用户名: 密码: 验证码:
盾构进出洞水平冻结温度场及地表冻胀变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
修建地铁隧道,盾构机的安全始发与接收是盾构法关键所在。水平杯型冻结技术在盾构进出洞端头加固中具有止水、保持土体自立性、环保等特点,而冻结温度场随时间的可变性、冻胀变形对周围环境的影响程度等制约着水平杯型冻结壁的进一步推广应用。基于上述问题,本文结合南京地铁二号线逸仙桥车站盾构出洞水平杯型冻结工程,通过室内试验、现场实测、理论分析与数值模拟方法,对水平杯型冻结温度场及地表冻胀位移进行了较系统研究,主要研究成果如下:
     1)南京地区淤泥质黏土、粉质黏土、粉砂三种典型地层的起始冻结温度随含水率增加近似线性升高,随盐份浓度增加直线降低,水质对起始冻结温度有较大影响,干密度和冻融循环对此影响不大。常温土导热系数随含水率及干密度增加而增大,且冻土导热系数大于常温土导热系数。土中水分迁移受温度影响较大,水分迁移程度与土质、冻结时间、含水率和干密度有关。
     2)通过南京地铁二号线逸仙桥车站温度场实测对水平杯型冻结壁温度场数值模拟方法的可行性进行了验证;研究了盐水温度、冻结管直径、地层热参数及冻结时间对水平杯型冻结壁温度场的影响规律;在各因素取值范围内,冻结40d时杯型冻结壁短管底部最小厚度可达30~54cm,圆筒壁厚度可达80~140cm;内圈管间冻结壁最早交圈,杯型冻结壁的“杯底”和“杯壁”交接处最晚交圈。
     3)研究分析了影响地层冻胀的因素,通过有限元计算,研究了不同因素变化对水平杯型冻结引起地表冻胀位移的影响规律。结果表明:不管是垂直或是沿着隧道轴线方向上,距离隧道轴线或是地下连续墙(围护结构)越近,地表冻胀位移越大,低温盐水温度、隧道半径、隧道埋深及冻胀率变化对地表最大冻胀位移的位置未产生明显影响,随板块厚度增加,该位置朝远离地下连续墙方向移动;在各因素取值范围内,距离冻结壁区域越远,地表冻胀位移呈衰减性规律减小,其中低温盐水温度、隧道直径、隧道埋深对地表冻胀位移的影响较为显著;考虑各种建筑物对地基变形的要求,确定距离隧道洞门20m以内为盾构进出洞水平杯型冻结加固端头的地表变形监测范围。
     4)建立了水平杯型冻结壁稳定性计算模型,研究结果表明杯底厚度、圆筒壁厚度及长度变化对引起的应力与位移均大大小于其允许值,隧道直径越小,越有利于地层稳定性。水平杯型冻结时合理的杯底厚度宜取2.0~2.5m,常规地铁隧道的圆筒壁长度取值与盾构机壳体长度相当,圆筒壁厚度宜取1.0~1.2m,隧道埋深越大,需要的冻结壁尺寸越大,具体隧道埋深与与冻结壁尺寸的选择和地层物理力学性质密切相关。
     研究结果解决了水平杯型冻结壁应用中的参数选取、温度场发展及地表冻胀程度预测等问题,对水平杯型冻结壁在盾构进出洞端头加固工程中的推广应用具有重要的科学意义和应用价值。
The safety start technique and arrival of shield machine are crucial to the shield methodwhen an underground railway tunnel is built. The artificial horizontal cup-shaped freezingtechnique has the benefits such as stopping water, keeping the subsistence of soil andenvironmental protection, but it is also restricted to be spread and exploited further because ofthe variability of temperature field with time during the formation of artificial freezing wall andthe frost heaving deformation influence on the surrounding. Based on the problems above, Inthis paper, the application of horizontal cup-shaped freezing wall in shield constructiontechniques for pass out of working pit engineering was presented by instances and the authormade a systematic study on the temperature field and the earth’s surface frost heavingdeformation during the formation of horizontal cup-shaped freezing wall by laboratoryexperiment, field survey, theoretical analysis and numerical simulation. The main conclusionsfor this paper were listed as follows:
     1)The results of laboratory experiment indicate that the initiative freezing temperature ofthe three kinds of typical soil layers in Nanjing region silt mass clay, silt clay and sandapproximately linearly increase when moisture content increase and temperature decreasewhen the Salt concentration increase. That’s more, water quality has great influence on theinitiative freezing temperature, but dry density and freezing and thawing cycle have littleinfluence on it. According to the test results coefficient of thermal conductivity increases withmoisture content and dry density increasing, and the frozen soils’ is greater than the normaltemperature soils’. Moisture migration extent is relevant to several factors, such as soil texture,freezing time, moisture content, dry density and so on and the moisture content influentsgreater.
