用户名: 密码: 验证码:
车用动力总成结构振动噪声的虚拟预测与分析技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字化仿真技术和试验识别方法是开展车辆和发动机系统振动噪声分析和控制的有力手段。本文对发动机和变速箱组成的动力总成结构的重要运动系统,曲柄连杆机构和齿轮传动系统采用虚拟样机技术进行动力学特性的分析,在此基础上对结构重要运动部件和固定件进行强度、振动和噪声特性的深入细致的研究。
     建立曲轴系与缸体系统三维耦合弹性体动力学模型,通过轴系扭振响应仿真和试验结果验证了轴系动力学模型,主轴承动载中考虑轴颈倾斜和弹性耦合效应,探讨了弹性耦合及轴承间隙对气缸体振动噪声特性的影响。在轴系耦合动力学结果基础上,使用直接瞬态法和模态应力合成法分析曲轴结构的动态强度。提出了位移-应力场的精细有限元方法,来分析曲轴油孔和圆角处的动态强度,并校核曲轴圆角高周疲劳设计准则下动态疲劳安全性。使用龙格库塔数值积分方法求解活塞体二阶运动的动力学方程,分析活塞二阶运动的时域特性及对缸套的动态敲击机理,并分析了活塞二阶运动的敏感参数影响,通过试验方法识别缸体上部的振动特性,验证仿真模型的准确性。
     在整车转毂试验台对变速箱和油底壳结构的表面振动测量,并换算了出结构的辐射噪声声功率,分析了油底壳结构中各侧面板振动对整体辐射噪声的贡献量。建立变速箱齿轮传动系的多体动力学模型,从内部与外部激励的角度研究齿轮传动系的动力学特性,并分析壳体结构的动态响应和辐射噪声特性。建立动力总成结构的全弹性振动响应模型,其800Hz内振动响应与试验结果吻合较好。同时为缩短建模和分析时间,开发出动力总成装置的双质量振动模型,与全弹性体振动响应结果对比,验证了双质量模型的有效性,为动力总成振动分析提供了新的计算模型。结构轻量化设计利用镁合金AZ91D材料开发出油底壳和变速箱壳体结构,提出镁合金结构的声-振特性及结构强度分析方法,并对镁合金结构进行声振特性的优化设计。
     本文从工程学设计分析角度推动了数字化仿真技术在动力总成结构领域的应用,从技术角度开拓出相关的新方法和技术流程,取得了一系列具有工程实用价值的成果,对汽车和发动机企业具有实际的工程意义。
Numeric simulation technology and experimental identification method are two effective ways for analyzing vibration and noise of vehicles and engine systems. With the processes of virtual forcasting, this paper analyzes dynamic characteristics of the important motion sub-system of the powertrain, consist of engine and gearbox, crank-connecting rod mechanism and gear transmission system. Furthermore, research topics are worked on the strength, vibration and noise characteristics of important structural motion parts and fixing parts.
     By comparing simulated and tested results of torsional vibration response of the crankshaft system, an elastical dynamic model, which is built by coupling the crankshaft system and cylinder system, is verified valid. Main bearing dynamic loads has taken the effects of journal tilt and elastic coupling into account, and the effects of elastic coupling and bearing clearance on the vibration and noise behavior of cylinder body are discussed. Based on the shaft coupling dynamics, dynamic strength of the crankshaft system is analyzed both by direct transient method and modal stress synthesization method. With the fine FEM in the displacement-stress field, the dynamic strength of the crankshaft oil orifices is researched. Meanwhile the dynamic fatigue safety of the crankshaft fillets is checked under the high-cycle fatigue designing principle. The R-K numeric integration method is used to solve the dynamics equation for the secondary motion of the piston. The time-domain characteristic of the secondary motion, dynamic slap force of the piston on the cylinder liner, and the influence of the sensitive parameter are discussed as well. With experiments results, the vibration characteristic of the cylinder surface is identified, in order to verify the accuracy of the simulation model.
