用户名: 密码: 验证码:
7S、11S酶解产物的特性及其在肉肠中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蛋白的物化性质不能完全满足现代食品加工的需求,不同的加工食品对蛋白质物化性质的要求不同,有些物化特性需要加强或减弱,因此开发针对不同食品需要的专用大豆蛋白制品成为食品工业亟待解决的问题。
     大豆蛋白主要组分为7S和11S球蛋白,其对大豆蛋白的各项物化特性起着十分重要的作用。目前,在分子层面对7S和11S球蛋白分别进行改性修饰的技术研究较少。因此如何更好的利用7S和11S球蛋白的物化特性,研究适宜于肉制品的专用大豆蛋白是增强大豆蛋白企业竞争力的有效途径。本文从6个品种大豆中筛选出适宜品种,构建了大豆蛋白的亚基组成和7S/11S和肉肠品质的相关性,对所筛选的品种的大豆分离蛋白(SPI),7S及11S球蛋白结构和功能特性进行了分析;用菠萝蛋白酶、胰蛋白酶、中性蛋白酶、复合蛋白酶和碱性蛋白酶分别对7S和11S球蛋白酶法改性,比较了不同酶的水解蛋白对肉肠品质的影响,筛选出适宜肉制品加工的酶解蛋白,并对其工艺参数进行了优化;评价其改性后结构、功能特性的变化,分析了酶解蛋白的功能特性和肉肠加工特性的相关性;探讨了酶解蛋白对猪肉肠凝胶特性的影响,分析了维持肉糜凝胶的化学作用力和二硫键与肉肠品质的相关性。主要研究结果如下:
     1.不同品种大豆蛋白的亚基组成和肉肠品质的相关性
     同添加其它品种的SPI相比,添加中豆36 SPI的猪肉肠,可以显著提高猪肉肠的质构、凝胶强度和得率。确定中豆36为肉肠加工的适宜品种。不同品种的大豆蛋白亚基和7S/11S的比例与肉肠的品质之间存在一定的相关性。β亚基、7S的含量和与7S/11S的比例与肉肠的弹性、咀嚼性、凝胶强度(GS)、得率和色度均呈现显著正相关性;11S的含量与肉肠的品质呈现显著的负相关性。
     通过傅里叶红外光谱(FT-IR)、SDS-聚丙烯烯酰胺凝胶电泳(SDS-PAGE)和扫描电镜图谱(SEM)、疏水性和巯基含量的的变化研究了7S、11S和SPI结构,结果表明:7S、11S和SPI结构存在差异,其二级结构的含量和分子表面性状不同;11S球蛋白中游离巯基和总巯基含量高于7S球蛋白;7S球蛋白的疏水性高于11S球蛋白。通过大豆SPI、7S及11S的功能特性比较发现:SPI、7S及11S的功能特性之间存在较大差异,11S球蛋白具有较强的凝胶性、吸油性和溶解度;7S球蛋白具有较高的持水性(WHC)和乳化活性(EAI)。
     2.不同酶对肉肠品质的影响及工艺参数的优化
     通过比较五种酶水解7S和11S球蛋白得到的酶解产物对肉肠品质的影响,结果表明:菠萝蛋白酶和碱性蛋白酶水解7S和11S的酶解产物能较好的改善肉肠的质构、得率、GS和色度,且优于添加市售杜邦SPI的肉肠。
     以不同的水解度(DH)和添加量为影响因素,确定了肉肠加工所需的菠萝蛋白酶和碱性蛋白酶水解7S和11S酶解产物的最佳工艺参数。7S菠萝蛋白酶的工艺优化参数为:水解度为6%,添加量为1.5%;7S碱性蛋白酶的艺优化参数为:水解度为11%,添加量为1.5%;11S菠萝蛋白酶的工艺优化参数为:水解度为4%,添加量为1.0%;11S碱性蛋白酶的艺优化参数为:水解度为10%,添加量为1.5%。
     碱性蛋白酶7S和11S的酶解产物以不同比例和不同添加量添加至猪肉肠中,确定出肉肠适宜的大豆蛋白的最佳工艺参数为:7S、11S酶解蛋白的比例为3.5:1,添加量为0.5%。
     3.酶解对7S和11S球蛋白功能性质的影响
     酶解后7S和11S球蛋白的溶解度和乳化性有了显著的改善,持水性有所降低,吸油性未发生显著的变化。
     酶解蛋白的功能特性与肉肠品质的相关性分析结果表明:溶解度和乳化性和肉肠的弹性、内聚性、回复性和得率呈现极显著的正相关性;持水性与肉肠的弹性、内聚性、回复性和得率呈现极显著的负相关性;吸油性和乳化稳定性与肉肠的品质的相关性不显著;
     4.酶解对7S和11S球蛋白结构的影响
     通过利用SDS-PAGE、SEM、FT-IR红外光谱、拉曼光谱、疏水性和巯基含量的变化等手段对蛋白结构的研究,结果一致表明:酶解导致蛋白的构象发生了很大变化,且构象的变化的程度取决于水解的程度。
     由SDS-PAGE电泳分析结果可知:酶解后的电泳图谱发生了很大变化。其中7S和11S的亚基均发生了显著的降低,11S的酸性亚基较碱性亚基更容易被水解;粉体的扫描电镜分析结果表明:所有酶解后的样品在相同的观察条件下,其粉体结构发生了明显改变。随着水解程度的增加,7S和11S球蛋白表面结构质地开始疏松,紧密性逐渐减弱,并伴随微小孔洞出现。FT-IR的结果表明,蛋白在酶法水解过程中各种构象所占的比例发生了很大的变化,其二级结构发生了不同程度的的变化,这可能与氢键变化关系密切。由疏水性和巯基含量的结果可以得知:蛋白的疏水性和巯基含量受水解度的影响较大,酶解导致了7S和11S疏水性的明显增强,巯基含量的显著增大,从而引起结构的变化。
     5.酶解产物对肉糜凝胶的化学作用力和超微结构的影响
     7S和11S球蛋白的酶解产物均能显著的改善肉肠的蒸煮损失率和保水性。添加7S和11S的酶解产物所形成肉糜凝胶的蛋白质间的静电相互作用较空白均有所下降。添加7S和11S的酶解产物所形成肉糜凝胶的蛋白质间的氢键、二硫键和疏水相互作用均显著增强。静电相互作用与肉肠凝胶的质构相关性不显著,不是维持肉糜凝胶网络结构的主要作用力;疏水相互作用和二硫键与肉糜凝胶的弹性和咀嚼性呈现高度的正相关性,与蒸煮损失率呈现高度的负相关性,所以它们是维持肉糜凝胶网络结构的主要作用力。氢键对7S和11S的酶解产物所形成的肉糜凝胶的贡献不同,氢键与添加7S酶解产物所形成的肉糜凝胶的质构呈现显著的正相关性,但与添加11S酶解产物所形成的肉糜凝胶的质构呈现显著的负相关性。
     通过对添加7S和11S的酶解产物所形成的凝胶的微观结构分析表明,随着添加的酶解产物的水解度的增大,所形成的凝胶的网络结构逐渐紧密,且比较均匀,无明显的空洞,显著的改善了肉糜凝胶的网络结构。
