用户名: 密码: 验证码:
数字散斑相关方法及其在工程测试中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字散斑相关方法作为一种全场位移和应变测量方法,在理论方面得到不断发展和完善的同时,在工程应用方面也开展了大量的工作。但目前的方法在求解效率和测量精度以及使用的通用性方面还存在一些不足。为了更好地满足工程测试要求,本文对现有的数字散斑相关方法进行了进一步的研究与改进,论文的主要研究内容和创新点如下。
     本文针对现有的整像素逐点搜索算法对数字散斑相关方法搜索效率的影响,提出了一种基于连续性变形假设的邻近域搜索算法。该算法首先通过逐点搜索法确定参考子区Ω在变形后图像中的目标子区Q’的位置后,根据连续性变形假设,只需要在目标子区Ω’附近的一个较小区域搜索即可,故只需要对第一个参考子区进行全场逐点搜索,其余子区都可以小范围搜索,结果可大幅提高搜索效率。针对传统的基于灰度梯度的亚像素位移求解算法中采用的灰度不变假设对位移求解精度的影响,将灰度线性变化引入基于梯度的亚像素位移算法。该算法假设变形前后图像内同一点的灰度由于光强波动而发生线性变化,引入灰度变化系数λ,应用最小二乘迭代得到亚像素位移,解决了传统梯度法由于光强变化引起的测量误差问题。同时,定性地从图像噪声、亚像素插值误差和形函数误差三个方面分析了基于梯度的数字散斑相关测量方法的测量误差,得到位移误差标准差的数学表达式。
     在影响数字散斑相关位移求解精度的因素中,除了算法误差外,还包括散斑图质量、镜头光学失真等外界因素。为了提高散斑图质量进而提高数字散斑相关测量精度,本文提出一种新的模拟二值散斑图,其可以在保证散斑颗粒随机分布的同时通过判别散斑颗粒的位置与尺寸,避免出现传统模拟散斑图散斑颗粒过稀或过密的情况。该方法为模拟散斑图的实现提供了一条新思路。在人工散斑制作方面,本文将碳粉热转印技术引入散斑制作,该方法通过热压原理将设计打印好的随机散斑图样转印在试件表面,具有能够控制散斑颗粒的大小及分布密度和可重复性等优点,避免了传统喷涂散斑操作中由于人工经验不足造成的误差,为人工散斑的制作提供了一条新的途径。针对镜头光学失真对数字散斑相关测量精度的影响,本文在已有镜头畸变参数估计算法的基础上,采用Harris法对标定模板的特征点进行亚像素提取,并同时考虑镜头的径向与切向畸变,对数字散斑相关测量试验中所使用的CMOS镜头进行了非线性畸变系数估计与校正。通过试验验证了镜头畸变校正对数字散斑相关位移测量的重要性。
     在数字散斑相关方法的应变求解中,传统的位移微分过程会放大位移场中所包含的噪声。为了提高应变求解精度,本文将有限元思想引入数字散斑相关应变场的计算,提出了一种基于四边形单元的应变计算方法。首先,利用数字散斑相关方法获得的位移场建立4节点和9节点四边形单元,通过对应的状态方程计算出对应节点的位移值,然后反插值计算出对应单元内每个点的应变进而求得应变场。最后,通过无疵和含孔试件的拉伸试验,验证了本文提出的算法能够有效地提高应变计算精度。
     为了证明本文提出的改进数字散斑相关方法在工程应用中的有效性和适应性,以三个典型的工程测试问题为例进行了讨论。应用实例一是与温控试验箱结合建立了非接触变温变形测量系统,用该系统测量了45号钢在20℃~200℃温度范围内的全场热变形和热膨胀系数。应用实例二是在断裂力学中的应用,通过木材单边裂纹拉伸试验,得到了落叶松的复合型应力强度因子和裂尖塑性区尺寸。应用实例三是在蠕变力学中的应用,结合自行设计的机械式蠕变试验机对45号钢的室温蠕变进行测量,得到了不同应力水平下的全场应变和蠕变应变-时间曲线。以上实例验证了本文所提出的改进的数字散斑相关方法应用于工程测试的可行性,表明了该方法的实用性和适应性。
Two-dimensional digital speckle correlation mothod is an effective optical measurement technique for full-field displacement and strain estimation, which has been widely used in the fields of experimental mechanics and engineering measure and test. However, deficiency existed in terms of the calculation accuracy, calculation efficiency and the versatility. An improved algorithm here aims at making this method a widely applicatory measuring method. It means that ideally this method can be applied in various conditions. The key results of this dissertation are:
     In view of the inefficiency of point-by-point search algorithm, an adjacent domain search algorithm is proposed. This algorithm can greatly improve the efficiency of the integer pixel search. A grayscal linear change model λ used in the gray gradient-based method for subpixel-accuracy displacement measurement is proposed. This proposed method could deal with the gray change or illumination variation on the specimen surface during the experiment. A formula of displacement measurement errors by the gradient-based DSCM method was derived. The errors were found to explicitly relate to the image grayscale errors consisting of sub-pixel interpolation algorithm errors, image noise, and subset deformation mismatch at each point of the subset.
