用户名: 密码: 验证码:
航天器太阳翼动态影响测量系统的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器在空间中工作主要依靠安装在太阳翼上的太阳能电池提供能源。随着航天器能源需求的不断提高,航天器太阳翼面积的不断扩大,大型太阳翼在转动过程中对于航天器本体造成的影响成为航天技术中一项重要的研究课题。
     本文围绕着用于地面模拟实验的航天器太阳翼动态影响测量系统的设计,主要研究了测量系统的结构设计、驱动机构轴系偏移干扰的处理、测控软件的开发三个核心问题。
     首先,分析了太阳翼在空间环境中的干扰力矩情况,确定了太阳翼运行中对驱动机构的主要影响为转动惯性力矩,讨论了以相同惯量物体模拟刚性太阳翼转动惯量的可行性。通过与气浮平台方案的对比分析,提出对传感器测量数据进行重力补偿来消除重力影响的设计方案,并依据此方案设计了航天器太阳翼动态影响测量系统的总体结构。
     其次,研究了系统中存在的驱动机构轴系偏移问题。通过使用测量数据和工作机理相结合的分析方法确定了干扰的主要特征,并针对驱动机构启动周期的测量需求,设计了阈值延时启动IIR高通滤波器,通过调整阈值函数和延时时间有效消除了驱动机构轴系偏移的干扰。
     最后,基于本文提出的滤波算法,采用VC++作为开发平台,开发了航天器太阳翼动态影响测量系统的配套测控软件,软件提供了测量数据动态显示、驱动机构转速控制、数据分析统计、数据存储输出等功能。
When working in space, Spacecraft mainly depend on the solar cells which are installed on solar wings to provide energy. As the spacecraft energy demand continues to increase, the area of spacecraft solar wings continues to expand. Large-scale solar wings’impact to the spacecraft body has become an important research topic in aerospace technology.
     In order to implement the spacecraft solar wings dynamic effects measurement system, which is used in ground simulation experiment, this paper focuses on the research of solar wings’ground simulation, drive mechanism shaft offset processing, monitoring and control software design.
     First, this paper analyzes the disturbance torque conditions when large-scale solar wings operate in space environment, and demonstrate the effectiveness of using the same inertia simulation solar wings. By comparing with the flotation platform program, propose using sensor to eliminate gravity, and design spacecraft solar wings dynamic effects measurement system.
     In addition, study on drive mechanism shaft offset problem. By the analysis of measurement data and working mechanism, obtain the characteristics of the disturbance. Design a threshold delay start digital IIR filter to supply the demand when driving mechanism start.
     Finally, based on the above algorithm,monitoring and control software is developed using C + + to support the spacecraft solar wings dynamic effects measurement system. The software is so powerful that provides dynamic data display, drive mechanism control, data analysis and statistics, data storage and output functions, etc.
引文
[1]陈务军,张淑杰,空间可展结构体系与分析导论[M],北京,中国宇航出版社,2006: 1-3
    [2]李东旭,挠性航天器结构动力学[M],北京,科学出版社,2010: 3-10
    [3]高星,王友平,太阳帆版驱动机构的现状和近期发展方向[J],控制工程,2001(5): 55-68
    [4] Rauschenbach H S, Solar Cell Array Design Handbook, The Principles and Technology of Photovoltaic Energy Conversion, Springer, 1980: 3-5
    [5]马兴瑞,苟兴宇,李铁寿,航天器动力学发展概况[J],宇航学报,2000,21(3): 1-5
    [6]马兴瑞,于登云,孙京,空间飞行器展开与驱动机构研究进展[J],宇航学报,2006,27(6): 43-46
    [7]钱钱,洛克希德-马丁公司建造的大型太阳能电池将飞赴空间站,www.spacechina.com,2006-08-23