     综上可知:不同品种大豆的亚基与肉肠品质存在显著的相关性,酶解的7S和11S球蛋白的功能特性、结构特性和肉肠品质三者之间密切相关。我们在实际生产中应根据不同肉制品的要求筛选适宜的大豆蛋白。
One of the limitations in the usage of soybean proteins is the lack of desired functional attributes to be incorporated into various food formulations.Some functional properties of soybean proteins should be enhanced or improved.The problem solved immediately is to investigate the special protein for different food by enhancing or improving the properties of soybean proteins.
     Soybean proteins consist of two major components,7S and 11S globulins,which play an important role in all phisico-chemical properties of the soybean proteins.At the present,there are not many researches on the technology of respectively modifying 7S and 11S globulins at the molecule structure.Consequently,it is important to find a special soy protein by the use of 7S and 11S globulin of the physico-chemical properties,which can enhance the competitiveness of enterprises.In this paper the most suitable one was determined from six varieties and the correlation between subunits composition and ratio of 7S to 11S on the quality of pork sausage was formed.The functional and structural properties of SPI,7S and 11S were analyzed.The effect on the quality of pork sausage was compared by adding the hydrolysates of differents DH values of 7S and 11S by the hydrolysis of Bromelain, Tryptic,Netrease,Protamex,Alaclase.The proper hydrolysates were determined for pork sausage and technical parameters were optimized.In additon,the functional and structural properties were evaluated of 7S and 11S by hydrolysis of Alaclase and the correlation beween the functional properties and the quality of pork sausage was found.At last,the effect on the pork gels adding different hydrolysates of 7S and 11S were compared and the relationship of chemical interation and the quality of pork sausage was set up.The main research results are listed as follows:
     1,The correlation between subunits composition and ratio of 7S to 11S on the quality of pork sausage
     The results showed that zhong 36 SPI improved TPA,GS and yield of the pork sausage significantly in comparison with adding other varieties of SPI.After a statistical correlation analysis between the component of protein subunits and the indexes of pork sausage,it was found that the significant degree was varied with different subunits.Subunitβand the content of 7S and 7S/11S had a significant positive correlation with springiness,chewiness,yield and GS.The content of 11S had a great significant negative correlation with them.