     A new algorithm of simulated random speckle pattern is proposed. In this way, the distribution of spots with respect to speckle diameter and location can be controlled and optimized. Toner transfer technique is exploited to provide an efficient method to realize speckle patterns on the specimen surface for DSCM. This technique provides us with a novel approach for artificial speckle pattern realization. Lens distortion practically presents in optical imaging system using in DSCM system, and gives rise to additional errors in the displacement and strain measurement. Camera calibration procedure based on Harris method is performed to obtain the coefficients of radial distortion and tangential distortion. The three-point bending test results show that the camera lens calibration method can effectively eliminate the effect of lens distortion and improve displacement and strain measuremen accuracy.
     This dissertation proposes a digital speckle correlation strain measurement method based on a finite element (FE) algorithm. Both simulation and experiment processing, including tensile strain deformation, show that the proposed method can achieve nearly the same accuracy as the cubic spline interpolation method in most cases and higher accuracy in some cases, such as the simulations of uniaxial tension with and without noise. The results show that it also has a good noise-robustness. Finally, this method is used in the uniaxial tensile testing for Dahurian Larch wood specimens with or without a hole, and the obtained strain values are close to the results which were obtained from the strain gauge and the cubic spline interpolation method.
     The other important part of my work is the application of DSCM in engineering measure and test. Some key issues are discussed in the prosess of testing. The key results of this part of work includes:(1) The thermal deformation fields and coefficient of thermal expansion of45steel at different temperatures are measured and compared with the existing literature value. The repeated experimental results confirm the effectiveness and accuracy of the noncontact varying temperature deformation measuring system.(2) The mixed mode stress intensity factors are calculated using displacements from digital speckle correlation method. With the crack angle increasing, the SIF of mode I in unilateral crack increase all along, but the SIF of mode II in unilateral crack shows an initial increase, followed by a decrease. Crack-tip plastic zones were determined using an anisotropic yield criterion.(3) A mechanical creep testing machine is developed by author and used in combination with DSCM. Creep strain-time curves of45steel at room temperature were measured using digital speckle correlation method.
     Actual measurement results demonstrate that the proposed DSCM algorithm is a high accurate measurement method and possesses preferable practicability and adaptability.
引文
[1]崔屹.数字图像处理[M].北京:电子工业出版社,1997:21-32.
    [2]戴福隆,沈观林,谢惠民.实验力学[M].北京:清华大学出版社,2010:470-474.
    [3]高建新.数字散斑相关方法及其在力学测量中的应用[D].北京:清华大学,1989.
    [4]侯成刚,赵明涛,屈梁生.基于二次曲面拟合的亚像素图像匹配算法[J].计量学报,1997,18(3):227-231.
    [5]侯振德,秦玉文.基于图像分形相关位移测量新方法的研究[J].光学学报,2002,22(2):210-214.
    [6]金观昌.计算机辅助光学测量[M].北京:清华大学出版社,2007,141-183.
    [7]雷振坤,亢一澜,王怀文.单纤维细丝微力学性能实验研究[J].实验力学,2005,20(1):72-76.
    [8]李善祥,孙一翎,李景镇.数字散斑相关测量中亚象素位移搜索的曲面拟合研究[J].光子学报,1999,28(7):638-640.
