用户名: 密码: 验证码:
产品运输包装系统逆子结构分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对物流过程中产品保护遇到的问题,研究产品在运输环境下的振动和冲击特性是设计合适包装件的基础。本文提出产品运输包装系统逆子结构分析方法及其包装缓冲性能评价方法。首先介绍本课题的研究意义,综述了单自由度、多自由度以及随机激励下缓冲包装动力学,路面激励下包装振动与冲击特性、逆子结构理论以及包装缓冲性能评价方法的研究现状和进展。
     物流中,通常将产品和车辆通过包装件耦合成二级多点耦合系统。考虑产品关键部件及其固定装置时,关键部件、产品和车辆通过固定装置和包装件耦合成三级多点耦合系统。本文在二级多点耦合子结构理论基础上结合产品-运输系统实际改进二级多点耦合逆子结构理论,并应用其分析产品-运输系统的动态特性。基于二级多点耦合子结构理论发展三级多点耦合子结构理论,结合二级多点耦合逆子结构理论发展三级多点耦合逆子结构理论,并应用三级多点耦合逆子结构理论分析关键部件-产品-运输系统的动态特性。通过产品-运输和关键部件-产品-运输多点耦合系统的集总参数模型和物理样机模型分别验证了二级和三级多点耦合逆子结构理论的正确性和在实际应用中的有效性。
     研究了包装件各耦合点在振动中传递振动的能力。基于频率响应函数、二级和三级多点耦合逆子结构理论,提出通过包装件各耦合点产品或关键部件受路面激励所得响应的振动贡献、振动贡献比、频段总振动贡献和频段总振动贡献比,表征产品-运输和关键部件-产品-运输多点耦合系统中包装件各耦合点在振动和冲击中的缓冲性能。
     研究了采用简单易行的冲击力锤激励进行振动特性识别的实验方法,总结了实际动态测试实验中得到的一些经验和教训,提出用于产品-运输系统和关键部件-产品-运输系统振动特性识别的动态测试方法,并进行冰箱-货车二级多点耦合系统车载实验和压缩机-冰箱-货车三级多点耦合系统车载实验。车载实验表明,应用产品-运输系统和关键部件-产品-运输系统多点耦合逆子结构理论进行包装件结构振动特性研究是可行的。从整个频域来看,通过各耦合点冰箱或压缩机的振动贡献趋势相同,而在其总响应中的振动贡献比相差很大。总振动贡献和总振动贡献比的数值结果表明包装件各耦合点的振动传递能力和缓冲效果略有不同。
Since the shock and vibration characteristics of product is vital for the packaging designof the product, this paper proposes a new transport packaging system dynamic analysis theoryand buffer performance evaluation method to deal with the current problems and challengesof product protection in logistics. With a review of the research status of the single degree offreedom, many degrees of freedom and random excited dynamics of package cushioning, theshock and vibration characteristics of product within the road excitation, inverse substructuretheory and buffer performance evaluation method, this paper firstly gives an introduction toits research significance.
     In logistics, the product and the vehicle can usually constitute a two-substructure coupledsystem through packaging. The critical component-product-vehicle system is treated as athree-substructure multi-coordinate coupled system. It is composed of a critical component, aproduct and a vehicle, which are connected by a fixed installation structure and a packagingone. The two-substructure coupled inverse substructure theory, extended fromtwo-substructure coupled substructure theory, can be used to analyze the dynamiccharacteristics of product-vehicle system. The three-substructure coupled substructure theoryis extended from two-substructure coupled substructure theory, with two-substructure coupledinverse substructure theory, the three-substructure coupled inverse substructure theory isfurther proposed. Based on that, the dynamic characteristics of criticalcomponent-product-vehicle system can be thoroughly analyzed. The lumped parameter modeland the physical prototype model for the product-vehicle and criticalcomponent-product-vehicle three-substructure multi-coordinate coupled systems areconducted to respectively verify the validity and accuracy of the two-substructure and thethree-substructure multi-coordinate coupled inverse substructure theorys.
     This paper conducts a research on the vibration transmission ability and the cushioningeffect of the coupling points of the packaging units. Based on frequency response function,two-substructure and the three-substructure multi-coordinate coupled inverse substructuretheory, the concepts of the vibration contribution, vibration contribution ratio, overallvibration contribution and overall vibration contribution ratio to product response or criticalcomponent response through each packaging unit are introduced.
