120] Guo B D, Liu Q, Chen E D, et al. Controllable N-doping of graphene. NanoLetters,2010,10(12):4975-4980
    [121] Büttiker M, Imry Y, Landauer R, et al. Generalized many-channel conductanceformula with application to small rings. Physical Review B,1985,31(10):6207-6215
    [122] Li X F, Wang L L, Chen K Q, et al. Design of graphene-nanoribbonheterojunctions from first principles. Journal of Physical Chemistry C,2011,115(25):12616-12624
    [123] Zeng M G, Shen L, Zhou M, et al. Graphene-based bipolar spin diode and spintransistor: Rectification and amplification of spin-polarized current. PhysicalReview B,2011,83(11):115427
    [124] Ozaki T, Nishio K, Weng H, et al. Dual spin filter effect in a zigzag graphenenanoribbon. Physical Review B,2010,81(7):075422
    [125] Zeng M G, Shen L, Yang M, et al. Charge and spin transport in graphene-basedheterostructure. Applied Physics Letters,2011,98(5):053101
    [126] Zhang X J, Chen K Q, Tang L M, et al. Electronic transport properties onV-shaped-notched zigzag graphene nanoribbons junctions. Physics Letters A,2011,375(37):3319-3324
    [127] Zeng M G, Shen L, Cai Y Q, et al. Perfect spin-filter and spin-valve in carbonatomic chains. Applied Physics Letters,2010,96(4):042104
    [128] Zhang Y T, Jiang H, Sun Q F, et al. Spin polarization and giantmagnetoresistance effect induced by magnetization in zigzag graphenenanoribbons. Physical Review B,2010,81(16):165404
    [129] Wang Z F, Liu F. Giant magnetoresistance in zigzag graphene nanoribbon.Applied Physics Letters,2011,99(4):042110
    [130] Lee G, Cho K. Electronic structures of zigzag graphene nanoribbons with edgehydrogenation and oxidation. Physical Review B,2009,79(16):165440
    [131] Liu Y L, Wu X J, Zhao Y, et al. Half-Metallicity in hybrid graphene/boronnitride nanoribbons with dihydrogenated edges. Journal of Physical ChemistryC,2011,115(19):9442-9450
    [132] Xu B, Yin J, Xia Y D, et al. Electronic and magnetic properties of zigzaggraphene nanoribbon with one edge saturated. Applied Physics Letters,2010,96(16):163102
    [133] Lu Y H, Wu R Q, Shen L, et al. Effects of edge passivation by hydrogen onelectronic structure of armchair graphene nanoribbon and band gap engineering.Applied Physics Letters,2009,94(12):122111
    [134] Wassmann T, Seitsonen A P, Saitta A M, et al. Structure, stability, edge states,and aromaticity of graphene ribbons. Physical Review Letters,2008,101(9):096402
    [135] Wu S, Gonzalez, Maria T, Huber R, et al. Molecular junctions based on aromaticcoupling. Nature Nanotechnology,2008,3(9):569-574
    [136] Deng X Q, Zhang Z H, Zhou J C, et al. Electronic transport of the silane chaindoped with phosphorus and boron atoms. Applied Physics Letters,2010,97(14):143103
    [137] Yan Q M, Zhou G, Hao S G, et al. Mechanism of nanoelectronic switch based ontelescoping carbon nanotubes. Applied Physics Letters,2006,88(17):173107
    [138] Mori T, Kikuzawa Y, Takeuchi H. N-type field-effect transistor based on afluorinated-graphene. Organic Electronics,2008,9(3):328-332
    [139] Yan Q M, Huang B, Yu J, et al. Intrinsic current-voltage characteristics ofgraphene nanoribbon transistors and effect of edge doping. Nano Letters,2007,7(6):1469-1473
    [140] Huang B, Yan Q M, Zhou G, et al. Making a field effect transistor on a singlegraphene nanoribbon by selective doping. Applied Physics Letters,2007,91(25):253122
    [141] Fang H, Wang R Z, Chen S Y, et al. Strain-induced negative differentialresistance in armchair-edge graphene nanoribbons. Applied Physics Letters,2011,98(8):082108
    [142] Wang Z F, Li Q X, Shi Q W, et al. Chiral selective tunneling induced negativedifferential resistance in zigzag graphene nanoribbon: A theoretical study.Applied Physics Letters,2008,92(13):133114
    [143] Oeiras R Y, Araujo-Moreira F M, da Silva E Z. Defect-mediated half-metalbehavior in zigzag graphene nanoribbons. Physical Review B,2009,80(7):073405
    [144] Saffarzadeh A, Farghadan R. A spin-filter device based on armchair graphenenanoribbons. Applied Physics Letters,2011,98(2):023106