    [9]梁园.数字散斑相关亚像素位移测量方法研究与实验[D].天津:天津大学,2007.
    [10]刘小勇.数字图像相关方法及其在材料力学性能测试中的应用[D].长春:吉林大学,2012.
    [11]陆明万,罗学富.弹性理论基础[M].北京:清华大学出版社,2001:112-140.
    [12]马少鹏,金观昌,潘一山.白光DSCM方法用于岩石变形观测的研究[J].实验力学,2002,17(1):10-16.
    [13]马少鹏.数字散斑相关方法在岩石破坏测量中的发展与应用[D].北京:清华大学,2004.
    [14]孟利波,金观昌,姚学锋.DSCM中摄像机光轴与物面不垂直引起的误差分析[J].清华大学学报(自然科学版),2006,46(11):1930-1932.
    [15]孟利波.数字散斑相关方法的研究和应用[D].北京:清华大学,2005.
    [16]聂德福,赵杰,张俊善.一种估算结构钢室温蠕变的方法[J].金属学报,2011,47(2):179-184.
    [17]潘兵,吴大方,夏勇.数字图像相关方法中散斑图的质量评价研究[J].实验力学.2010,25(4):120-128.
    [18]潘兵,续伯钦.数字图像相关中亚像素位移测量的曲面拟合法[J].计量学报.2005,26(2):128-134.
    [19]潘兵,谢惠民,陈鹏万等.数字图像相关测量中镜头成像畸变的估计和校正[J].计量学报.2009,30(1):62-67.
    [20]潘兵,谢惠民,夏勇,王强.数字图像相关中基于可靠变形初值估计的大变形测量[J].光学学报,2009,29(2),400-600.
    [21]潘兵,谢惠民.基于差分进化的数字图像相关方法.光电子.激光,2007,18(1):100-103.
    [22]潘兵.数字图像相关方法及其在实验力学中的应用[D].北京:清华大学,2007.
    [23]芮嘉白,金观昌,徐秉业.一种新的数字散斑相关方法及其应用[M].力学学报.1994,26(5):599-607.
    [24]宋义敏,马少鹏,杨小彬,王显.岩石变形破坏的数字散斑相关方法研究[J].岩石力学与工程学报.2011,30(1):170-175.
    [25]孙伟,何小元,胥明,罗斌.数字图像相关方法在膜材拉伸试验中的应用[J].工程力学,2007,24(2):34-38.
    [26]王怀文,亢一澜,谢和平,数字散斑相关方法与应用研究进展[J].力学进展,2005,35(2):195-203.
    [27]王怀文.自适应数字散斑相关方法与铜箔材料断裂中的尺寸效应研究[D].天津:天津大学,2004.
    [28]王开福,高明慧,周克印.现代光测力学技术[M].哈尔滨:哈尔滨工业大学出版社.2009,148-156.
    [29]王开福.现代光测及其图像处理[M].北京:科学出版社.2013,137-145.
    [30]王显,马少鹏,陈俊达,宋义敏,数字散斑相关方法的全场优化表述[J].北京理工大学学报.2011,31(5):5-6-508.
    [31]王志勇,王磊,郭伟,沈珉.数字图像相关方法最优散斑尺寸[J].天津大学学报,2010,43(8):674-678.
    [32]伍晓赞,徐慧,王德志.单边斜裂纹的应力强度因子计算[J].湖南文理学院学报.2009:21(1):23-26
    [33]姚学锋,吴震,金观昌.数字散斑相关法中的小波减噪分析[J].清华大学学报(自然科学版),2001,41(4):108-111.
    [34]张东升,鲁成林.牙本质断裂力学行为的研究[J].中华口腔医学杂志,2007,42(12):733-736.
    [35]张蕊,贺玲凤.数字图像相关测量钢绞线弹性模量的应用研究[J].工程力学,2011,28(9):251-256.
    [36]郑高飞,亢一澜,富东慧.高分子材料湿度含量对其力学性能的影响的实验研究[J].实验力学,2003,18(1):23-28.
    [37]郑翔,张明,杨福俊,焦联联,何小元.数字图像相关法在稀土掺杂水凝胶电响应行为测量中的应用[J].高分子材料科学与工程,2010,26(9):105-108.