     By adopting the simple and practicable experimental method which uses impact hammerexcitation to recognize the vibration characteristics. this paper proposes a dynamic testmethod for the vibration characteristics recognization of the product-vehicle system and thecritical component-product-vehicle system. Based on that, it conducts online tests of the refrigerator-truck and the compressor-refrigerator-truck multi-coordinate coupled system.The results of the online tests verify the validity and accuracy of the method. Seen from thewhole frequency range, the vibration contributions of the compressor and refrigerator atdifferent coupling points are almost matched. But for most frequencies, the total vibrationcontribution ratios of the compressor and refrigerator at different coupling points are different.The values of overall vibration contribution and overall vibration contribution ratio reveal thatthe vibration transmission ability and buffering effects of different coupling points ofcoupling units in a package are different.
引文
[1] Mindlin R D. Dynamics of Package Cushioning[M]. Bell Telephone Laboratories,1945.
    [2] Janssen R R. A Method for the Paper Selection of A Package Cushion Material and Its Dimensions[J].North American Aviation,1952:51.
    [3] Franklin P E, Hatae M T. Shock and Vibration Handbook[M]. New York: McGraw-Hill BookCompany,1961.
    [4] korllllauser M. Prediction and Evaluation of Sensitivity to Transient Acceleration[J]. Appl Mech,1954,21(4):121-126.
    [5] Pendered J W. The Shock Spectrum[R]. Univ. College. London Dept of Mechanical Engineering.Rept.1965.
    [6] Newton R E. Fragility Assessment Theory and Practice[R]. Monterey Research Laboratory, Inc.Monterey, Califonia,1968.
    [7] Burgess G J. Product Fragility and Damage Boundary Theory[J]. Packaging Technology and Science,1988,1(1):5-10.
    [8] Wang Z L, Wu C F and Xi D C. Damage Boundary of a Packaging System under Rectangular PulseExcitation[J]. Packaging Technology and Science,1998,11(4):189-202.
    [9] Wang Z W and Hu C Y. Shock Spectra and Damage Boundary Curves for Nonlinear PackageCushioning System[J]. Packaging Technology and Science,1999,12(5):207-217.
    [10] Wang Z W. Dropping Damage Boundary Curves for Cubic and Tangent Package CushioningSystems[J]. Packaging Technology and Science,2002,15(5):263-266.
    [11] Wang Z W and Hu C Y. The Dropping Shock of Nonlinear Cushioning System[C]. Proceedings ofInternational Packaging Conference,1996, Beijing.
    [12] Wang Z W, Hu C Y. On Evaluation of Product Dropping Damage[J]. Packaging Technology andScience,2002,15(3):115-120.
    [13] Burgess, Gary J. Product Fragility and Damage Boundary Theory[J]. Packaging Science andTechnology,1988,Vol.15-10.
    [14]胡强,童忠钫.泡沫塑料包装衬垫缓冲性能建模[J].振动工程学报,1990,3(3):9-17.
    [15]高德,卢富德.具有转动包装系统的正切非线性模型冲击响应研究[J].振动与冲击,2010,29(010):131-136.
    [16]董静,高德.半正弦波冲击时瓦楞纸板破损边界研究[J].哈尔滨商业大学学报(自然科学版),2005,21(2):11-12.
    [17]高德,卢富德.聚乙烯缓冲材料多自由度跌落包装系统优化设计[J].振动与冲击,2012,31(3):69-72.
    [18]肖艳萍,毛谦敏.矩形波冲击时双线性包装系统的产品损坏边界[J].包装工程,1997,18(2):37-39.
    [19]李小丽.非线性缓冲包装系统冲击特性的仿真研究[D].西安:西安理工大学,2004.
    [20]姜久红,王志伟.缓冲包装系统的简化对加速度响应影响分析[J].湖北工业大学学报,2005,5:23-25.
    [21]武冬雁,王志伟.后峰锯齿脉冲激励下正切型非线性包装系统的冲击响应[J].包装工程,1999,20(1):5-7.
    [22]卢富德,陶伟明,高德.具有简支梁式易损部件的产品包装系统跌落冲击研究[J].振动与冲击,2012,31(15):79-81.
    [23] Schell E H. Evaluation of a Fragility Test Method and some Proposals for Simplified Methods(DigitalSimulation of Fragility Test Method for Packaging Equipment)[J]. Shock and Vibration Bull.,1969,40(6):133-152.
    [24] Xi D C, Chen Q H, Pen N L, et al. The Vibration and Shock Testing in China[C]. Proceedings of the5th IAPRI World Conference on Packaging,1986.
    [25]王志伟,胡长鹰.洗衣机包装系统在矩形波冲击下的特性研究[J].包装程,1997,18(2-3):14-17.