     2,The effect on the quality of pork sausage adding 7S and 11S hydrolysates by different proteases
     The result showed that the hydrolysates of 7S and 11S by the hydrolysis of Bromelain and Alclase could improve the quality of pork sausage,which was better than that of SPI in the market by copmaring the quality of pork sausages adding 7S and 11S by the hydrolysis of five proteases.
     The optimum quality of pork sausage adding 7S and 11S hydrolysate were investigated.When adding 7S and 11S hydrolysate by Bromelain,the optimum parameters were DH 7%,addition 1.5%and DH 5%,addition 1.0%respectively. While adding 7S and 11S hydrolysate by Alaclase,the optimum parameters were DH 11%,addition 1.5%and DH 10%,addition 1.5%respectively.
     By the comparison of pork sausage adding 7S and 11S hydrolysates by Alaclase with different ratio and additions,appropriate parameters for the best were determined: the ratio of 7S to 11S hydrolysate by Alaclase was 3.5∶1,addition of that was 0.5%.
     3,The study on the change of the functional properties of 7S and 11S by the hydrolysis of Alaclase
     The solubility and EAI of 7S and 11S were evidently improved by the hydrolysis of Alaclase.But WHC of that was decreased and FAC of that was not significantly increased.
     The correlation between functional properties and quality of pork sausage showed that solubility and EAI had a significant positive with springiness, cohesiveness,resilience and yield,however WHC had a significant negative with them.FAC and ES had no significant correlation with them.
     4,The study on the change of the structural properties of 7S and 11S by the hydrolysis of Alaclase
     The molecular structure,conformational changes and interactive bonds in 7S and 11S were examined by SDS-PAGE,SEM,FT-IR infrared spectroscopy,Raman spectroscopy,as well as hydrophobicity and sulfhydryl content.
     The result of SDS-PAGE showed that the subnits of 7S and 11S were decreased in all hydrolyzed protein.Acidic subunits were easlily hydrolyzed than basic subunits of 11S.The results showed that conformational changes were great in all hydrolyzed protein,and the degree of changes was depend on the degree of hydrolysis.The analysis of scanning electron microscopy indicated that the size of granula bacame more bigger with increasing the DH.The result of FT-IR suggested that the content of conformational changed and the secondary structure changed.It may be related to the changes of hydrogen bond.We found that hydrophobicity and sulfhydryl content fast increased in all modified protein,and they were greatly affected by DH value.The phenomena suggested that the protein structure changed.
     5,The influence on the mechanism of pork gel
     WHC and CL of pork sausage adding 7S and 11S hydrolysates were greatly improved.The chemical interactions and protein structures in order to maintain pork surimi protein structure and stability changed during pork gel forming.Static interaction decreased significantly,while hydrogen bonds,disulfide bonds and hydrophobicity increased significantly with surimi gel forming adding 7S and 11S hydrolysates.Static interaction had no significant correlation with the quality of pork sausage.So it was not the main chemical interactions to maintain pork gel network structure.Disulfide bonds and hydrophobicity had a significant positive correlation with the quality of pork sausage,therefore they were the main chemical interactions to maintain pork gel network structure.The contribution of hydrogen bonds maintaining pork gel protein structure was different adding 7S and 11S hydrolysates.Hydrogen bonds had a significant positive correlation with the quality of pork sausage adding 7S hydrolysates.However it had a significant negative correlation with the quality of pork sausage adding 11S hydrolysates.
     The analysis of SEM indicated that the pork gel network structure adding 7S and 11S was greatly improved,which was compact,relatively uniform,no empty.
     Based on aboved facts,we can found that there was a significant correlation between subnits of protein and quality of pork gels.Physi-chemical properties,the structure of 7S and 11S hydrolysates and quality of pork gels were closely correlated. So we could select suitable soybean protein in accordance with the requirements of meat products.
引文
[1]安秀林,李庆钟,刘海萍.溴化十六烷基三甲铵与牛血清白蛋白相互作用的红外光谱研究[J].西南示范大学学报,2005,30(4):99-702.
    [2]曹玉华,杨惠萍.固定化木瓜蛋白酶制备大豆肽的研究[J].中国油脂,2005,30(4):53-55
    [3]曹玉华,杨惠萍.固定化胰蛋白酶制备大豆肽正交实验的研究[J].食品科技,2003,10:33-35.