     Measurement has been made on the surface vibration of the gear box and oil pan on a vehicle roller testbed, calculating out the structural noise radiation power and analyzing the variant contribution of each side plate vibration to the whole radiated noise. A multi-body dynamic model is built for the gear train, to study the dynamical characteristics of the gear train by the perspectives of both the internal and external excitations. Dynamic response and radiated noise characteristics are analyzed for the gearbox shell structure. The vibration response of a full elastic model built for the power train agrees well with the experiments within 800 Hz. Meanwhile, to shorten modeling and analyzing time, a double-mass vibration model has been developed for the power train. Compared with the full elastic model, the double-mass model is validated, providing a new calculation model for the power train vibration analysis. The magnesium alloy AZ91D is used to design out a lighter oil pan and gearbox shell structure. And an analyzing method for the noise-vibration characteristic and structural strength is presented for the magnesium structure, and for the optimization of its noise-vibration characteristic.
     The paper promotes the application of the numeric simulation technology in the domain of powertrain, by a way of engineering design and analysis, and developed the related new method and technical process. It has gained a series of results with practical engineering value for the vehicle and engine companies.
引文
1. 中国汽车工业协会:2006年汽车整车进出口情况简析.中国汽车工业协会行业信息部.2007-1-31
    2. 中投顾问:2009-2012年中国汽车行业投资分析及前景预测报告.2009-2-1
    3. GB 1495-2002.汽车加速行驶车外噪声限值及测量方法
    4. 杨庆佛,发动机噪声控制[M].太原:山西人民出版社,1991
    5. Austen A.E.W, Priede.T. Noise of Automotive Diesel Engines:Its causes and reduction [J], SAE 650165
    6. N. Lalor, M. Petyt. Modes of Engine Structure Vibration as a Source of Noise [J]. SAE 7502002
    7. C.M.P Chan, D.Anderton.Correlatioi. Between Engine Block Surface Vibration and Radiated Noise of In-line Diesel Engines [J]. Noise Control Engineering.1974,6-24
    8. N. Lalor, E C.Grover, T.Priede. Engine Noise Due to Mechanical Impacts at Pistons and Bearings [J]. SAE 800402
    9. W.Clare. Shape Optimization of Engine Structure For Low Noise:[Ph.D Dissertation]. UK:University of Southampton,1988
    10. Beild.Christian. Noise on Small Capacity Spark Ignition Engines By Structure Optimization:[Ph.D Thesis]. Austria:Technische Universitaet Graz,1992
    11. Z.P.Mourelatos, An efficient crankshaft dynamic analysis using substructureing with ritz vectors [J]. Journal of sound and vibration.2000
    12. B.J Fielding, Skorecki J. Identification of Mechanical Sources of Noise in a Diesel Engine:Sound originating from piston slap [J]. Proc Inst. Mech. Eng.1970,184, part 1, No46:859-871
    13. A.M Laws, D.A Parker, B.Turner. Piston Movement as a Source of Engine Noise [J]. Fisita Conference, 1972
    14. Manfred D Rohrle. Affecting Diesel Engine Noise by the Piston [J]. SAE 750798
    15. K.C Vora, B.Ghosh. Vibration Due to Piston Slap and Combustion in Gasoline and Diesel Engines [J]. SAE 911060