    [26]王志伟.半正弦脉冲激励下洗衣机的冲击谱分析[J].包装工程,1997,18(4):8-11.
    [27]王志伟,胡长鹰.后峰锯齿形脉冲激励下洗衣机包装系统的冲击特性[J].包装工程,1998,19(5):4-7.
    [28]姜久红,王志伟.二自由度线性系统跌落响应影响因素分析[J].包装工程,2006,27(5):101-103.
    [29]王军.产品破损评价及其防护包装动力学理论研究[D].江南大学,2009.
    [30] Urbanik T J. A Method for Determining the Effect of Transportation Vibration on Unitized CorrugatedContainers [J]. The Shock and Vibration Bull.,1981,51(3):213-224.
    [31] Urbanik T J. Vibration Loading Mechanism of Unitized Corrugated Containers with Cushions andNon-load Bearing Contents [J]. The Shock and Vibration Bull.,1984,54(3):111-122.
    [32] Thakur K P, Pang D. Simulating Complex Loading Patterns in the Stack of Packages[C]. Proceedingsof the10th IAPRI World Conference on Packaging.1997.
    [33] Marcondes J A, Schueneman H. Measurement and Analysis of Dynamic Forces within a Stack ofPackages[C]. Proceedings of the20th IAPI Symposium, San Jose,2000.
    [34] Rouillard V, Sek M A, Crawford S. The Dynamic Behaviour of Stacked Shipping Units DuringTransport. Part1: Model Validation[J]. Packaging Technology and Science,2004,17(5):237-247.
    [35]梁艳春,冯大鹏.模糊自适应神经网络应用于包装件识别的研究[J].模式识别与人工智能,2000,13(003):291-298.
    [36]朱大鹏,张志昆.基于高阶Prony方法的包装系统模态参数识别[J].兰州交通大学学报,2008,27(6):72-74.
    [37] Rountree R C, Safford F B. Methodology and Standardization for Fragility Evaluation[J]. ShockVibration Bull,1970,41(5):111-128.
    [38]宋宝峰.关于振动脆值定义及应用的探讨[J].包装工程,1996,17(2):1-5.
    [39]金潇明.包装系统在随机振动下的破坏准则与疲劳计算[J].株洲工学院学报,1999,13(1):13-16.
    [40]汤伯森,向红.用脉冲响应法求解包装件的随机振动问题[J].包装工程,2000,21(3):4-8.
    [41]李晓刚.运输包装系统随机振动频域分析[J].包装工程,2012,33(15):50-54.
    [42]胡志刚,张永林,宋少云.包装物随机振动分析方法研究[J].包装工程,2003,24(6):58-59.
    [43]甘春标.随机激励下高维包装振动系统的可靠性分析[J].包装工程,2004,25(6):8-10.
    [44] Carlos Bernad, Alberto Laspalas, David González, et al. Dynamic Study of Stacked Packaging Unitsby Operational ModalAnalysis[J]. Packaging Technology and Science,2010,23(3):121–133.
    [45] Shires D. On the Time Compression (Test Acceleration) of Broadband Random Vibration Tests[J].Packaging Technology and Science,2011,24(2):75-87.
    [46]孙勇,扶明福,张明辉.系统受随机激励时的可靠性分析[J].株洲工学院学报,2001,15(5):1-4.
    [47]陈倩,甘春标,郭云松.一类受随机激励的强非线性包装振动系统的随机平均[J].包装工程,2007,28(7):1-3.
    [48]甘春标,何世民.随机激励下一类包装振动系统的随机平均[J].包装工程,2005,26(5):18-20.
    [49]陈元龙.随机激励环境下电子产品防振包装原理研究[D].西安理工大学,2008.
    [50]陈林聪.强非线性缓冲包装系统随机可靠性研究[J].苏州科技学院学报(工程技术版),2010,23(004):48-51.
    [51] Singh S P, Sandhu A P S, Singh J, et al. Measurement and Analysis of Truck and Rail ShippingEnvironment in India[J]. Packaging Technology and Science,2007,20(6):381–392.
    [52] Fei Lu, Yutaka Ishikawa, Takeo Shiina, et al.Analysis of Shock and Vibration in Truck Transport inJapan[J]. Packaging Technology and Science,2008,21(8):479–489.
    [53] Chonhenchob V, Singh S P, Singh J J, et al. Measurement and Analysis of Truck and rail VibrationLevels in Thailand[J]. Packaging Technology and Science,2010,23(2):91-100.
    [54] Nei D, Nakamura N, Roy P, et al. Wavelet Analysis of Shock and Vibration on the Truck Bed[J].Packaging Technology and Science,2008,21(8):491–499.