    [4]陈复生.大豆7S球蛋白透明凝胶形成机理研究[J].粮食与饲料工业,2000,6:46-48.
    [5]陈海敏,华欲飞.大豆蛋白组成与功能关系研究[J].西部粮油科技,2001,26(3):36-39.
    [6]陈海敏,华欲飞.品种差异对大豆蛋白质功能性的影响[J].中国油脂,2000,25(6):178-180.
    [7]陈美珍,余杰.大豆活性多肽口服液的研制及其功能研究[J].汕头大学学报,2003,18(4):14-18.
    [8]陈伟斌.大豆分离蛋白的功能性和改性研究进展[J].粮食加工,2004,06:67-71.
    [9]程翠林,王振宇,石彦国.大豆蛋白亚基组成与7S/11S对豆腐品质及产率的影响[J].中国油脂,2006,31(4):16-19.
    [10]褚弘斌.大豆蛋白在肉制品中的应用[J].肉类研究,1999,(4):39-43.
    [11]戈志成,张燕萍.对改性小麦面筋蛋白二级结构的红外光谱研究[J].中国粮油学报,2006,21(3):36-38.
    [12]葛长荣,马美湖.肉与肉制品工艺学[M].北京:中国轻工业出版社,2002,119.
    [13]顾小红,孟旭,汤坚.豆浆凝固过程中大豆蛋白二级结构的研究.分析科学学报,2006,22(6):675-678.
    [14]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999.
    [15]郭永,魏家红,申森等.特制改性大豆分离蛋白在肉制品中的应用研究[J].黄河水利职业技术学院学报,2006,18(3):52-54.
    [16]郭永,张春红.大豆蛋白改型的研究现状及发展趋势[J].粮油加工与食品机械,2003,7:46-48.
    [17]韩雅珊.食品化学[M].北京:中国农业出版社,1996,116.
    [18]胡超,黄丽华,李文哲.大豆球蛋白11S/7S比值对大豆蛋白功能性的影响[J].中国粮油学报,2004,19(1):40-42.
    [19]胡坤,方少瑛,王秀霞等.蛋白质凝胶机理的研究进展[J].食品与工业科技, 2006,6:202-205.
    [20]华欲飞.大豆分离蛋白性能优化关键技术[R].中国油脂,2001,26(6):79-81.
    [21]黄建韶,张洪,黄鉴.改善大豆蛋白溶解性的试验[J].食品工业,2005,5:35-37.
    [22]黄曼,卞科.理化因子对大豆蛋白疏水性的影响[J].郑州工程学院学报,2002,23(2):5-9.
    [23]江志炜,沈蓓英,潘秋琴.蛋白质加工技术[M].北京:化学工业出版社,2003.
    [24]李锋,徐宝才,赵宁等.新型复合乳化剂及其在肉制品中的应用特性研究[J].肉类工业,2006,8:26-28.
    [25]李辉尚.不同大豆品种的北豆腐加工适应性研究.中国农业大学硕士学位论文,2005.
    [26]李里特,马海.功能性大豆食品[M].北京:中国轻工业出版社,2002.
    [27]李书国,陈辉,庄玉亭等.复合酶法制备活性大豆寡肽研究[J].粮食与油脂,2001,3:5-7.
    [28]李伟.扫描电镜显微镜及其分析技术简介[J].山东电力技术,1996,2:77-78.
    [29]李雄辉,过新胜,徐刚.大豆多肽工艺的研究[J].食品科学,1999,28-30.
    [30]李迎秋,陈正行.高压脉冲电场对大豆分离蛋白疏水性和巯基含量的影响[J].食品科学,2006,27(5):40-43.
    [31]刘忠义,卢其斌.酶水解大宗副产物蛋白质的技术研究[J].食品与机械,2004,20(1):15-18.
    [32]栾广忠,程永强,鲁战会等.大豆11S和7S球蛋白对Alcalase凝固大豆蛋白性质的影响[J].粮油加工与食品机械,2005,9:56-58.
    [33]马宇翔,春玲,郭兴凤.中性蛋白酶水解大豆分离蛋白的研究[J].粮油加工,2006,8:50-52.
    [34]马宇翔,周瑞宝,黄贤校等.大豆分离蛋白在火腿肠中的应用研究[J].郑州工程学院学报,2004,25(1):55-57.
    [35]毛迪锐,缪铭.大豆分离蛋白在肉制品中的应用[J].肉类工业,2005,4:42-44.