    16. Hiroshi Kandda, Minoru Okubo. Analysis of Noise Source and the Transfer Paths in Diesel Engines [J]. SAE 900014
    17. P.Carlucci, A.Ficarella, F.Chiara et.al. Preliminary Studies on the Effects of Injection Rate Modulation on the Combustion Noise of a Common Rail Diesel Engine. SAE 2004-01-1848
    18. H.H Priehsch, H.M Herbst, Offner.Gunter. Piston Slap Induced Noise Simulation Considering Elasto-Hydrodynamics Contact Conditions [J]. ASME ICE V36,2001-0918
    19. Z.Geng. J.Chen. Investigation in to Piston-Slap-Induced Vibration for Engine Condition Simulation and Monitoring [J]. Journal of Sound and Vibration 2005-282
    20. Usami.Takashi, Wada.Shinji, Sonoda.Shigeru. Piston Slap Noise of Indirect Combustion Diesel Engine. SAE 750397
    21. Koizumi.Takayuki, Tsujiuchi.Nobutaka, Okamura.Masahiro, et.al. Reduction of Piston Slap excitation by optimizing piston profiles [J]. Proceedings of SPIE.2002 (v4753)
    22. H.H.Priebsch, Bernhard Loibnegger, Harald.Pramberger. Simulation of Engine Noise Influence of Design Parameters [J]. JSAE 1998
    23. Martin. Sopouch, Wolfgang Helliger, H.H Priebsch. Simulation of Engine's Structure Borne Noise Excitation due to the Timing Chain Drive [J]. SAE 2002-01-0451
    24. G.Ph.Rainer, B.Loibnegger, L.Bernard, et.al. Numerical Simulation of Powertrain Noise and Vibration [J]. SAE 96
    25. ENGDYN:Engine Dynamics Simulation Program User Manual[M]. Ricardo Consulting Enginners Ltd.
    26. V.B Christian, M.Nicholas Hargreaves. Automotive Noise Reduction and Engineering Desirable Sound [J]. SAE 990040
    27. Y.Sakural, H.Hoshino, Y.Goino. Simulation technique of cylinder block vibration under firing conditions.The ninth international pacific conference on automotive engineering, Indonesla,1997.83-88
    28. J.Raub, P.Kley. Analytical investigation of crankshaft dynamics as a virtual engine module. SAE 991750
    29. S.M.Athavale, P.R.Sajanpawar. Analytical studies on influence of crankshaft vibrations on engine noise using integrated parametric finite element model:quick assessment tool. SAE 991769
    30. Z.P.Mourelatos, A crankshaft system model for strutural dynamic analysis of internal com--bus tion engines [J]. Computers & Structures,2001
    31. M.Inagaki, A.Kawamoto, T.Aoyama, et al. Prediction of structural and kinematic coupled vibration on internal combustion engine. R&D review of Toyota,37(2):27-33
    32. T.Naganuma, H.Okamura, K.Sogabe. Experiments and analyses of the three-dimensional vibrations of the crankshft and torsional damper in a four-cylinder in-line high speed engine. SAE paper 971996
    33. T.Aoyama, M.Inagaki, A.Kawamoto, et al. Analysis of main bearing force and cylinder block vibration related to engine air borne noise. Technical Notes JSAE Review,21(2000):404-406
    34. N. Lalor, P. Gelat. The role and experimental determination of equivalent mass in complex sea models. Journal of Sound and Vibration.2002,255(1):97-110
    35. K.Yamashita, H.Yamashita, M.Nakano. Prediction technique for vibration of power-plant with elastic crankshaft system. SAE paper 2001-01-1420
    36. Sheng Jiew Hwang, Jer-Si Chen and Yaqun Jiang. Engine Cranktrian System Simulation and Validation. International Adams User Conference 2000