    [55] Singh S P, Joneson E, Singh J, et al. Dynamic Analysis of Less-than-truckload Shipments and TestMethod to Simulate This Environment[J]. Packaging Technology and Science,2008,21(8):453–466.
    [56] Fei Lu, Yutaka Ishikawa, Kitazawa, Hiroaki, et al. Effect of Vehicle Speed on Shock and VibrationLevels in Truck Transport [J]. Packaging Technology and Science,2010,23(2):101–109.
    [57] Rouillard V, Sek M, Crawford S. The Dynamic Behaviour of Stacked Shipping Units DuringTransport--part1: Model Validation[J]. Packaging Technology and Science2004;17:237–247.
    [58] Sek MA, Rouillard V, Parker A J. A Study of Nonlinear Effects in a Cushion-product System on ItsVibration Transmissibility Estimates with the Reverse Multiple Input-Single Output Technique[J].Packaging Technology and Science2013;26:125-135.
    [59] Lamb M J, Rouillard V, Sek M A. Monitoring the Evolution of Damage in Packaging Systems UnderSustained Random Loads[J]. Packaging Technology and Science2012;25:39-51.
    [60]徐伟民,孙国正.路面脉冲激励下汽车运输包装产品响应的数值仿真[J].包装工程,2004,25(4):163-165.
    [61]张秀梅,徐伟民.路面多种激励下汽车运输包装产品动态响应的数值仿真[J].包装工程,2006,27(1):67-70.
    [62]朱学旺,范宣华,宁佐贵.特种包装产品公路运输环境振动室内模拟试验研究[J].强度与环境,2008,35(1):6-12.
    [63]曾山,徐伟民.路面随机激励下汽车运输包装的动态特性仿真[J].包装工程,2004,25(4):166-167.
    [64]张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型[J].农业机械学报,2004,35(2):9-12.
    [65]陈杰平,陈无畏,祝辉.基于Matlab/Simulink的随机路面建模与不平度仿真[J].农业机械学报,2010,41(3):11-15.
    [66] Zhen J, Lim T C, Lu G, et al. Experimental Determination of Automotive System ResponseCharacteristics[J]. Journal of Passenger Cars: Mechanical Systems,2001,110(6):1755–1762.
    [67]向树红等.模态分析与子结构方法新进展[J].力学进展,2004,34(3):289-302.
    [68] Li J, Lim T C. Application of Enhanced Least Square to Component Synthesis Using FRF forAnalyzing Dynamic Interaction of Coupled Body-sub-frame System[C]. Proceeding of the SAE Noiseand Vibration Conference and Exposition, Traverse City, Michigan,1999.
    [69]杨炳渊等.界面连接刚度参数辨识的子结构分析法[J].力学季刊,2001,22(4):420-427.
    [70] Otte D, Leuridan J, Grangier H, et al. Prediction of the Dynamics of Structural Assemblies UsingMeasured FRF-data: Some Improved Data Enhancement Techniques[C]. Proceeding of9thInternational Modal Analysis Conference,Florence, Italy,1991.
    [71] Lim T C, Steyer G. C. An Improved Numerical Procedure for the Coupling of Dynamic ComponentsUsing Frequency Response Functions[C]. Proceedings of the9th International Modal AnalysisConference, Florence, Italy,1991.
    [72] Brown D L, Allemang R J, Zimmerman R, et al. Parameter Estimation Techniques for ModalAnalysis[J]. Training,1979,2014:10-30.
    [73]许文才.缓冲包装性能试验的模态分析法[J].包装工程,1988,1:35-39.
    [74]董秀丽,谷黎明.缓冲包装性能的模态分析[J].农机与食品机械,1996,2:14-15.
    [75]朱大鹏,张志昆.用结构化非线性最小范数法识别包装系统模态参数[J].兰州交通大学学报,2009,28(6):112-114.
    [76] Dhatt G, Touzot G. Finite Element Method[M]. John Wiley&Sons,2012.
    [77]王小燕.基于有限元方法的瓦楞纸筒非线性屈曲分析[J].包装工程,2011,32(21):51-53.
    [78] Langley R S, Cotoni V. Response Variance Prediction in the Statistical Energy Analysis of Built-upSystems[J]. The Journal of the Acoustical Society ofAmerica,2004,115:706.
    [79]孙德强.基于能量吸收图法的缓冲包装材料优化设计[J].西安理工大学学报,2006,22(4):411-414.
    [80]刘乘,刘晶.应力-能量法在求取包装材料最大加速度-静应力曲线方面的应用分析[J].包装工程,2011,32(1):74-75.