    [145] Sahu B, Min H, MacDonald A H. Energy gaps, magnetism, and electric-fieldeffects in bilayer graphene nanoribbons. Physical Review B,2008,78(4):045404
    [146] Lam K T, Liang G. An ab initio study on energy gap of bilayer graphenenanoribbons with armchair edges. Applied Physics Letters,2008,92(22):223106
    [147] Geng H, Yin S W, Chen K Q, et al. Effects of intermolecular interaction andmolecule-electrode couplings on molecular electronic conductance. Journal ofPhysical Chemistry B,2005,109(25):12304-12308
    [148] Wang L H, Guo Y, Zhu C. Effect of intermolecular distance and contacthollow-type on the transport properties of parallel atomic wires. Physics LettersA,2010,374(5):778-781
    [149] Bredas J L, Calbert J P, da Silva D A, et al. Organic semiconductors: Atheoretical characterization of the basic parameters governing charge transport.Proceedings of the National Academy of Sciences of the United States ofAmerica,2002,99(9):5804-5809
    [150] Lin L L, Leng J C, Song X N, et al. Effect of aromatic coupling on electronictransport in bimolecular junctions. Journal of Physical Chemistry C,2009,113(32):14474-14477
    [151] Larade B, Taylor J, Zheng Q R, et al. Renormalized molecular levels in aSc3N@C-80molecular electronic device. Physical Review B,2001,64(19):195402
    [152] Lu W C, Meunier V, Bernholc J. Nonequilibrium quantum transport propertiesof organic molecules on silicon. Physical Review Letters,2005,95(20):206805
    [153] Wang M, Li C M. Negative differential resistance in oxidized zigzag graphenenanoribbons. Physical Chemistry Chemical Physics,2011,13(4):1413-1418
    [154] Dutta S, Pati S K. Half-metallicity in undoped and boron doped graphenenanoribbons in the presence of semilocal exchange-correlation interactions.Journal of Physical Chemistry B,2008,112(5):1333-1335
    [155] Li J, Li Z Y, Zhou Gang, et al. Spontaneous edge-defect formation anddefect-induced conductance suppression in graphene nanoribbons. PhysicalReview B,2010,82(11):115410
    [156] Dutta S, Pati S K. Edge reconstructions induce magnetic and metallic behaviorin zigzag graphene nanoribbons. Carbon,2010,48(15):4409-4413
    [157] Dutta S, Manna A K, Pati S K. Intrinsic Half-Metallicity in Modified GrapheneNanoribbons. Physical Review Letters,2009,102(9):096601
    [158] Erdogan E, Popov I, Seifert G. Robust electronic and transport properties ofgraphene break nanojunctions. Physical Review B,2011,83(24):245417
    [159] Lee E C. Effects of DNA nucleotide adsorption on the conductance of graphenenanoribbons from first principles. Applied Physics Letters,2012,100(15):153117
    [160] Lopez-Bezanilla A, Huang J S, Terrones H, et al. Boron nitride nanoribbonsbecome metallic. Nano Letters,2011,11(8):3267-3273
    [161] Chen W, Li Y F, Yu G T, et al. Hydrogenation: A Simple approach to realizesemiconductor-half-metal-metal transition in boron nitride nanoribbons. Journalof the American Chemical Society,2010,132(5):1699-1705
    [162] Zheng F W, Zhou G, Liu Z R. Half metallicity along the edge of zigzag boronnitride nanoribbons. Physical Review B,2008,78(20):205415
    [163] Pan Y F, Yang Z Q. Electronic structures and spin gapless semiconductors in BNnanoribbons with vacancies. Physical Review B,2010,82(19):195308
    [164] Fan Y C, Zhao M W, Zhang X J, et al. Manifold electronic structure transition ofBNC biribbons. Journal of Applied Physics,2011,110(3):034314
    [165] Kou L Z, Li C, Zhang Z H, et al. Tuning magnetism in zigzag ZnO nanoribbonsby transverse electric fields. ACS Nano,2010,4(4):2124-2128
    [166] Li Y F, Zhou Z, Zhang S B, et al. MoS2Nanoribbons: High Stability andUnusual Electronic and Magnetic Properties. Journal of the American ChemicalSociety,2008,130(49):16739-16744
    [167] Lou P, Lee J Y. Spin controlling in narrow zigzag silicon carbon nanoribbons bycarrier doping. Journal of Physical Chemistry C,2010,114(24):10947-10951