    37. Tadashi Niino, Tatsuya Iwamoto, Shingo Ueda. Development of Simulation technology for dynamic behavior of crankshaft system in motorcycle engines [J]. JSAE 2002 Review 23,127-131
    38. M.Rebbert, Rainer Lach, Philipp Kley. Dynamic Crankshaft Stress Calculation using a combination of MSS and FEA [J]. International Adams User Meeting 2000
    39. Mark Pompetzki. Combining Durability With Multibody Dynamics [J]. International Adams User Meeting 2000
    40. P.Fischer, W.Witteveen. The Integrated MBS-FE-Durability Analysis of TruckFrame [J]. International Adams User Meeting 2000
    41. A.Kahaman. Efforts of Axial Vibrations on Dynamic of Helical Gear Pairs [J]. ASME Journal of Vibration and Acoustics.1993,115(1):33-38
    42. A. Kahaman. Dynamic Analysis of a Multi-Mesh Helical Gear Train [J]. ASME Journal of Vibration and Acoustics.1994,116(1):706-712
    43. A. Kahaman. Planetary Gear Train Dynamics [J]. ASME Journal of Mechanical Design.1994,116(1): 713-720
    44. H.Vinayak, R.Singh. Dynamic Analysis of Flexible Gears for High Power Density Transmission [J]. Proc. Inter Gearing.1994:105-110
    45. W.Shaofeng, K.Umezawa, H.Houjoh, et.al. A Analysis Investigation of the Dynamic Behavior of a Helical Gear System [J]. ASME Power Transmission and Gearing Conference,1996(88):169-176
    46. C.Bard, D.Remond, D.Play. Dynamic Transmission Error of Cylinderical Gears Comparison of Experimental Measurement and Numerial Calculation [J]. ASME Power Transmission and Gearing Conference,1996(88):519-526
    47. W.Hellinger, H.Ch.Raffel, G.Ph.Rainer. Numberical Methods to Calculate Gear Transmission Noise [J]. SAE 97NV205
    48. G.Ph.Rainer. Performance Modeling Supports Virtual Testing of Transmission Noise Phenomena [J]. FISITA, F2006P308
    49. Sarah Curtis, Jamie Pears. An analytical Method to Reduce Gear Whine Noise, Including Validation With Test Data[J]. SAE 2005:01-1819
    50. Aniello Forcelli, Corrado Grasso. The Transmission Gear Rattle Noise:Parametric Sensiti-vity Study [J]. SAE 2004:01-1225
    51. Hans-Peter Lahey, Christoph Steffens. Simulation Method for Gear-train NVH Assessment and Optimization[J]. SAE 2003:01-1593
    52. R.G Parker, S.M Vijayakar, T.Imajo. Non-linear dynamic response of a spur gear pair:modeling and experimental comparison [J]. Journal of Sound and Vibration.2000,237(3):435-455
    53. L.vedmar, A.Anderson. A method to determine dynamic loads on spur gear teeth and on bearings [J]. Journal of Sound and Vibration.2003,267:1065-1084
    54. Thomas.Resch, Klarin. Borislav, Christian Vock, et.al. NVH Analysis of Transmissions & Drivelines Different Levels of Model Compexity [J]. Virtual Product Creation Conference 2005.
    55. Yuma Miyauchi, Koji Fujiii, Takayuki Nishino, et.al. Introduction of Gear Noise Reduction Ring by Mechanism Analysis Including FEM Dynamic Tuning [J]. SAE 2001-01-0865
    56. Shan Shih, Jacinto Yruma, Phil Kittredge. Drivetrain Noise and Vibration Troubleshooting [J]. SAE 2001-01-2809
    57. Kouichi Ando, Yasunori Kanda, Yoshihiko Fujita. Analysis of High-Frequency Gear Whine Noise By Using Inverse Boundary Element Method [J]. SAE 2005-01-2304