     2) After establishing the computational model of the horizontal cup-shaped freezing walltemperature field, the model’s practicability is verified by the temperature field test result inNanjing metro line2Yixian Bridge subway station.This paper studies the effects of subzero saltwater temperature, thermal physics parameter andfreezing time on the horizontal cup-shaped freezing wall temperature field. Among the differentfactors’ value range, the short freezing pipe bottom’s freezing wall thickness can be30-54cm,the cup’s thickness can be80-140cm while freezing. The results of the closure of freezing wallshow that interior circle freezing pipes close the earliest, the part between the bottom of the cupand the cup’s wall close at the latest.
     3) According to the finite element analysis, different factors which have influence on theground level displacement are researched. The results show that: horizontal or along axial oftunnel the nearer to the axial and sub-continued wall the ground level frozen deformation isgreater. What’s more, temperature of saline water, radius of tunnel, buried depth of tunnel andfrozen ratio have little influence on the position of the greatest displacement, but with thethickness of plates increase, the position is near to the sub-continued wall. Among thedifferent factors’ value range, the further the distance to frozen wall, the displacement of groundlevel decrease attenuatly. Based on the influence of temperature of saline water, parameter oftunnel, buried depth of tunnel about frozen displacement is greater and taking the requirementsof kinds of architecture into consideration,20m away from the tunnel portal and export isdetermined to be monitored.
     4) With establishing the stability model of horizontal cup-shaped freezing wall,the resultssuggest that the stress and displacement caused by changes of the thickness of cup bottom andcylinder are much less than allowable value, and the diameter of tunnel is smaller of thestability of formations. In addition, the reasonable thickness of cup bottom can be2.0~2.5m,and the length of cylinder is almost the length of shield machine. The last but not least, thethickness of cylinder can be1.0~1.2m, the deeper the tunnel, greater the thickness, and thespecific thickness and buried depth will be determined by the physical and mechanicalproperties of formations.
     The researches solve several problems such as parameter selection, development oftemperature field, prediction of ground level deformation ect. And the researches haveimportant significance on application and spread of horizontal cup-shaped freezing in shield’sturnover.
