用户名: 密码: 验证码:
高压气体球轴承的流场特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的快速发展,小卫星的姿态仿真研究已成为了现代航天仿真技术的一个重要分支。静压气体球轴承是气浮仿真实验台的关键部件之一,它能够提供3个自由度的运转,对气浮仿真实验台至关重要。全物理仿真具有数学仿真和半物理仿真所不具备的功用,高性能的卫星姿态控制系统是研究长寿命高精度高可靠性的姿态控制系统的必备条件。通过对气体球轴承在高压下的承载力和静态刚度的仿真和实验研究,为进一步设计、制造大型的气体球轴承提供一定的理论指导。本文的主要研究内容包括以下几个方面:
     模型的建立及球轴承的流场计算。在网格划分的过程中,在供气孔附近采用纵横比较大的非结构化网格,并且对其区域进行网格密化;而在其它区域采用传统的结构化网格,这样就减少了网格的数量,使得计算效率大幅提高。
     仿真计算中得到了供气孔直径、供气孔数量、球窝外包角、供气孔包角、供气压力等不同的结构参数与工况参数与气膜厚度的关系。特别是在高压下对其流场特性进行了仿真的分析,为进一步高压重载下的球轴承的设计、制造提供一定的指导依据。
     最后通过仿真数据与实验数据的对比分析,得到了球轴承的制造误差对流场特性的影响规律。
With the rapid development of science and technology, the small satellite attitude simulation has become an important branch of the modern aerospace simulation technology. Externally pressurized spherical air bearings can offer a nearly torque-free environment, perhaps as close ad possible to that of space, and for this reason it is the key component of the ground-based three-axis test-bed for simulation of spacecraft dynamics and control. In this thesis, externally pressurized spherical air bearings with inherent compensation possessing good characteristics are studied by means of theoretical analysis and experimental validation. The static stiffness and bearing capacity characteristics are investigated, which can provide guidance for the design of spherical air bearing. The main contents of this dissertation consist of the following parts.
     First, the establishment of three-dimensional model and the calculation of flow field characteristics for spherical air bearing was given. The hexahedral until and pyramid until fitting for large aspect ratio are mainly used when performing grid division, and the structured as well as unstructured grids are combined, which greatly reduced the number of grids and improve the computational efficiency.
     Secondly, we get mathematical relationship between air intake diameter, numbers, wrap angle, inlet pressure and the gas film thickness under the different working parameters through the simulation. Especially simulated its flow characteristics under high-pressure.
     Finally got the discipline of influence on the flow field characteristic caused by spherical air bearing through the comparison of experimental and simulation data.
引文
[1]林来兴.当今小卫星的发展水平及其关键技术.控制工程.1997,13(1):8-15.
    [2]张振东.空间飞行器的姿态模拟器.国外空间技术.1993,6:12-20.
    [2]李季苏,牟小刚,张锦江.卫星控制系统全物理仿真.航天控制.2004,22(2):38-41.
    [3]Dongwon Jung. AIAA Guidance, Navigation and Control Conference, Austin, Texas, 2003, Paper 03-5331.
    [4]王振枫.某型微小卫星姿态控制系统设计及仿真研究.南京航空航天大学硕士学位论文.2007,21-27.
    [5]许剑,杨庆俊,包钢,王捷冰.多自由度气浮仿真实验台的研究与发展.航天控制.2009,27(6):96-101.
    [6]张涛,汪小华,查世红,陈三风等.空间微重力环境下飞行器质量模拟方法研究.机器人.2008,30(6):528-535.
    [7]于贺春,马文琦,王祖温.基于FLUENT的环面节流静压气体圆盘止推轴承二维流场仿真分析.机床与液压.2008,36(10):109-112.
    [8]王云飞编著.气体润滑理论与气体轴承设计.机械工业出版社.1999,2-19.
    [9]ByungMoon Kim, Efstahios Velenis, etc. A Spacecraft Simulator for Research and Education. AAS/AIAA Astrodynamics Conference, Quebec City, Canada,2001, Paper AAS 01-367.
    [10]林来兴.试论气浮台仿真的功能——卫星姿态控制系统全物理仿真.控制工程.1983,13(4):1-11
    [11]Jana L. Schwartz, Mason A. Peck and Christoppher D. Hall. Historical Review of Air-Bearing Spacecraft Simulators. Journal of Guidance, Control and Dynamics.2003, 26(4):513~522.
    [12]William A. Gross, L.A. Matsch, V. Castelli, A. Eshel, J. H. Vohr and M. Wildman. Fluid Film Lubrication. John Wiley & Sons New York.1980:4-8.
    [13]ByungMoon Kim, Efstahios Velenis, etc. A Spacecraft Simulator for Research and Education. AAS/AIAA Astrodynamics Conference, Quebec City, Canada,2001, Paper AAS 01-367.
    [14]Dongwon Jung, Panagiotis Tsiotras, etc. al. AIAA Guidance, Navigation and Control Conference, Austin, Texas,2003, Paper 03-5331.
    [15]Tanya, A Olsen. Design of Adaptive Balancing Scheme for the Small Satellite Attitude Control Simulator (SSACS). Utah State University Master's thesis.1995,1-8.
    [16]Mason A. Peck and Andrew R. Cavender. An Air bearing-based Teat bed for Momentum-control Systems and Spacecraft Line of Sight. AAS 03-127.