    58. Yunhe Yu, Nagi G. Naganathan, Rao V. Dukkipati. A literature review of automotive vehicle engine mounting systems [J]. Mechanism and Machine Theory,2001, (36):123-142
    59. V.S Regis, J.L Charles. Design of Elastomeric Vibration Isolation Mounting System for Internal Combustion Engine [J]. SAE 760431
    60. Johnson Stephen, R Subhedar, W. Jay. Computer Optimization of Engine Mounting System [J]. SAE 790974
    61. P.E Geck, R.D Patton. Front Wheel Drive Engine Mount Optimization [J]. SAE 840736
    62. T.Ushijima, K.Takano, H.kojima. High Performance Hydraulic Mount for Improving Vehicle Noise and Vibration [J]. SAE 880073
    63. K.Kadomatsu. Hydraulic Engine Mount for Shock Isolation at Acceleration on FWD Cars [J]. SAE 891138
    64. W.B Shangguan, Zhen-Hua Lu. Modeling of a hydraulic engine mount with fluid-structure interaction finite element analysis [J]. Journal of Sound and Vibration.2004,(275):193-221
    65. Tian Ran Lin, H. Farag Nabil, Jie Pan. Evaluation of frequency dependent rubber mount stiffness and damping by impact test [J]. Applied Acoustics.2005,(66):829-844
    66. T. Sakai. Optimum Engine Mounting Layout by Genetic Algorithm [J]. SAE 2001-01-2810
    67. N Tsujiuchi, T Koizumi, T Takenaka. A Stiffness Optimization Procedure for Automobile Rubber Mounts[J]. SAE 2001-01-1445
    68. Joeng Jae Kim, Heon Young Kim. Sharp Design of An Engine Mount By A Method of Parameter Optimization [J]. Computer & Structure.1997, Vol 65. No5:725-731
    69. Mo C, M. Sunwoo, W N Patten. Bistate control of a semiactive suspention [J]. SAE 990725
    70. C. Togashi, K.Ichiryu. Study on Hydraulic Active Engine Mount [J]. SAE 2003-01-1418
    71. Y. Seki, T. Suzuki, M Tsukahara. How to Predict Powertrain Vibration at Engine Mounting Points under Running Conditions [J]. SAE 2001-01-1592
    72. Sudhir Kaul, Anoop K. Dhingra. Frame Flexibility Effects on Engine Mount Optimization for Vibration Isolation in Motorcycles [J]. ASME Journal of Vibration and Acoustics.2007 vol(129):590-600
    73.俞明,李惠珍.利用有限元技术估算内燃机机体表面辐射噪声方法的研究[J].内燃机学报.1992,(2):123-128
    74.葛蕴珊,王芝秋,张志华等.声边界元法在内燃机机体辐射噪声预报中的应用研究[J].内燃机学报.1995,(1):60-64
    75.韩松涛.内燃机的振动噪声控制及现代设计方法学研究[D].天津:天津大学.2002.146-147
    76.刘月辉.基于虚拟技术的发动机噪声控制研究[D].天津:天津大学.2004.86-90
    77.郝志勇,段秀兵,程金林.柴油机曲轴轴系的柔性多体动力学仿真分析[J].铁道机车车辆.2003,23:86-89
    78.贾维新,郝志勇,杨金才.发动机油底壳辐射噪声预测方法的研究[J].内燃机学报.2005,23:269-273
    79.邓晓龙,张宗杰,刘少彦等FEM/BEM方法预测发动机油底壳噪声辐射[J].华中科技大学学报.2003,31(5)
    80.王义亮,谢友柏.四缸发动机机体结构的模态分析[J].内燃机学报.2002,20(1):75-78
    81.李小雷,崔志琴,苏铁熊等.大功率柴油机复杂组合结构的有限元模态分析[J].内燃机工程.2002,23(1):16-18
    82.舒歌群,郝志勇,谭从民等.内燃机噪声测量中的声强测试技术[J].内燃机学报.1998,16(1):69-74
    83.刘月辉,郝志勇,韩松涛等.车用发动机表面辐射噪声源识别的研究[J].汽车技术.2002(3):15-18
    84.姜哲.振动表面局部辐射性质与声能量辐射理论[J].声学学报.1997,22(6):534-542
    85.姜哲.振动表面局部辐射性质与声能量辐射应用[J].声学学报.1998,23(1):74-81
    86.毛崎波,姜哲.对声辐射模态的讨论[J].振动工程学报.2000,13(4):633-637
    87.郝志勇,段秀兵,程金林.柴油机曲轴轴系的柔性多体动力学仿真分析[J].铁道机车车辆.2003,23:86-89
    88.郝志勇,林琼,段秀兵.曲轴轴系统动力学特性的数字化仿真与试验研究[J].内燃机工程.2006,27:38-40
    89.郭磊,郝志勇,林琼.柴油机曲轴与气缸体系统动力学仿真研究[J].浙江大学学报工学版.2007,41(5):780-784
    90.冯慧华,左正兴,廖日东等.基于FEM/BEM耦合技术的柴油机外声场模拟技术研究[J].内燃机学报,2004,22(2):155-161
    91.刘月辉.基于虚拟技术的发动机噪声控制研究[D].天津:天津大学.2004.