引文
[1]龚晓南.地基处理手册[M],中国建筑工业出版社,2008
    [2]木下诚一著.冻土物理学.王异、张志权译.长春:吉林科学技术出版社,1985
    [3]陈瑞杰,程国栋.人工地层冻结应用研究进展和展望[J].岩土工程学报,2000,2(1):40-44
    [4] Rojo J L,NovilloA,Alocen J R. Soil freezing for the va2lencia underground railway work. GroundFreezing91. Rot terdam:Balkema,1991
    [5] Joseph A Sopko Tr, John A Shster,etal. Frozen earth cofferdam design. Ground Freezing91.Rotterdam:Balkema,1991
    [6] Peter J odan, Helmut Hab. Use of artificial ground freezing in three sections of the Dusseldof subway.In: Groundf reezing, Proc7ISGF.1994
    [7] Katayama H,J oushima M, Tanaka M, etal. Applicationof freezing method for widening an existingtunnel. Ground Freezing97.Rot terdam: Balkema,1997
    [8] Derek Maishman,Powers J P,Lunardini V J. Freezing atemporatory roadway for transport of a3000t ondragline.5th IntSymp on Ground Freezing,1988
    [9] Buinger A. Application of artificial ground-freezing with liquid nitrogen (LIN)/new control hardware.In: Ground freezing, Proc Of8th ISGF.1996
    [10]周兴旺.我国特殊凿井技术的发展与展望[J].煤炭科学技术,2007,35(10):10-17
    [11]叶湘.冻结法凿井的若干问题研究[J].中国煤炭,2000,26(1):23-25
    [12]裴捷,梁志荣,王卫东.润扬长江公路大桥南汊悬索桥南锚碇基础基坑围护设计[J].岩土工程学报,2006,28(S1):1541-1545
    [13]苏立凡.水平冻结法[J].当代矿工.1999,25
    [14]贺长俊,王伟,周晓敏等.北京地铁“复—八”线“大北窑—热电厂”区间含水粉细砂地层水平冻结的隧道施工技术[J].铁道建筑,1999,6:7-10
    [15]高树峰.探讨水平冻结技术在天津地铁过子牙河段的应用[J].铁道工程学报,2001,69(1):76-79
    [16]张晖.应用冻结法加固地铁工程的结构施工研究[J].隧道建设,2006,26(3):58-60
    [17]朱径,马进.长距离水平冻结孔施工技术在广州地铁的应用[J].安徽建筑工业学院学报,2006,14(5):12-15
    [18]李为强.液氮冻结在盾构出洞施工中的应用[J],安徽建筑,2006,6:53-55
    [19]夏江涛.盾构出洞水平冻结加固杯型冻土壁温度场研究[D],南京林业大学,2009
    [20]袁云辉.人工水平冻结冻土帷幕强制解冻温度场数值分析[D],南京林业大学,2010
    [21]刘建航、侯学渊.盾构法隧道[M],中国铁道出版社,1991
    [22]张庆贺,唐益群,杨林德.盾构进出洞注浆加固设计与施工技术研究[J].地下工程与隧道,1993,4:93-100
    [23]武有根.软土地层SMW工法盾构出洞施工技术[J].地下空间与工程学报,2005,1(7):997-1000
    [24]杨平,佘才高,董朝文等.人工冻结法在南京地铁张府园车站的应用[J].岩土力学,2003,24(增刊):388-391
    [25]杨太华,陈细华.越江隧道大型泥水盾构进出洞冻结加固施工技术[J].浙江交通职业技术学院学报,2005,6(1):1-4
    [26]英旭,蒋岳成,李曦.杯型水平冻结工法在盾构进洞施工中的应用[J].中国市政工程,2006,4:52-55
    [27]韦良文.泥水盾构隧道施工土体稳定性分析与试验研究[D].上海:同济大学,2007,11
    [28]张朝彪,金福强,胡俊等.不同地质条件下盾构进出洞施工技术研究[J],江苏建筑,2010,4:62-65
    [29]韦良文,吴韬,张庆贺.大直径盾构隧道出洞段土体稳定性分析[J].低温建筑技术,2006,110(2):85-86
    [30]李大勇,王晖,王腾.盾构机始发与到达端头土体加固分析[J].铁道工程学报,2006,91(1):87-90
    [31]胡新朋,孙谋,王俊兰.软土地区地铁盾构施工端头土体加固要求探讨[J].隧道建设,2006,26(5):11-13
    [32]辛振省,王金安,马海涛等.盾构始发端预加固合理范围研究[J].地下空间与工程学报,2007,3(3):513-518
    [33]朱学银,岳丰田,张勇.盾构出洞冻结加固拱棚结构的力学模型分析[J].现代隧道技术,2008,45(1):35-38
    [34]吴韬,韦良文,张庆贺.大型盾构出洞区加固土体稳定性研究[J].地下空间与工程学报,2008,4(3):477-484
    [35]胡俊,杨平,董朝文等.盾构始发端头化学加固范围及加固工艺研究[J],铁道建筑,2010,2:47-51
    [36]胡俊.高水压砂性土层地铁大直径盾构始发端头加固方式研究[D],南京林业大学,2012.