    [38]Amodio D., Broggiato G., Digital speckle correlation for strain measurement by image analysis[J]. Experimental Mechanics,2003,43(4):396-402.
    [39]Anderson T.L. Fracture Mechanics:Fundamentals and Applications [M], CRC Press, Taylor & Francis Group,2005.
    [40]Bakic A., Semenski D., Jecic S., Contact caustics measurements expanded to anisotropic materials, Archives of Civil and Mechanical Engineering,2011,11(3):497-505.
    [41]Bastawros A. F., Bart-Smith H., Evans A.G, Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam [J]. Journal of the Mechanics and Physics of Solids,2000,48(2): 301-322.
    [42]Besnard G, Hild F, Roux S. Finite-element displacement fields analysis from digital images: application to portevin-lechatelier bands [J]. Experimental Mechanics,2006,46:789-803.
    [43]Bornert M., Bremand F., Doumalin P., Dupre J., Fazzini M., Grediac M., Assessment of digital image correlation measurement errors:Methodology and results [J]. Exp.Mech.,2009,49:353-370.
    [44]Bruck H. A., McNeill S.R., Sutton M.A., Peters W.H.. Digital Image Correlation Using Newton-Raphson Mechod of Partial Differential Correction [J]. Experimental Mechanics, 1989.29(3),261-267.
    [45]Carlos R.V., Antonio J.S.. Correcting nonlinear lens distortion in cameras without using a model [J]. Optics & Laser Technol.2012,42:628-639.
    [46]Carroll J, Abuzaid W, Lambros J, Sehitoglu H. An experimental methodology to relate local strain to microstructural texture. Review of Scientific Instruments,2010,81(8):703-709.
    [47]Chasiotis I, Knauss WG. A New Microtensile Tester for the Study of MEMS Materials with the aid of Atomic Force Microscopy [J].Experimental Mechanics,2002,42(1):51-57.
    [48]Chen D J, Chiang F P, Tan Y S, et al. Digital speckle-displacement measurement using a complex spectrum method [J]. Applied Optics,1993,32(11):1839-1849.
    [49]Chen J., Jin G., Meng L., Applications of Digital Correlation Method to Structure Inspection[J]. Tsinghua Science and Technology.2007,12:237-243.
    [50]Cheng P, Sutton M A, Schreier H W, et al. Full-field speckle pattern image correlation with B-spline deformation function [J]. Experimental Mechanics,2002,42(3):344-352.
    [51]Chevalier L, Calloch S, Francois H, et al. Digital image correlation used to analyze the multiaxial behavior of rubber-like materials [J]. European Journal of Mechanics A/Solids,2001,20:169-87.
    [52]Choi S, Shah S P. Measurement of Deformations on Concrete Subjected to Compression Using Image Correlation [J]. Experimental Mechanics,1997,37(3):307-313.
    [53]Christian B. B., A Simple New Method for Precise Lens Distortion Correction of low Cost Camera Systems [J]. Lecture Notes in Computer Science.2004,3175:570-577.
    [54]Chu T.C., Ranson W.F.. Application of Digital Image Correlation Technique to Experimental Mechanics [J]. Experimental Mechanics,1985.25(3),232-244.
    [55]David Gregoire, Hubert Maigre, Fabrice Morestin, New experimental techniques for dynamic crack localization, European Journal of Computational Mechanics/Revue Europeenne de Mecanique Numerique,2009,18(3-4):255-283.
    [56]Fazzini M., Mistou S., Dalverny O., Robert L., Study of image characteristics on digital image correlation error assessment [J]. Optics and Lasers in Engineering,2010,48(3):335-339.
    [57]Gaudette G. R., Todaro J., Krukenkamp I. B., Computer aided speckle interferometry:a technique for measuring deformation of the surface of the heart [J]. Annals of Biomedical Engineering,2001, 29(7):775-780.
    [58]Hild F., Roux S., Digital image correlation:from displacement measurement to identification of elastic properties-a review, Strain,2006,42:69-80.
    [59]Hild F., Roux S., Digital image correlation:from displacement measurement to identification of elastic properties-areview[J]. Strain,2006,42(2):69-80.
    [60]Hua T., Xie H. M., Wang S. M., Hu Z. X., Chen P. W., Zhang Q. M., Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation [J]. Optics & Laser Technology,2011,43(1):9-13.