    [8]许红英,宇航员展开空间站新的太阳能电池帆板,www.spacechina.com,2006-09-15
    [9] T. R. Kane, R. R. Ryant, A. K. Banerjee. Dynamics of a Cantilever Beam Attached to a Moving Base[J]. Journal of Guidance, Control and Dynamics, 1987, 10(2): 139-151
    [10] K. Banerjee, T. R. Kane, Dynamics of a Plate in Large Overall Motion[J]. Journal of Applied Mechanics, 1989. 11, Vol.56: 887-892
    [11]刘望,卫星太阳翼空间在轨飞行中的变形分析,[硕士论文],长沙,国防科学技术大学,2008
    [12]刘云平,航天器多体系统姿态动力学与控制的研究,[博士论文],南京,南京航空航天大学,2009
    [13] Peter J, Carrato, Chung C, Fu.Modal Analysis Techniques for Torsion of Diesel Crankshafts, SAE 861225
    [14]王力生,天线座驱动系统扭转振动谐振频率的计算及仿真[J],现代电子技术,2005,28(8): 24-27
    [15]庞微,带大惯量负载的空间驱动机构特性分析,[硕士论文],南京,南京航空航天大学,2009
    [16]张朋,高海波,邓宗全,邬明智,展开式太阳板的动力学分析[J],宇航学报,2009,30(4): 1359-1364
    [17]赵真,肖余之,杜三虎,唐国安,太阳电池阵大范围运动反作用力矩求解方法研究[J],振动与冲击,2010,29(7): 116-120
    [18]刘剑,汽车动力传动系扭转振动的研究,[硕士论文],重庆,重庆大学,2003
    [19]刘立美,XK5025数控铣床主传动系统动态设计,[硕士论文],兰州,兰州理工大学,2005
    [20]马敬,一种低速大惯量伺服系统的跟踪控制研究及实现,[硕士论文],武汉,武汉理工大学,2008
    [21] Becquerel A E. Recherches sur les effets de la radiation chimique de la lumiere solaire aumoyen des courants electriques[J]. Comptes Rendus de L Academic des Sciences, 1839, 9: 145-149
    [22] Adams W G, Day R E. The action if light on sleenium[J]. Proc. Royal SOC, (London), 1877, A25: 113
    [23]李红波,空间太阳能源[J],世界科学,2006(4): 28-30
    [24]李国欣,航天器电源系统技术概论[M],北京,中国宇航出版社,2008: 702-703
    [25]陈烈民,航天器结构与机构[M],北京,中国科学技术出版社,2008: 354-356
    [26]石磊,太阳翼驱动机构的可靠性分析,[硕士论文],成都,电子科技大学,2008
    [27]屠善澄,卫星姿态动力学与控制[M],北京:中国宇航出版社,2006:421
    [28]林来兴,潘科炎等编译,空间飞行器控制设计准则[M],北京,科学出版社,1981: 310-325
    [29]张毅,杨辉耀,弹道导弹弹道学[M],长沙,国防科技大学出版社,1999: 205-210
    [30] NASA. Spacecraft Radiation Torques, NASA Space Vehicle Design Criteria (Guidance and Control). NASA SP-8027, Oct, 1969
    [31] Wertz R. Edited. Spacecraft Attitude Determination and Control. D. Reidel Holland, 1978
    [32]张嘉钟,魏英杰,曹伟,飞行器动力学与控制,哈尔滨,哈尔滨工业大学出版社,2011: 70-71
    [33]李季苏,牟小刚,张锦江,卫星控制系统全物理仿真[J],航天控制,2004,22(2): 37-41
    [34] J. L. Schwartz, M. A. Peck and C. D. Hall. Historical Review of Air-Bearing Spacecraft Simulators. Journal of Guidance, Control, and Dynamics. 2003, 26(4): 513-522
    [35]许剑,杨庆俊,包刚,王捷冰,多自由度气浮仿真试验台的研究与发展[J],航天控制,2009,27(6): 96-101
    [36] H. Schubert, H. Jonathan. Space Construction: An Expreimental Testbed to Develop Enabling Technologies. Proceedings of the Conference on Telemanipulator and Telepresence Technologies IV, IEEE, Piscataway, NJ, 1997: 179-188
    [37] J. L. Meyer, W. B. Harrington and B. N. Agrawal. Application of Piezoceramics to Vibration Suppression of a Spacecraft Flexible Appendage. Proceedings of the AIAA Guidance, Navigation and Control Conference. SanDiego, California, 1996: 278-284