    92.梁兴雨,内燃机噪声控制技术及声辐射预测研究[D].天津:天津大学.2006.
    93.郭磊,郝志勇,徐红梅.某单缸柴油机气缸体辐射噪声的集成化虚拟预测[J].内燃机工程,2007,28(4):87-91
    94.徐卫国,黄荣华,左朝凤等.曲轴强度计算新方法的研究[J].内燃机工程,2004,25(5):31-34
    95.王明武,范卜虎,李爱军等.基于三维有限元应力计算的曲轴强度可靠性分析[J].第十一届全国大功率柴油机学术年会论文集,1999
    96.初月平,何明鉴.发动机曲轴组件强度计算分析[J].中国航空学会第九届航空发动机结构强度振动学术会议论文集,1998
    97.李小雷,苏铁熊,崔志琴等.某大功率柴油机曲轴动力学分析研究[J].第十二届全国大功率柴油机学术年会论文集,2001
    98.冯慈华,张玉申,左正兴等.考虑非线性的柴油机曲轴轴系动态位移场-应力场有限元分析[J].中国内燃机学会大功率柴油机分会五届一次学术年会论文集,2002
    99.杨俊武,邱国平,张有等.D4114系列柴油机曲轴设计及三维有限元分析[J].内燃机科技,2002
    100.覃文洁.内燃机曲轴轴系振动响应的多体动力学:分析方法[J].安全环境学报,2002,2(2):51-53
    101.彭禹,郝志勇.基于有限元和多体动力学联合仿真的疲劳寿命预测[J].浙江大学学报(工学版),2007,2
    102.李连进,张维屏.降低齿轮箱噪声的一种途径[J].东北工学院学报,1989,10(4):439-444
    103.沈允文,刘更,朱均.具有不同幅板布置斜齿轮传动的动态特性研究[J].西北工业大学学报,1995,13(2):235-239
    104.崔博文,沈允文,刘更等.航空齿轮系统的动态特性分析[J].机械科学与技术,1997,16(2):271-274
    105.李润方,王建军.齿轮系统动力学—振动、冲击与噪声[M].北京,科学出版社,1997
    106.李润方.齿轮传动的刚度分析和修形方法[M].重庆,重庆大学出版社,1998
    107.朱才朝,秦大同,李润方等.内齿行星传动参数动态优化[J].重庆大学学报,1997(2):89-94
    108.李润方,林腾蛟,陶泽光.齿轮系统耦合振动响应的预估[J].机械设计与研究,2003,19(2):27-29
    109.王立华,李润方,林腾蛟等.齿轮系统时变刚度和间隙非线性振动特性研究[J].中国机械工程,2003,14(13):1143-1146
    110.何韫如,宋福堂.齿轮与齿轮箱振动噪声机理分析与控制[J].振动、测试与诊断,1998,18(3):221-226
    111.李吉.旋转机械结构噪声及其控制机理的研究[D].大连理工大学,2002
    112.李润方,林腾蛟,陶泽光.齿轮箱振动和噪声[J].机械设计与研究,2003,19(5):63-65
    113.刘玉友,牛军川,孙玉国等.齿轮箱辐噪声的统计能量分析[J].山东工业大学学报,2000,30(3):201-206
    114.梁杰,王登峰,姜永顺等.汽车变速箱噪声源识别及噪声控制[J].噪声与振动控制,2006,03:67-69
    115.唐应时,占良胜,方其让等.基于动态仿真的副变速箱有限元分析[J].中南大学学报(自然科学版),2006,37(4):769-774
    116.张少睿,罗应兵,李大永等.镁合金汽车变速箱壳体强度分析[J].机械科学与技术,2004,23(2):154-156
    117.徐石安.汽车发动机弹性支撑隔振的解耦方法[J].汽车工程,1995,17(4)
    118.上官文斌,蒋学锋.发动机悬置系统的优化技术[J].汽车工程,1992,14(2)
    119.吕振华,范让林,冯振东.汽车动力总成隔振悬置布置的设计思想论析[J].内燃机工程,2004,25(3)
    120.吕振华,上官文斌,梁伟等.液阻悬置动态特性试验方法及实测分析[J].中国机械工程,2004,15(2): 182-186
    121.吕振华,梁伟,上官文斌.汽车发动机液阻悬置动特性仿真与试验分析[J].汽车工程,2002,24(2):105-111