    [61]Hung P. C., Voloshin P. S.. In-plane strain measurement by digital image correlation [J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2003,25(3):215-221.
    [62]Jin H., Lu W. Y., Korelis J.. Micro-scale deformation measurement using the digital image correlation technique and scanning electron microscope imaging [J]. Journal of Strain Analysis for Engineering Design.2008,43(8):719-728.
    [63]Lava P., Paepegem W.V. and Coppieters S.. Impact of lens distortions on strain measurements obtained with 2D digital image correlation [J]. Opt Laser Eng.2013,51:576-584.
    [64]Lecompte D., Smits A., Bossuyt S., Sol H., Vantomme J., Hemelrijck D.V., Quality assessment of speckle patterns for digital image correlation [J]. Optics and Lasers in Engineering.2006,44: 1132-1145.
    [65]Lecompte D., Smits A., Bossuyt S., Sol H., Vantomme J., Van H. D., Habraken A. M., Quality assessment of speckle patterns for digital image correlation [J]. Optics and Lasers in Engineering, 2006,44(11):1132-1145.
    [66]Lecompte D., Sol H., Vantomme J., Habraken A., Analysis of speckle patterns for deformation measurements by digital image correlation [C] Proceedings of SPIE-The International Society for Optical Engineering.2006:6341.
    [67]Lu H., Cary P. D., Deformation measurement by digital image correlation:implementation of a second-order displacement gradient [J]. Experimental Mechanics,2000,40(4):393-400.
    [68]Lu Hua. Statistical analysis of the random error in measurements obtained using digital correlation of speckle patterns [C]. Proc of the 1993 SEM Spring Con On Exp Mech. Michigan,1993: 930-937.
    [69]Ma S.P., Jin G.C., Digital speckle correlation method improved by genetic algorithm [J]. Acta Mechanica Solida Sinica,2003,16(4):366-373.
    [70]Mahajan A., Pilch A. Chu T. Intelligent image correlation using genetic algorithms for measuring surface deformation in the autonomous inspection of structures [C]. Proceeding of the American Control Conference,2000,460-461.
    [71]Meite M., Dubois F., Pop O., Absi J., Mixed mode fracture properties characterization for wood by Digital Images Correlation and Finite Element Method coupling[J]. Engineering Fracture Mechanics,2013,105:86-100.
    [72]Meng L.B., Jin G.C., Yao X.F., Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation [J]. Optics and Lasers in Engineering,2007,45:57-63.
    [73]Niezrecki C., Avitabile P., Warren C., Pingle P., Helfrick M., A review of digital image correlation applied to structural dynamics [C]. AIP Conference Proceedings.2010,1253:219-232.
    [74]Pan B., Asundi A., Xie H. M., Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements. Optical and Lasers in Engineering,2009,47 (7-8):865.
    [75]Pan B., Asundi A., Xie H.M., Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements [J]. Optics and Lasers in Engineering,2009,47:865-874.
    [76]Pan B., Lu Z., Xie H., Mean intensity gradient:An effective global parameter for quality assessment of the speckle patterns used in digital image correlation [J]. Optics and Lasers in Engineering. 2010,48:469-477.
    [77]Pan B., Qian K., Xie H., Asundi A., On errors of digital image correlation due to speckle patterns [C]. Proceedings of SPIE-The International Society for Optical Engineering.2009:7375.
    [78]Pan B., Wu D. F., Wang Z. Y., High-temperature digital image correlation method for full-field deformation measurement at 1200℃ [J]. Measuremen Science and Technology,2011,22 (1):015701
    [79]Pan B.,Xie H., Xu B., Performance of sub-pixel registration algorithms in digital image correlation [J]. Meas Sci Technol. 2006,17(6):1615-1621.
    [80]Pan B., Xie H.M., Wang Z.Y., Qian K.M., Wang Z. Y, Study on Subset Size Selection in Digital Image Correlation for Speckle Patterns [J]. Optics Express,2008,46 (3):033601.
    [81]Pan B., Xie H.M., Hua T., Asundi A., Measurement of Coefficient of Thermal Expansion of Films using Digital Image Correlation Method [J]. Polymer Testing,2009,28(1):75-83.