    [36]莫重文 主编.蛋白质化学与工艺学[M].北京:化学工业出版社,2007
    [37]钱方,邓岩,刘阳等.胃蛋白酶水解大豆蛋白的研究[J].中国乳品工业,2001,29(3):10-13.
    [38]沈蓓英,倪培德,胡传荣.植物蛋白凝胶特性的研究[J].中国油脂,1999,4:33-37.
    [39]沈力匀.食品分析[M].北京:中国轻工业出版社,2002.
    [40]石彦国.大豆制品工艺学(第二版)[M].北京:中国轻工业出版社,2005:52-80.
    [41]孙焕,张春红.大豆分离蛋白的双酶改性改善功能性的实验[J].食品科技,2005,(12):11-14.
    [42]孙欣,王璋,王莉等.轻度酶解对大豆蛋白胶凝性和疏水性的影响[J].食品科 学,2005,26(12):37-40.
    [43]田少君,梁华民.转谷氨酰胺酶对大豆分离蛋白的改性研究[J].粮油加工与食品机械,2005,06:54-56.
    [44]汪建斌,邓勇.Alcalase碱性蛋白酶对大豆分离蛋白水解作用的研究[J].食品工业科技,2002,23(1):61-63.
    [45]王文高,陈正行,姚惠源.大米蛋白及其水解物功能性质与疏水性关系的研究[J].粮食与饲料工业,2002,7:49-50.
    [46]王远义,王西杰,孙晓波等.功能性大豆蛋白粉的性能测定及其在肉制品中的应用[J].肉类工业,2001,8:7-8.
    [47]王章,吴青.大豆浓缩蛋白的酶法改性及其在西式火腿中的应用[J].无锡轻工大学学报,1995,14(4):283-289.
    [48]王璋,许时婴,江波等.Owen R.Fennema著.食品化学(第三版)[M].北京:中国轻工业出版社,2003.
    [49]肖凯军,曾庆孝,高孔荣.大豆分离蛋白的酶法改性[J].食品科学,1995,16(9):30-34.
    [50]邢小鹏,吴高峻,孙华.大豆分离蛋白的功能特性[J].食品工业科技,2000,21(4):74-76.
    [51]阎隆飞等编著.蛋白质分子结构[M].北京:清华大学出版社,1999.
    [52]杨龙江,南庆贤.肌肉蛋白质的热诱导凝胶特性及其影响因素[J].肉类工业,2001,(10):39-42.
    [53]张春红,郭永,唐宁等.热烘改性对大豆分离蛋白功能性的影响[J].食品科学和技术,2004,30(3):30-32.
    [54]张春红,赵秋伟,张凯等.氮气对改性大豆分离蛋白功能性的影响[J].粮油加工与食品机械,2004,(7):37-39.
    [55]张根生,岳晓霞,李继光等.大豆分离蛋白乳化性影响因素的研究[J].食品科学,2006,26(7):48-51.
    [56]张玲华,唐小俊,张宝玲.大豆多肽制备工艺的研究[J].食品与发酵工业,2001,27(3):37-39.
    [57]张平平,刘宪华.生姜蛋白酶水解大豆分离蛋白的研究[J].天津农学院学报,2003,10(3):26-29.
    [58]张卫佳.转谷氨酰胺酶以及非肉蛋白在肉类加工中的应用研究[D].成都:西华大学,2008.
    [59]张孝若译.肉乳浊液的变化某些原料组成的影响[J].肉类工业,1996,12(2):39-41.
    [60]赵国华,明建,陈宗道.酶解大豆分离蛋白乳化特征的研究[J].中国粮油学报,2002,17(2):48-50.
    [61]赵谋明,吴建中,欧仕益等.Protamex蛋白酶水解大豆蛋白研究[J].食品与发 酵工业,2004,30(7):82-85.
    [62]钟朝辉,李春梅,顾海峰.温度对鱼鳞胶原蛋白二级结构的影响[J].光谱学与光谱分析,2007,27(10):1970-1976.
    [63]周兵,周瑞宝.大豆球蛋白的性质[J].西部粮油科技,1998,23(4):39-43.
    [64]周光宏,徐幸莲.肉品学[M].北京:中国农业出版社,1999.
    [65]周利洹,陈新峰.大豆多肽复合酶解工艺条件研究[J].食品科技,2005,7:22-25.
    [66]周瑞宝,沈永嘉.蛋白质二级结构的红外光谱[J].华东理工大学学报,1997,23:422-425.
    [67]周雁,黄敏.生姜蛋白酶对若干食物蛋白消化作用的研究[J].食品科学,1996,17(7):6-9.