    122.上官文斌,宋志顺,张云清等.多惯性通道型液阻悬置动态特性的实测与分析[J].振动工程学报,2005,18(3)
    123.上官文斌,吕振华.汽车动力总成液阻悬置液-固耦合非线性动力学仿真[J].机械工程学报,2004,40(8)
    124. Wen-Bin Shangguan, Zhen-Hua Lu. Experimental study and simulation of a hydraulic engine mount with fully coupled fluid structure interaction finite element analysis model [J], Computers & Structures, 2004,84(20):1751-1771.
    125.陆佑方,柔性多体系统动力学[M].北京:高等教育出版社,2008
    126.孙世基,黄承绪,机械系统刚柔耦合动力分析及仿真[M].北京:人民交通出版社,2000
    127.王永岩,动态子结构方法理论及应用[M].北京:科学出版社,1999
    128.马星国,尤小梅,闻邦椿.基于虚拟样机技术的曲轴多体动力学仿真[J].振动与冲击,2008,27(9):155-157
    129.贾维新.发动机结构噪声和进气噪声的数字化仿真及优化设计研究[D].杭州:浙江大学.2008.75-88
    130.叶荣学,孙伟,张敏全.油膜刚度变化对转子振动特性的影响[J].气轮机技术,2006,48(2):114-115
    131. G.Ph.Rainer, B.Loibnegger, L.Bernard. Numberical Simulation of Powertrain Noise and Vibration[J]. SAE paper,960824
    132.杨万里,许敏,邓晓龙等.发动机主轴承座结构强度分析研究[J].内燃机工程,2007,28(1):31-34
    133.张直明.滑动轴承的流体动力润滑理论[M].北京:高等教育出版社,1986
    134.万欣等.内燃机设计[M].天津:天津大学出版社,1989
    135.刘月辉.基于虚拟技术的发动机噪声控制研究[D].天津:天津大学.2004.41-44
    136.杨连生,内燃机设计[M].北京:中国农业机械出版社,1981
    137.孙军,桂长林,李震.内燃机曲轴强度研究的现状、讨论与展望[J].内燃机学报,2002,20(2):179-184
    138.吕军,王忠金,王仲仁.有限元六面体网格的典型生成方法及发展趋势[J].哈尔滨工业大学学报,2001,16(04):64-69
    139.付鹏,唐辉.100t低速重载曲轴应力动态响应计算方法的研究[J].有色矿冶,2007,05(03):76-81
    140.彭禹.基于虚拟样机技术的发动机子系统设计方法研究[D].杭州:浙江大学.2007.113-127
    141.蓝军,薛远,付光琦.曲轴油孔应力集中的三维有限元分析[J].内燃机学报.2000,18(2):220-222
    142.林晓斌,Heyes P.J., Buczynski A多轴疲劳寿命工程预测方法[J].中国机械工程,1998,9(11):20-23
    143. MSC.Software. MSC.Fatigue User's Guide[R].2005
    144.马大猷,噪声控制手册[M].北京:科学技术出版社,1999
    145.卫海桥,舒歌群.内燃机活塞拍击表面振动与燃烧噪声的关系[J].燃烧科学与技术,2004(01):30-35
    146.戴旭东,袁小阳,谢友柏.缸套活塞系统润滑行为与动力学行为耦合分析[J].摩擦学学报.2003,23(06):64-68
    147.黄锦成,余克橡,唐治宏.柴油机气缸套动态变形位移的测试研究[J].内燃机工程.2004,21(05):64-66
    148.李迎.内燃机流固耦合传热问题数值仿真与应用研究[D].杭州:浙江大学.2006.33-48