    [82]Pan B., Yu L.P., Wu D., Tang L., Systematic errors in two-dimensional digital image correlation due to lens distortion [J]. Optics and Lasers in Engineering.2013,51(2):140-147.
    [83]Pataky G J., Sangid M.D., Sehitoglu H.,, Full field measurements of anisotropic stress intensity factor ranges in fatigue, Engineering Fracture Mechanics,2012,94:13-28.
    [84]Peng Zhou, Kenneth E., Subpixel displacement and deformation gradient measurement using digital image/speckle correlation [J]. Optical Engineering.2001,40(8):1613-1620.
    [85]Peters W.H, Ranson W.F., Digital imaging techniques in experimental stress analysis [J].Optical Engineering,1982,21 (3):427-431.
    [86]Pitter M. C., See C. W., Subpixel microscopic deformation analysis using correlation and artificial neural networks[J]. Optics Express,2001,8(6):322-327.
    [87]Poissant J., Barthelat F., A novel "subset splitting" procedure for digital image correlation on discontinuous displacement fields[J]. Experimental Mechanics,2010,50(3):353-364.
    [88]Samarasinghe S., Kulasiri G.D., Displacement Fields of Wood in Tension Based on Image Processing:Part 1. Tension Parallel-and Perpendicular-to-Grain and Comparisons with Isotropic Behaviour, Silva Fennica,2000,34(3):251-259.
    [89]Samarasinghe S., Kulasiri GD., Displacement fields of wood in tension based on image processing: Part 2. Crack-tip displacements in mode-I and mixed-mode fracture, Silva Fennica,2000,34(3): 261-274.
    [90]Samarasinghe S., Kulasiri GD., Stress intensity factor of wood from crack-tip displacement fields obtained from digital image processing, Silva Fennica,2004,38(3):267-278.
    [91]Schreier H.W., Braasch J.R., Sutton M.A., Systematic errors in digital image correlation caused by intensity interpolation [J]. Optical Engineering.2000,39(11):2915-2921.
    [92]Schreier H.W., Garcia D., Sutton M.A., Advances in light microscope stereo vision[J]. Experimental Mechanics.2004,44(3):278-288.
    [93]Schreier H.W., Sutton M.A., Systematic Errors in Digital Image Correlation Due to Undermatched Subset Shape Functions [J]. Experimental Mechanics,2002,42(3):303-310.
    [94]Sjodahl M., Accuracy in electronic speckle photography [J]. Applied Optics,1997,36(13): 2875-2885.
    [95]Sjodahl M., Benckert L. R., Electronic speckle photography:analysis of an algorithm giving the displacement with subpixel accuracy [J]. Applied Optics,1993,32(13):2278-2284.
    [96]Sjodahl M., Benckert L. R., Electronic speckle photography:analysis of an algorithm giving the displacement with subpixel accuracy[J]. Applied Optics,1993,32(13):2278-2284.
    [97]Sjodahl M., Benckert L. R., Systematic and random errors in electronics speckle photography [J]. Applied Optics,1994,33(31):7461-7471.
    [98]Sjodahl M., Electronic speckle photography-increased accuracy by nonintegral pixel shifting [J]. Applied Optics,1994,33(28):6667-6673.
    [99]Smith I., Landis E., Gong M., Fracture and Fatigue in Wood, John Wiley & Sons,2003.
    [100]Sun Y. F., Pang H. J.. Study of optimal subset size in digital image correlation of speckle pattern images [J]. Optics and Lasers in Engineering,2007,45:967-974.
    [101]Sun Y. F., Pang H. L., Wong C. K., Finite element formulation for a digital image correlation method [J]. Applied Optics,2005,44(34):7357-7363.
    [102]Sun Z., Lyons J. S., McNeill S. R., Measuring microscopic deformation with digital image correlation [J]. Opt Laser Eng,1997,27(4):409-428.
    [103]Sutton M. A., Wolters W. J., Peters W.H., Ranson W.F., McNeill S.R., Determination of Displacements Using an Improved Digitial Image Correlation Method [J]. Image and Vision Computing,1983,1(3):133-139.