    [168] He T, Pan F C, Xi Z X. First-principles study of titania nanoribbons: formation,energetics, and electronic properties. Journal of Physical Chemistry C,2010,114(20):9234-9238
    [169] Li H M, Dai J, Li J. Electronic structures and magnetic properties of GaN sheetsand nanoribbons. Journal of Physical Chemistry C,2010,114(26):11390-11394
    [170] Kudin K N. Zigzag graphene nanoribbons with saturated edges. ACS Nano,2008,2(3):516-522
    [171] Kan E J, Xiang H J, Wu F, et al. Prediction for room-temperature half-metallicferromagnetism in the half-fluorinated single layers of BN and ZnO. AppliedPhysics Letters,2010,97(12):122503
    [172] Zhou J, Wang Q, Sun Q. Electronic and magnetic properties of a BN sheetdecorated with hydrogen and fluorine. Physical Review B,2010,81(8):085442
    [173] Zhang Z H, Zeng X C, Guo W L. Fluorinating hexagonal boron nitride intodiamond-like nanofilms with tunable band gap and ferromagnetism. Journal ofthe American Chemical Society,2011,133(37):14831-14838
    [174] Zhang, Z H, Guo W L. Tunable ferromagnetic spin ordering in boron nitridenanotubes with topological fluorine adsorption. Journal of the AmericanChemical Society,2009,131(19):6874-6879
    [175] Zhou Z, Zhao J J, Chen Z F. Atomic and electronic structures of fluorinated BNnanotubes: Computational study. Journal of Physical Chemistry B,2006,110(51):25678-25685
    [176] Li F, Zhu Z H, Yao X D, et al. Fluorination-induced magnetism in boron nitridenanotubes from ab initio calculations. Applied Physics Letters,2008,92(10):102515
    [177] Wang Y L, Ding Y, Ni J, et al. Electronic structures of fully fluorinated andsemifluorinated zinc oxide sheets. Applied Physics Letters,2010,96(21):213117
    [178] Wang Y L, Ding Y, Ni J. Fluorination-induced half-metallicity in zigzag boronnitride nanoribbons: First-principles calculations. Physical Review B,2010,81(19):193407
    [179] Zheng X H, Wang X L, Abtew T A. Building half-metallicity in graphenenanoribbons by direct control over edge states occupation. Journal of PhysicalChemistry C,2010,114(9):4190-4193
    [180] Khazaei M. Lee S U, Pichierri F, et al. Designing nanogadgets byinterconnecting carbon nanotubes with zinc layers. ACS Nano,2008,2(5):939-943
    [181] Guo Y D, Yan X H, Xiao Y. Multiple negative differential resistance and themodulation in a nanotubelike fullerene D5h(1)-C90. Applied Physics Letters,2011,98(16):163107
    [182] Liu X J, An Z. Structural change-induced negative differential resistance inpolythiophene. Organic Electronics,2011,12(8):1352-1357
    [183] Chen L, Hu Z P, Zhao A D. et al. Mechanism for negative differential resistancein molecular electronic devices: Local orbital symmetry matching. PhysicalReview Letters,2007,99(14):146803
    [184] Shen L, Zeng M G, Yang S W, et al. Electron transport properties of atomiccarbon nanowires between graphene electrodes. Journal of the AmericanChemical Society,2010,132(33):11481-11486
    [185] Hyun K, Jahangir S, Basu D, et al. Gate control and amplification ofmagnetoresistance in a three-terminal device. Applied Physics Letters,2011,99(15):152503
    [186] Zhou J, Wang L, Qin R, et al. Structure and electronic and transport propertiesof transition metal intercalated graphene and graphene-hexagonal-boron-nitridebilayer. Journal of Physical Chemistry C,2011,115(51):25273-25280
    [187] Hu M L, Yu Z Z, Zhang K W, et al. Tunneling magnetoresistance of bilayerhexagonal boron nitride and its linear response to external uniaxial strain.Journal of Physical Chemistry C,2011,115(16):8260-8264
    [188] Yang J F, Zhou L P, Han Q, et al. Bias-controlled giant magnetoresistancethrough cyclopentadienyl-Iron multidecker molecules. Journal of PhysicalChemistry C,2012,116(37):19996-20001
    [189] Huang B, Si C, Lee H, et al. Intrinsic half-metallic BN-C nanotubes. AppliedPhysics Letters,2010,97(4):043115
    [190] Wan H Q, Zhou B H, Chen X W, et al. Switching, dual spin-filtering effects, andnegative differential resistance in a carbon-based molecular device. Journal ofPhysical Chemistry C,2012,116(3):2570-2574