    [37]王效宾,胡俊,曾晖等.南京地铁某车站盾构到达端头补充加固案例研究[J],科技资讯,2010,30:52
    [38] JJGA,日本协会,JetGRourt.工法,平成2年2月
    [39]张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004,8
    [40]马芹永.人工冻结法的理论与施工技术[M].北京:人民交通出版社,2007,9
    [41]张婷,杨平.不同因素对浅表土冻结温度的影响[J].南京林业大学学报:自然科学版,2009,33(4):132-134
    [42]李述训,吴紫汪.青藏高原多年冻土区沥青路面下融化盘形成变化特征[J].冰川冻土,1997,19(2):133-140
    [43]杨更社,周春华.软岩材料冻融过程中的水热迁移实验研究[J].煤炭学报,2006,31(5):566-570
    [44]姚兆明,周启俊.人工冻土温度场的智能方法预测[J].安徽理工大学学报,2005,25(3):26-32
    [45]李萍,徐学祖.不连续分凝冰发育规律的研究[J].兰州大学学报,2000,36(5):126-133
    [46] Jessberger H L. Opening address [A]. In: Jones and Holden, eds. Ground Freezing88,Proceedings of5th International Symposium on Ground Freezing[C]. Rotterdam: Balke ma A A,1989,407-411
    [47]张殿发,郑琦宏.冻融条件下土壤中水盐运移规律模拟研究[J].地球科学进展,2005,24(4):46-55
    [48]赵建军,韩文峰.人工冻结法施工的冻土壁温度场数学模型[J].天津城市建设学院学报,1999,5(1):30-34
    [49]汪仁和,李晓军.冻结温度场的叠加计算与计算机方法[J].安徽理工大学学报,2003,23(1):25-29
    [50]汪仁和,王伟.冻结孔偏斜下冻结壁温度场的形成特征与分析[J].岩土工程学报,2003,25(6):658-661
    [51]蒋斌松,沈春儒,冯强.外壁恒温条件下单管冻结温度场解析计算[J].煤炭学报,2010,35(6):0923-0927
    [52]胡坤,周国庆,荆留杰等.深厚表土多圈管冻结温度场演变规律研究[J].采矿与安全工程学报,2010,27(2):0149-0153
    [53]周扬,周国庆.土体一维冻结问题温度场半解析解[J].岩土力学,2011,32(s1):309-413.