    [104]Sutton M.A., Chen M., Application of an optimized digital correlation method to planar deformation analysis[J]. Image and Vision computing,1986.4(3):143-150
    [105]Sutton M.A., McNeill S.R., Effect of subpixels image restoration on digital correlation error estimates [J]. Optical Engineering,1988.27(3):173-175
    [106]Sutton M.A., Orteu J.J., Schreier H.W., Image Correlation for Shape, Motion and Deformation Measurements; Basic Concepts, Theory and Applications [M]. Springer,2009.
    [107]Tong W., An evaluation of digital image correlation criteria for strain mapping applications [J].Strain,2005,41(4):167-175.
    [108]Vendroux G., Knauss W.G., Submicron deformation field measurements:Part 1. Developing a digital scanning tunneling microscope [J]. Experimental Mechanics,1998,38(1):18-23.
    [109]Vendroux G, Knauss W.G, Submicron deformation field measurements:Part 2. Improved digital image correlation [J]. Experimental Mechanics.1998,38(2):86-92.
    [110]Wang C.C., Deng. J.M., Ateshian. G.A., An Automated Approach for Direct Measurement of Two-Dimensional Strain Distributions Within Articular Cartilage Under Unconfined Compression [J]. Journal of Biomechanical Engineering,2002,124:557-567.
    [111]Wang L., Lu Z., Twelve Elastic Constants of Betula platyphylla Suk., Forestry Studies in China, 2004,6(1):37-41.
    [112]Wang Z., Li H., Tong J., Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images [J]. Exp Mech,2007,47(5):701-707.
    [113]Watanabe Y., Lenoir N., Hall S. A., Otani J., Strain Field Measurements in Sand under Triaxial Compression Using X-Ray CT Data and Digital Image Correlation[M] Advances in Computed Tomography for Geomaterials:GeoX 2010, John Wiley & Sons, Inc.,2010.
    [114]Weng J. Y., Camera calibration with distortion models and accuracy evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1992,14(10):965-980.
    [115]Willson R. G., Shafer S. A., What is the center of the image [J]. J Opt Soc Am A.1994,11(11): 2946-2955.
    [116]Wim V. P., Assen A. S., Ilia R. R., Study of the deformation characteristics of window security film by digital imagecorrelation techniques [J]. Optics and Lasers in Engineering,2008,47(3): 390-397.
    [117]Yamaguchi I., A Laser-speckle strain gauge [J]. Journal of Physics E:Scientific Instruments,1981, 14(11):1270-1273
    [118]Yamaguchi I., Speckle Displacement and Deformation in the Diffraction and Image Fields for Small Object Deformation Journal of Modern Optics,1981,28(10),1359-1376.
    [119]Yao S., Pang JHL., Study of optimal subset size in digital image correlation of speckle pattern images [J]. Optics and Lasers in Engineering.2007,45:967-974.
    [120]Yoneyama S., Kikuta H., Kitagawa A., Kitamura K., Lens distortion correction for digital image correlation by measuring rigid body displacemem [J]. Optical Engineering.2006,45(2):023602.
    [121]Yoneyama S., Morimoto Y., Takashi M., Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation [J]. Strain,2006,42(1):21-29.
    [122]Zhang D. S., Eggleton C. D., Arola D. D., Evaluating the mechanical behavior of arterial tissue using digita image correlation [J].Experimental Mechanics,2002 42(4):409-416.
    [123]Zhang D. S., Luo M., Arola D. D., Displacement/strain measurement using an optical microscope and digital image correlation[J]. Optical Engineering.2006,45(3):033605.
    [124]Zhang J., Jin G.C., Application of an improved subpixel registration algorithm on digital speckle correlation measurement [J]. Optics & Laser Technology.2003,35:533-542.
    [125]Zhang Z. Y., Flexible Camera Calibration by Viewing a Plane from Unknown Orientations [C]. ICCV'99, Corfu, Greece,1999.666-673.
    [126]Zhao W., Jin G., An experimental study on measurement of Poisson's ratio with digital correlation method [J]. Journal of Applied Polymer Science.1996,60:1083-1088.
    [127]Zink A.G., Davidson R. W., Hanna R. B., Strain Measurement in Wood Using a Digital Image Correlation Technique[J]. Wood and Fiber Science,1995,27(4):346-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700