    [191] Bernien M, Wiedemann D, Hermanns C F, et al. Spin crossover in avacuum-deposited submonolayer of a molecular Iron(II) complex. Journal ofPhysical Chemistry Letters,2012,3(23):3431-3434
    [192] Hao H, Zheng X H, Dai Z X, et al. Spin-filtering transport and switching effectof MnCu single-molecule magnet. Applied Physics Letters,2010,96(19):192112
    [193] Sedghi G, Garcia-Suarez V M, Esdaile L J, et al. Long-range electron tunnellingin oligo-porphyrin molecular wires. Nature Nanotechnology,2011,6(8):517-523
    [194] An Y P, Yang Z Q, Ratner M A. High-efficiency switching effect inporphyrin-ethyne-benzene conjugates. Journal of Chemical Physics,2011,135(4):044706
    [195] Huang X B, Zhu C L, Zhang S M, et al. Porphyrin-dithienothiophenepi-conjugated copolymers: Synthesis and their applications in field-effecttransistors and solar cells. Macromolecules,2008,41(19):6895-6902
    [196] Friesen B A, Wiggins B, McHale J L, et al. Differing HOMO and LUMOmediated conduction in a porphyrin nanorod. Journal of the American ChemicalSociety,2010,132(25):8554-8556
    [197] Xue Y Q, Ratner M A. Microscopic study of electrical transport throughindividual molecules with metallic contacts. I. Band lineup, voltage drop, andhigh-field transport. Physical Review B,2003,68(11):115406
    [198] Madsen C B, Madsen L B, Viftrup S S, et al. Manipulating the torsion ofmolecules by strong laser pulses. Physical Review Letters,2009,102(7):073007
    [199] Vergniory M G, Granadino-Roldan J M, Garcia-Lekue A, et al. Molecularconductivity switching of two benzene rings under electric field. AppliedPhysics Letters,2010,97(26):262114
    [200] Xiang W F, Lee C K. Nanoelectromechanical torsion switch of low operationvoltage for nonvolatile memory application. Applied Physics Letters,2010,96(19):193113
    [201] Qiu M, Zhang Z H, Deng X Q, et al. Conduction switching behaviors of a smallmolecular device. Journal of Applied Physics,2010,107(6):063704
    [202] Zhang Z H, Guo C, Kwong G, et al. Electronic transport of nitrogen-cappedmonoatomic carbon wires between lithium electrodes. Carbon,2013,51:313-321
    [203] Kwong G, Zhang Z H, Pan J B. Rectifying and negative differential resistancebehaviors of a functionalized Tour wire: The position effects of functionalgroups. Applied Physics Letters,2011,99(12):123108
    [204] Koleini M, Paulsson M, Brandbyge M. Efficient organometallic spin filterbetween single-wall carbon nanotube or graphene electrodes. Physical ReviewLetters,2007,98(19):197202
    [205] Lee D H, Lee W J, Lee W J, et al. Theory, synthesis, and oxygen reductioncatalysis of Fe-Porphyrin-like carbon nanotube. Physical Review Letters,2011,106(17):175502
    [206] Kumar S B, Jali M B A, Tan S G. High magnetoresistance in graphenenanoribbon heterojunction. Applied Physics Letters,2012,101(18):183111
    [207] Yoshida K, Hamada I, Sakata S, et al. Gate-tunable large negative tunnelmagnetoresistance in Ni–C60–Ni single molecule transistors. Nano Letters,2013,13(2):481-485
    [208] Hu M L, Yu Z Z, Zhang K W, et al. Tunneling magnetoresistance of bilayerhexagonal boron nitride and its linear response to external uniaxial strain.Journal of Physical Chemistry C,2011,115(16):8260-8264
    [209] Rivadulla, F, Bi Z X, Bauer E, et al. Strain-induced ferromagnetism andmagnetoresistance in epitaxial thin films of LaCoO3prepared bypolymer-assisted deposition. Chemistry of Materials,2013,25(1):55-58
    [210] Mandal S, Pati R. What determines the sign reversal of magnetoresistance in amolecular tunnel junction? ACS Nano,2012,6(4):3580-3588
    [211] Lazo C, Neel N, Kroeger J, et al. Tunneling magnetoresistance and exchangeinteraction in single-atom contacts. Physical Review B,2012,86(18):180406
    [212] Butler W H, Zhang X G, Schulthess T C, et al. Spin-dependent tunnelingconductance of Fe|MgO|Fe sandwiches. Physical Review B,2001,63(5):054416

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700