    [38] M. O. Hilstad, A Multi-Vehicle Testbed and Interface Framework for the Decelopment and Verification of Separated Spacecraft Control Algorithms. Master Thesis, Massachusetts Institute of Technology, Cambrige. 2002: 108-129
    [39] Peck, L. Miller, A. Cavender, M. Gonzalez, and T. Hintz. An Air Bearing Based Testbed for Momentum Control Systems and Spacecraft Line of Sight. Proceedings of the 13th AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, 2003: no.03-127
    [40] Schwartz J L. The Distributed Dpacecraft Attitude Control System Simulator from Design Concept to Decentralized Control[D]. Virginia Polytechnic Instiute and State University, 2004
    [41]许剑,任迪,杨庆俊,包钢,五自由度气浮仿真试验台的动力学建模[J],宇航学报,2010,31(1): 60-64
    [42]王书廷,卫星及气浮台质量特性的在线辨识算法研究,[硕士论文],哈尔滨,哈尔滨工业大学,2006
    [43]王伟华,宋申民,一种简易的摄像机标定方法[J],自动化技术与应用,2010,29(1): 101-106
    [44]王伟华,交会对接仿真系统视觉测量方法研究与实现,[硕士论文],哈尔滨,哈尔滨工业大学,2009
    [45] ATI工业自动化公司,ATI力/力矩传感器目录,www.ati-ia.com,2011
    [46] E. O. Doebelin. Measurement systems applications and design. McGraw Hill, New York, 2004
    [47] E. R. Canavan, H. J. Park, J. W. Parke. A Superconducting Six-axis Accelerometer. IEEE Transaction on Magnetics, 1991, 27(2): 3253-3256
    [48] F. Lange, G.. Hirzinger. Learning accurate path control of industrial robots with jonit elasticity. IEEE Int conference on Robotics and automation, Detroit, Michigan, 1999: 2084-2089
    [49]姚智慧,张付祥,机器人六维力传感器研究概况及发展预测[J],广东自动化与信息工程,2002,23(3): 7-9
    [50]宋国民,张为公,秦文虎,基于车轮力传感器的汽车制动测试系统开发及应用[J],测控技术,2001,20(7): 7-9
    [51]张美芹,王人成,胡晓,6分量应变式力传感器弹性体[J],中国康复医学杂志,2005,20(10): 768-769
    [52] G. Giovinazzo. Transducer with Six Degrees of Freedom. US Patent No. 4 320392. March 16, 1982
    [53] A. Bazergui, N. E. Eryuzlu, J-P. Saucet. A Submersible 3-D load transducer platform. Spring Conference on Experimental Mechanics Preliminary Technical Program, New Orleans, 1985
    [54] S. Hirose, K. Yoneda. Development of Optical 6-Axial Force Sensor and It's Signal Calibration Considering Non-Linear Interference. IEEE International Conference on Robotics and Automation, Cincinnati, OH, May 13-18, 1990: 46-53
    [55]国家仪器公司,PCI数据采集卡产品目录,www.ni.com,2011
    [56] Atlas G, Thomin G.Experiences of CNES and SEP on space mechanisms rotating at low speed[C].The 21st Aerospace Mechanisms Symposium, NASA Johnson Space Center, 1987
    [57] Patrick S, Christine E.High performance stepper motors for space mechanisms[C]. The 29th Aerospace Mechanisms Symposium, NASA Johnson Space Center, 1995
    [58]廖伯瑜,机械故障诊断基础[M],北京,冶金工业出版社,1997:12-13
    [59]罗海,基于FPGA的高速IIR数字滤波器的设计和实现,[硕士论文],成都,电子科技大学,2004
    [60] Sanjit K. Mitra, Digital Signal Processing, McGraw-Hill Education Co., 2006: 361-362
    [61]曲景辉,李传伟,TeeChart应用技术详解快速图标制作工具[M],北京,中国水利水电出版社,2008: 68-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700