    [68]朱淮武主编.有机分子结构波谱解析[M].北京:化学工业出版社,2005
    [69]Abtahi S,Aminlari M.Effect of sodium sulfite,sodium bisulfite,cysteine,and pH on protein solubility and SDS-PAGE of soybean milk base[J].Agriculture Food Chemistry,1997,45:4768-4772.
    [70]Allain A F,Paquin P,Subirade M.Relationships between conformation of β-lactoglobulin in solution and gel states as revealed by attenuated reflection Fourier transform infrared spectroscopy[J].International Biological Macromolecules,1999,26:337-344.
    [71]Allaoua Achouri,Wang Zhang,Xu Shiying.Enzymatic hydrotysis of soy protein isolate and effect of succinnylation on the functional properties of resulting protein hydrolysates[J].Food Research International,1998,9(31),617-623.
    [72]Latrelle B and Paquin P.Evaluation of emulsion stability by centrifugation with conductivity measurement[J].Tournal of food science,1990,55(6):1666-1672.
    [73]Babiker E.E..Effect of transglutaminase treatment on the functional propertise native and chymotrypsin-digested soy protein[J].Food chemistry,2000,70:139-145.
    [74]Belloque J,Smith GM.Thermal denaturation of β-lactoglobulin.A 1H NMR study[J].Journal of Agriculture and Food Chemistry,1998,46:1805-1813.
    [75]Benjakul S,Visessanguan W,etal.Differences in gelation characteristics of natural actomyosin from twos species of bigeye snappr,priaeathus tayenus and priacanthus macracanthus[J].FoodScience,2001,66:1311-1318.
    [76]Beveridge T,Toma S J,Nakai S.Determination of-SH and S-S groups in some food proteins using Ellman's reagent[J].Food Science,1974,39(1):49-51.
    [77]Bigelow CC.On the Average Hydrophobicity of protein and the relation between it and protein structures[J].Theoret Biol,1967,16:187.
    [78]Bouraoui M,Nakai S,Li-Chan E.In situ investigation of protein structure in Pacific whiting surimi and gels using Raman spectroscopy[J]. Food Research International, 1997, 30: 65-72.
    [79] Catsimpoolas N, Meyer E W. Gelation phenomena of soybean globulins. I Protein interactions [J]. Cereal Chemistry, 1970, 47:559-570.
    [80] Chou D.H. Protein water interaction and functional properties[J]. Am Oil Chemist's Soc, 1978, 56(1): 53a-62a.
    [81] Chronakis I S, Kasapis S. Structural properties of single and mixed milk/soya protein systems[J]. Food Hydrocolloids, 1993, 7, 459-478.
    [82] Clark A H, Lee-Tufmell D D. Gelation of globular proteins. In: Functional Proerties of Food Macromolecues[M]. Edited by J R Mitchell, D A Leward.London: Elsevier Applied Science, 1986,10,203-272.
    [83] Danji Fukushima. Structure of plant storage protein and their function[J]. Food Review International, 1991, 7(3):353-381.
    [84] Fiera F A, Pilosof A R, Bartholomai G B. Physicochemical properties of soybean proteins related to flow, viscoelastic, mechanical and water-holding characteristics of gels[J]. Journal of Food Science, 1990, 55(1):133-136.
    [85] Foegeding E A, Dayton W R, Allen C A. Evaluation of moleeular interactions in myosin, fibrinogen and myosin fibrinogengels [J]. Agriculture Food Chemistry,1987, 35:559-563.
    [86] Foegeding E.A. Functional properties of turkey salt-soluble proteins[J]. Food Science, 1987, 52, 1495-1499.
    [87] Fukazawa T, Hashimoto Y, Yesui T. Eeffect of some Proteins on the binding quality of an experimental sausage[J]. Food Science, 1961, 26:541.
    [88] Fukushima D. Recent progress of soybean protein foods: chemistry, technology and nutrition [J]. Food Reviews International, 1991, 7(3):323-351.
    [89] Gennadios A, Weller C L, Testin R F. Tempereture effect on oxygen permeanbility of edible protein-based films[J]. Food Science, 1993, 58:212-214.
    [90] Govindaraju K, Srinivas H. Controlled enzymatic hydrolysis of glycinin:Susceptibility of acidic and basic subunits to proteolytic enzymes[J]. LWT, 2007,40:1056-1065.
    [91] Hayakawa S, Nakai S. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins[J]. Food Science, 1985, 50:486-490.