    [54]杨志江,车平.冷媒循环条件下单管水平冻结温度场数值模拟[J].江苏煤炭,2004,2:70-71
    [55]李磊,郭红波.地铁隧道联络通道冻结法施工三维温度场及性状分析[J].上海大学学报,2006,12(6):641-646
    [56]马贵阳,刘晓国.埋地管道周围土壤水热耦合温度场的数值模拟[J].辽宁石油化工大学学报,2007,27(1):40-46
    [57]林文生,罗佩芳.未冻水在冻土热状况数值模拟中作用的分析[J].肇庆学院学报,2007,28(2):18-22
    [58]蔡海兵,荣传新.考虑相变潜热的冻结温度场非线性分析[J].低温建筑技术,2009,2:43-45
    [59]肖朝昀,胡向东.双圈水平冻结冻土帷幕温度场数值模拟[J].苏州科技学院学报,2009,22(4):21-24
    [60]崔灏,李栋伟.水平冻结法施工温度场数值模拟与分析[J].低温建筑技术,2009,2:98-100
    [61]杨峰,倪玲.水平冻结法温度场数值模拟[J].交通科技,2011,3:70-72
    [62]乔熙,刘阳,李安安等.虎豹湾矿井冻结温度场数值模拟与实测对比[J].河北理工大学学报(自然科学版),2011,33(2):1-5
    [63]胡传鹏,胡向东,朱合华,单排管冻结巴霍尔金温度场控制参数敏感度分析[J].煤炭学报,2011,36(6):938-944
    [64]尚逸飞.液氮冻结温度场均匀性实验[J].黑龙江科技学院学报,2009,19(3)1-4
    [65]张涛,杨维好,宋雷等.深井三圈管局部保温冻结温度场研究[J].能源技术与管理,2009,5:127-130
    [66]胡向东,程烨尔.盾构尾刷冻结法更换的温度场数值分析[J].岩石力学与工程学报,2009,28(S2):3516-3524
    [67]胡向东,肖朝昀.双层越江隧道联络通道冻结法温度场影响因素[J].地下空间与工程学报,2009,5(1):7-12
    [68]李宁,邵钢,李长忠。局部保温条件下单管冻结温度场的数值计算[J].煤炭科学技术,2010,38(8):053-055
    [69]刘建刚,李宗春,路遥.单排水平冻结工程温度场数值模拟[J].勘察科学技术,2011,1:10-13
    [70]谢雄刚,冯涛.石门揭露突出煤层冻结温度场数值模拟研究[J].煤炭学报,2011,36(9):1511-1514
    [71]王效宾,杨平,张婷.人工冻土融沉特性试验研究[J].南京林业大学学报:自然科学版,2008,32(4):108-112
    [72]袁云辉,杨平.冻结加固盾构端头土体温度场数值分析[J].地下空间与工程学报,2010,6(5):1053-1059
    [73]袁云辉,杨平,江天堑.复杂环境下浅埋暗挖隧道穿越薄富含水层冻结温度场研究[J].岩土力学,2010,31(S1):0388-0393
    [74]夏江涛,杨平.盾构出洞水平冻结加固杯形冻土壁温度场监测分析[J].郑州大学学报,2010,31(2)027-030
    [75]袁云辉,杨平,王海波.人工水平冻结冻土帷幕强制解冻温度场数值分析[J].南京林业大学学报(自然科学版),2011,35(4):117-120
    [76][苏]纳斯诺夫、苏普利克,立井冻结壁形成规律,煤炭工业出版社,1981
    [77] Burl T P,Williams P J. Hydraulic conductivity in frozen soils [J]. Earth Surface Processes,1976,1:349-360
    [78] Arakawa,K.,Theoretical studies of ice segregation in soil. J. of Glaciology.1966,6(44):225-260.
    [79] LI Ning,CHEN Bo,DANG Faning.Coupled Temperature Seepage Deformation Model of the JointedRock Masses [J].Progress in Natural Science,2000,10
    [80] Arakawa,K.,Theoretical studies of ice segregation in soil. J. of Glaciology.1966,6(44):225-260.