    149. Kazuhiro Nakashima, Yuji Yajima, Kyochi Suzuki. Approach to Minimization of Piston Slap Force for Noise Reduction Investigation of Piston Slap Force by Numerical Simulation, JSAE Review 1999,20: 211-216
    150.徐红梅.内燃机振声信号时频特性分析及源信号盲分离技术研究[D].杭州:浙江大学:54-78
    151.韩松涛,李国华.6108G柴油机表面薄壁件噪声源的识别[J].工程机械,2001,32(12):10-11
    152.郝志勇,韩军.车用发动机主要噪声源的声强测试方法研究[J].内燃机工程.2004,25(2):15-17
    153.宋宝安,郝志勇.通过表面振动测量确定柴油机的噪声源分布[J].拖拉机与农用运输车,2004,6:18-20,24
    154.雷凌,单颖春,刘献栋.行驶车辆噪声辐射研究进展及展望[J].噪声与振动控制,2006,08(4):1-5
    155.韩军.内燃机的非平稳信号分析方法及其噪声源小波识别技术的研究[D].天津:天津大学,2004.
    156.杨炯明,秦树人,季忠.旋转机械阶比分析技术中阶比采样实现方式的研究[J].中国机械工程,2005,16(3):249-252
    157.李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001
    158. MSC.Software. MSC.Nastran User's Guide[R].2005
    159.王建军,李润方.齿轮系统动力学的理论体系[J].中国机械工程,1998,9(12):55-58
    160.林腾蛟.齿轮系统非线性冲击振动数值模拟及实验研究[D].重庆:重庆大学,1999
    161.王立华,李润方,林腾蛟等.齿轮系统时变刚度和间隙非线性振动特性研究[J].中国机械工程,2003,14(13):1143-1146
    162.李润方.齿轮传动的刚度分析和修形方法[M].重庆:重庆大学出版社,1998
    163. Kisssoft.Software User's Guide[R].2004
    164.杨成云.齿轮传动系统耦合振动响应及抗冲击性能研究[D].重庆:重庆大学,2006
    165.郭乙木,陶伟明,庄茁等.线性与非线性有限元及其应用[M].北京:机械工业出版社,2003
    166.卢盛松.边界元理论及应用[M].北京:高等教育出版社,1990
    167.姚德源.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1995
    168. LMS Sysnoise rev 5.5 User Manual [R]. LMS international.2000
    169.吴炎庭,袁卫平.内燃机噪声振动与控制[M].北京:机械工业出版社,2005
    170.蓝军.动力总成悬置振动计算和影响因素[J].李斯特先进模拟技术研讨会,2007
    171.庞剑,谌刚,何华.汽车噪声与振动理论与应用[M].北京:北京理工大学出版社,2006
    172.赵建才,李堑,姚振强等.车辆动力总成悬置系统的能量法解耦仿真分析[J].上海交通大学学报,2008,42(6),878-881
    173.刘正,刘重阳,王中光.固溶和时效对压铸AZ91HP合金力学性能的影响[J].金属学报,1999,35(8):869-873
    174.张津,陶艳玲,孙智富等.镁合金AZ91D的阻尼减振性能[J].机械工程学报.2006,10(33),190-193
    175.郑光泰,郝志勇,蔡军等.内燃机镁、铝铸件NVH性能比较研究[J].内燃机工程,2008,29(02):86-89
    176. SIMULIA Abaqus rev 6.7 User Manual[R].2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700