    [92] Hermassan A-M. Aggregation and denaturation involved in gel formation. In:Functionality and protein structure[M]. A Pourl Edited. Washington DC:American Chemical Society, 1979,8:82-103.
    [93] Iwabuchi S.Thermal donaturation of P-conglycinin[J]. Agriculture Food Chemistry, 1991, 39(1):27-32.
    [94] Jao JJ. Effects of maturation and storage on solubility, emulsion stability and gelation properties of isolated soy protein[J]. JAOCS, 1990, 67(12):123-132.
    
    [95] Jorge R, Wagner, Jacques Gueguen. Surface function properties of native,acid-treated, and reduced soy glycinin, 1, foaming properties[J]. Agriculture Food Chemistry, 1999,47(6):2173-2179
    [96] Jorge R, Wagner, Jacques Gueguen. Surface function properties of native,acid-treated, and reduced soy glycinin, 2, emulsifying properties[J]. Agriculture Food Chemistry, 1999, 47(6):2181-2187.
    [97] K tanteeratarm, LS wei and MP Steinberg, et al. Bound water associated with 7S and 11S soy proteins determined by vapor sorption isotherms and pulsed NMR[J].Food Science, 1990, 55(1):103-132.
    [98] Kato A, Lee Y, Kobayshi K. Deamidation and functional properties by the treatment with immobilized chymotrypsin[J]. Food science, 1989, 54(5):1345-1347.
    [99] Kazuhiro Yagasaki, Toshio Takagi. Biochemical Characterization of soybean protein consisting of different subunits of glycinin[J]. Agriculture Food Chemistry, 1997,45:656-660.
    [100] Keito N, Nobuyuki M, Ryohei S, et al. A vacuolar sorting determinant of soybean β-conglycinin β subunit resides in a C-terminal sequence[J]. Plant Science, 2004, 167:937-947.
    [101] Kevin N, Pearce, John E, Kinsella. Emulsifying properties of proteins:evaluation of a turbidimetric technique[J]. Agriculture Food Chemistry, 1985,26(3):716-723.
    [102] Kim S Y, Park P S W, Rhee KC. Functional Properties of proteolytic enzyme modified soy protein isolate[J]. Agriculture Food Chemistry, 1990,38:651-656.
    [103] Kisella J E, Damodaran S, German B. Physicochemical and functional properties of oilseed protein with emphasis on soy proteins[J]. In New protein foods, 1985, 5:108-180.
    [104] Koseki T, Kitabatake N, Doi E. Irreversible themal denaturation and formation of linear aggregates of ovalbumin[J]. Food Hydrocolloids, 1989 (3):123-134.
    [105] Leandros P, Voutsina, Elaine Cheung. Relationships of Hydrophobicity to emulsifying properties of heat denatured proteins[J]. Food Science, 1983, 48:26.
    [106] Lee, Chung. Analysis of surimi gel properties by compression and penetration tests[J]. Texture Studies, 1989, 20:363-377.
    [107] Lim L T, Mine Y, Tung M H. Barriber and tensile properties of tranglutanminase cross-linked gelation films as affected by relative humcdity, temperature and glycerol content[J]. Food Science, 1999, 64:616-617.
    [108] Lin K M, Mei, M Y. Influences of gums soy protein isolate and heating temperture on reduced fat meat batters in a models system[J]. Food Science, 2000,65: 48-52.
    [109] LiuY M, LinT, LanierT C. Thermal denaturation and aggregation of actomyosin from Atlantic croaker[J]. Food Science, 1982, 50:1034-1037.
    [110] M ql, NS hettiatachchy, U kalpathy. Solubility and emulsifying properties of soy protein isolates modified by pancreatin[J]. Tournal of food science, 1997, 62(6):1106-1115.
    
    [111] Ma C Y. Functional properties of acytaled oat protein[J]. Food Science, 1984,48:1128-1131.
    [112] Manzonic C, Corsini A, Lavati M R, et al. HEP G_2 catabolism of a a and a subunits, from 7S soy globulin, is correlated with their up-regulation of LDL-Receptions[J].Nutr, 1992, 122:274
    [113] Maria Babajimopoulos, Srinivasan Damodaran, Syed S H Rizvi, et al. Effect of various anious on the rheological and gelling behavior of soy proteins:thermodynamic observations[J]. Agriculture and Food Chemistry, 1983, 31:1270-1275.
    [114] Maria C P, Maria C A. Rheological properties of acidic soybean protein gels: salt addition effect[J]. Food Hydrocolloids, 1999, 13:167-176.