    [81] Mourelatos Z P. An Efficient Crankshaft Dynamic Analysis Using Substructuring with Ritz Vectors[J].Journal of Sound and vibration,2000,238(3):495-527.
    [82] Zhen J, Lim T C and Lu G. Determination of System Vibratory Response Characteristics Applying aSpectral-based Inverse Sub-structuring Approach.Part1: Analytical Formulation[J]. InternationalJournal of Vehicle Noise and Vibration,2004,1(1):1-30.
    [83] Zhen J, Lim T C and Lu G. Determination of System Vibratory Response Characteristics Applying aSpectral-based Inverse Sub-structuring Approach.Part1: Motor Vehicle Structures[J]. InternationalJournal of Vehicle Noise and Vibration,2004,1(1):31-67.
    [84] Lim T C and Li J. A Theoretical and Computational Study of the FRF-based Substructuring TechniqueApplying Enhanced Least Square and TSVD Approaches[J]. Journal of Sound and Vibration,2000,231(4):1135-1157.
    [85] Wang Z W, Wang J, Zhang Y B, et al. Application of the Inverse Substructure Method in theInvestigation of Dynamic Characteristics of Product-transport-system[J]. Packaging Technology andScience,2012,25(6):351-362.
    [86] Wang Z W, Wang J. Investigation Substructure Method of Three-substructures Coupled System and ItsApplication in Product-transport-system[J]. Journal of Vibration and Control,2011,17(6):943-951.
    [87] Franklin P E, Hatae M T. Shock and Vibration Handbook[J]. Packaging Design,1961,1(96):1.
    [88] Miltz J, Gruenbaum G. Evaluation of Cushioning Properties of Plastic Foams From CompressiveMeasurements[J]. Polymer Engineering&Science,1981,21(15):1010-1014.
    [89] Burgess G. Generation of Cushion Curves From One Shock Pulse[J]. Packaging Technology andScience,1994,7(4):169-173.
    [90] Sek M A, Minett M, Rouillard V, et al. A New Method for the Determination of Cushion Curves[J].Packaging Technology and Science,2000,13(6):249-255.
    [91] Maiti S K, Gibson L J, Ashby M F. Deformation and Energy Absorption Diagrams for CellularSolids[J]. Acta metallurgica,1984,32(11):1963-1975.
    [92] Wang D M, Wang Z W, Liao Q H. Energy Absorption Diagrams of Paper Honeycomb SandwichStructures[J]. Packaging Technology and Science,2009,22(2):63-67.
    [93]鄂玉萍.湿度和应变率对纸质缓冲材料能量吸收特性的影响[D].江南大学,2010.
    [94]孟宪文,计宏伟,王怀文,等. PC主机运输包装件的防振缓冲性能评价[J].振动与冲击,2007,26(8):162-164.
    [95]计宏伟,王怀文.基于高速图像测量技术的缓冲材料缓冲性能的表征[J].振动与冲击,2011,30(9):216-220.
    [96] Yi J W, Park G J. Development of a Design System for EPS Cushioning Package of a Monitor UsingAxiomatic Design[J]. Advances in Engineering Software,2005,36(4):273-284.
    [97] Marcondes J, Hatton K, Graham J, et al. Effect of Temperature on the Cushioning Properties of SomeFoamed Plastic Materials[J]. Packaging Technology and Science,2003,16(2):69-76.
    [98]龙岩.基于改进传递路径分析方法的动力总成悬置系统优化设计[D].吉林大学,2010.
    [99]李德葆.振动模态分析及其应用[M].宇航出版社,1989.
    [100]李德葆,陆秋海.实验模态分析及其应用[M].科学出版社,2001.
    [101]计晨,汪玉,赵建华等.舰用柴油机抗冲击性能频域分析[J].振动与冲击,2010,29(11):171-176.
    [102]应怀樵,刘进明等.DASP大容量数据自动采集和信号处理系统[M].北京:东方振动和噪声技术研究所,2001
    [103]应怀樵.现代振动与噪声技术:第5卷[M].航空工业出版社,2007.
    [104]杨彦芳.基于频响函数的网架结构损伤诊断方法研究[D].大连:大连理工大学,2008.
    [105]熊诗波,黄长艺.机械工程测试技术基础[M].机械工业出版社,2006.
    [106]曹树谦,张文德等.振动结构模态分析:理论,实验与应用[M].天津大学出版社,2001.
    [107]傅志方,华宏星.模态分析理论与应用[M].上海交通大学出版社,2000.
    [108]张令弥.振动测试与动态分析[M].航空工业出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700