    [17]Spencer M G. Chernesky V, Baker J, etc. Bifocal Relay Mirror Experiments on the NPS Three Axis Space2 craft Simulator AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California,200225031.
    [18]Jae Jun KIM, Brij N. Agra. Automatic Mass Balancing of Air bearing based three-axis rotational spacecraft simulator. Journal of Guidance, Control, and Dynamics.2009,32(3):1005-1017.
    [19]李季苏,牟小刚,孙维德,杨天安,李通生.大型卫星三轴气浮台全物理仿真系统.控制工程.2001,(3):22-24.
    [20]闻新,闵学龙,王平.小卫星及其应用的发展趋势分析.中国航天.2004,(12):21-25.
    [21]党根茂编.气体润滑技术[M].南京:东南大学出版社,1990.
    [22]Gross W A. Gas Film Lubrication. New York John Wiley and sons,1962.
    [23]Constantinesc V N. Gas Lubrication. ASME, New York,1969.
    [24]Grassam N S, Powell J W. Gas Lubrication Bearings. London, Butter Worths,1964.
    [25]Powell J W, Design of Aerostics Bearings. London, Machinery Publishing Co.1970.
    [26]Martin W Regehr, Ahmet B. Acikmese, Asif Ahmed et. The Formation Control Test bed. Aerospace Conference,2004, IEEE (1):564.
    [27]George H. Purcell, Jeffrey Y. Tien, Lawrence E. Young, et. Formation Acquisition Sensor for the Terrestrial Planet Finder Mission. IEEE Aerospace Conference, Big Sky, Montana.2004:6-13.
    [28]Otero, A. Miller, D W, et. SPHERES-Development of an ISS Laboratory for Lormation Flight and Docking Research.2002 IEEE Aerospace Conference Proceedings, Piscataway, NJ.2002:1-59.
    [29]十合晋一著,刘湘等译.气体轴承的设计与制造.黑龙江科学技术出版社,1988.11-12.
    [30]杜金明,卢泽生,孙雅洲.空气静压轴承各种节流形式的比较.航空精密制造技术.2003,39(6):4-7.
    [31]T. L. COREY, C. M. TYLER, H. H. ROWAND, E. M. KIPP. Behavior of Air in the Hydrostatic Lubrication of Loaded Spherical Bearings. Trans. ASME, Journal of Basic Engineer.1956,78:893-898.
    [32]B. C. Majumdar. On the General Solution of Externally Pressurized Gas Journal Bearings. Trans, of ASME, Journal of Lubrication Technology.1972,94(4):291-296.
    [33]徐在峰.三轴气浮台球轴承制造及安装误差引起的涡流力矩的研究.工学硕士学位论文.哈尔滨工业大学.2007.3.
    [34]赵宁.磁气混合轴承中弹性箔片径向动压气体轴承的数值分析研究.工学硕士学位论文.南京航空航天大学,2004.3.
    [35]王瑞金,张凯,王刚等Fluent技术基础与应用.清华大学出版社.1-2.
    [36]王福军.计算流体动力学分析—CFD软件原理与应用.清华大学出版社,2004:7-11.
    [37]朱自强.应用计算流体力学.北京航空航天大学出版社,2002:1-12.
    [38]龙威,李军,包钢FLUENT软件在空气轴承研究领域的应用.机床与液压,2006,16:151-153.
    [39]姚英学,杜建军,刘墩等.制造误差对气体静压球轴承涡流力矩影响分析方法研究.航空学报.2003,24(2):124-128.
    [40]莫乃榕主编.工程流体力学.华中科技大学出版社,2000,14-44.
    [41]徐华舫编著.空气动力学基础.北京航空学院出版社,1987,12-33.
    [42]H. K. Versteeg, WMalasekera, An Introduction to Computational Fluid Dynamics:The Finite Volume Method. Wiley, New York,1995,95-103.
    [43]Mavriplis D J. Mesh Generation and Adaptivity for Complex Geometries and Flows. Handbook of computational fluid mechanics. Academic Press,1996,417-459.
    [44]宇波.内翅片管中的对流换热及非结构化网格中有限容积法的研究.西安交通大学博士学位论文.1998,46-55.
    [45]帕坦卡S V.传热与流动的数值计算.张政译.北京:科学出版社,1988:149.
    [46]Peric M. Analysis of pressure velocity coupling on nonorthogonal grids. Part B.1990,17:63-82.
    [47]钟英杰,都晋燕,张雪梅.CFD技术及在现代工业中的应用.浙江工业大学学报2003,(6):284-289.
    [48]侯予,赵祥雄,陈双涛等.小孔节流静压止推气体轴承静特性的数值分析.润滑与密封,2008,33(9):2-3,12.
    [49]孙昂,马文琦,王祖温.平面静压气浮轴承的超音速流场特性.机械工程学报.2010,46(9):113-119.
    [50]刘暾,刘育华.气体静压球轴承的精确数值计算.哈尔滨工业大学科学研究报告.1982,118:7.
    [51]郭良斌,王机温,包钢,李军.新型环面节流静压气体球轴承压力分布的有限元计算.摩擦学学报.2004,24(6):531-535.
    [52]郭良斌,王祖温,包钢,李军.新型环面节流静压气体球轴承压力分布的实验研究.摩擦学学报.2005,25(4):364-368
    [53]JOHN H. Laub, ROBERT H. NORTON. Externally Pressurized Spherical Gas Bearings. ASLE TRANSACTIONS.1961,172-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700