    [81]徐学祖,邓友生.冻土中水分迁移的实验研究[M].北京:科学出版社,1991
    [82]陈湘生,濮家骝.地基冻-融循环离心模型试验研究[J],清华大学学报,2002,42(4):531-534
    [83]张婷,杨平.浅表土人工冻土冻胀特性的研究[J].南京林业大学学报,2010,34(4):65-68
    [84]秦爱芳,林金钱,蒲毅彬.上海人工冻土冻胀特性和水分迁移的试验研究[J].上海大学学报(自然科学版),2009,15(1):93-98
    [85]程佳,赵相卿,杨晓明.青藏铁路多年冻土区典型土样冻胀率特性研究[J].冰川冻土,2011,33(3):863-866
    [86]周金生,周国庆,张琦等.图像处理技术在分凝冰演化规律研究中的应用[J].岩土工程学报,2011,33(1):123-127
    [87]李海鹏,杨维好,黄家会等.双圈管黏土冻结壁形成过程冻胀力模型试验研究[J].冰川冻土,2011,33(4):801-806
    [88]李宁,陈飞熊.饱和土体固液两相介质动力祸合问题有限元解析[J].西安公路交通大学学报,1997,19(4):6-10
    [89]李洪升,张斌等.一维冻结土体冻胀量的水热力耦合计算[J].大连理工大学学报,1999,39(5):621-624
    [90]李洪升.基于冻土水分温度和外荷载相互作用的冻胀模式[J].大连理工大学学报,1998,38(1):29-33
    [91]刘鸿绪,朱卫中.再论冻胀量与冻胀率之关系[J].冰川冻土,2001,23(1):63-66
    [92]杨平,皮爱如.高流速地下水地层冻结壁形成的研究[J].岩土工程学报,2001,23(2):167-171
    [93]张树光,李选海.路基冻胀过程的温度效应[J].辽宁工程技术大学学报,2005,24(4):546-548
    [94]商翔宇,周国庆.基于水动力学模型冻土冻胀数值模拟的改进[J].中国矿业大学学报,2006,35(6):762-766
    [95]程桦,臧华.人工地层水平冻结冻胀效应准耦合数值分析[J].岩土工程学报,2003,25(1):87-90
    [96]柯洁铭,杨平.冻土冻胀融沉的研究进展[J].南京林业大学学报,2004,28(4):105-108
    [97]柯洁铭,杨平.有限单元法在人工冻土冻胀数学模型分析中的应用[J].公路工程,2009,34(1):25-29
    [98]盛平,于广云.人工地层水平冻结冻胀对邻桩的影响[J].地下空间与工程学报,2005,1(3):482-484
    [99]姚直书,陈钧.水下冻结工程温度场物理模拟研究[J].煤炭科学技术,2006,34(10):55-58
    [100] Ping Yang, Jie-ming Ke, J.G. Wang, Y.K. Chow and Feng-bin Zhu,Numerical simulation of frostheave with coupled water freezing, temperature and stress fields in tunnel excavation, Computer andGeotechnics,2006,33(6-7)
    [101]李洪升,王悦东,刘增利.寒冷地区路基冻胀的计算模型和方法研究[J].铁道科学与工程学报,2011,8(1):34-38
    [102]黄建华.考虑卸压孔卸荷作用的人工冻土冻胀特性研究[J].工程力学,2010,27(12):141-148
    [103]李海艳,上官云龙.分形几何理论在路基土冻胀性分析中的应用[J].吉林交通科技,2011,1:16-18
    [104]中华人民共和国国家标准,土工试验方法标准(GB/T50123-1999).中国计划出版社,1999年10月
    [105]李相然.城市地下工程实用技术[M].北京:中国建材工业出版社,2000
    [106]胡汉平.热传导理论[M].北京:中国科学技术大学出版社,2010
    [107]王丽霞,胡庆立,凌贤长.青藏铁路冻土未冻水含量与热参数试验,哈尔滨工业大学学报,2007,39(10):1660-1663
    [108]徐学祖,王家澄,张立新著.冻土物理学[M].北京:科学出版社,2001
    [109]张婷.人工冻土冻胀融沉特性试验研究[D].南京:南京林业大学,2004
    [110]王润富,陈国荣.温度场和温度应力[M].北京:科学出版社,2005
    [111]郭宽良,孔祥谦,陈善年.计算传热学[M],合肥:中国科技大学出版社,1988
    [112]崔亚男.广州某地铁隧道人工冻结法施工冻结壁厚度及冻结周期计算[D].北京交通大学,2008
    [113]辛振省,王金安,马海涛,彭加强.盾构始发端预加固合理范围研究[J].地下空间与工程学报,2007,3(3):513-518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700