    [115] Maria Cesilia Puppo, Cecilia Elena Lupanu, Maria Cristina Anon. Gelational of soybean protein isolates in acidic conditions, effect of pH and protein concentration[J]. Agriculture and Food Chemistry, 1995, 43: 2356-2361.
    [116] Motoyasu A, Yasuyuki T, Andrew B, et al. Crystal Structure of soybean proglycininA_(1a)B_(1b) homotrimer[J].MolBiol, 2001, 305:291-305.
    
    [117] Naoko Yuno-ohta, Hiroko Toryu, Takahiko Higasa, et al. Gelation properties of ovalbumin as affected by fatty acid salts[J]. Food Science, 1996,1(5):906-910.
    [118] Nishinari K, Zhang H, Ikede S. Hydrocolloid gels of polysaccharides and proteins[J]. Current Opinion in Colloid &Interface Science, 2000(5): 195-201.
    [119] Peng I, Quss D W, Dayton W R, et al. The physicochemical and functional properties of soybean US globulin a review[J]. Cereal Chemistry, 1984, 61(6):480-489.
    [120] Porcella M I, Sanchez G, Vaudagna S R. Soy protein isolate added to vacuum-packaged chorizos: effect on drip loss, quality characteristics and stability during refrigerated storage[J]. Meat Science, 2001, 57: 437-443.
    [121] Qi M, Hettiarachchy NS, Kalapathy U. Solubilicity and Emusifying Properties of Soy Protein Isolates Modified by Pancreation[J]. FoodScience, 1997,62:1110.
    [122] Qi XL, Holt C, McNulty D, et al. Effect of temperature on the secondary structure of β-lactoglobulin at pH6.7, as determined by CD and IR spectroscopy:a test of the molten globule hypothesis[J]. Biochemistry, 1997, 324: 341-346.
    [123] Rajni M, Dianne T, Trinh, et al. Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture[J]. Food Chemistry, 2003, 82: 265-273.
    [124] Riblett AL. Characterization of β-conglycinin and glycinin soy protein genotypes[J]. Agricultural and Food Chemistry, 2001,49:4983-4989.
    [125] Saio K, Watanabe T. Differences in functional properties of 7S and 11S soybean protein[J]. Texture Studies, 1991, 26(9):231-241.
    
    [ 126] Sante-Lhoutellier V, Aubry L, Gatellier P. Effect of oxidation on vitro digestibility of skeletal musile myofibrillar proteins[J]. Agricultural and Food Chemistry, 2007, 55: 5343-5348.
    [127] Setsuko Iwabuchi, Fumio Yamauchi. Determination of Glycinin and β-conglycinin in soybean proteins by inmmuynological methods[J]. Agricultural and Food Chemistry, 1985, 35(2):200-205.
    [128] Shigeru Utsumi and John E, Kinsella. Structure-function relationships in food proteins: subunit interactions in heat-induced gelation of 7S, 11S, and soy isolated proterins[J]. Agricultural and Food Chemistry, 1985, 33(2):297-303.
    [129] Shigeru Utsumi, John E Kinsella. Forces involved in soy protein gelation:Effects of various reagents on the foemation, hardness and solubility of heat-induced gels made from 7S, 11S, and soy isolate [J]. Food Science, 1985, 50:1278-1282.
    [130] Shigeru Utsumi, Yasuki Matsumura and Tomohikomori. Structure-function relationship of soy protein, food protein and their application[M]. Institus National de la Recherche Agronomigue Center de Recherche de Tours Nouzilly France, 1997,40:257-289.
    [131] Shimade K, Matsushita S. Relationship between thermao-coagulation of protein amino acid compositions [J]. Agriculture and Food Chemistry, 1980, 28:413-417.
    [132] Takao Nagano, Motohiko Hirotsuka and Hiroyuki Mori, et al. Dynamic viscoelastic study on the gelation of 7S globulin from soybean[J]. American Chemical Society, 1992, 40: 941-944.
    [133] Takashi Nakamura, Shigeru Utsumi and Tomohiko Mori. Interactions during heat-induced gelation in a mixed system of soybean 7S and 11S globulin[J]. Agric Bio Chem, 1986, 50(10): 2429-2435.
    [134] Walsh D J, Cleary D, McCarthy E. Modification of nitrogen solubility properties of soy protein islolate following proteolysis and transglutaminase cross-linking[J]. Food Research International, 2003, 36, 677-683.
    [135] Wolf W J. Physical and chemical properties of soybean proteins[J]. JAOCS,1997, 54(2):543-551.
    [136] Wolf WJ. Soybeans: Chemistry and Technology[C]. Smith A K, Circle S J,Eds: Avi: Westprot, CT, 1972, 93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700