用户名: 密码: 验证码:
极端冰雪灾害条件下建筑地基稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上自然灾害最为严重的国家之一,灾害种类多、分布地域广、发生频率高。在全球气候变化和中国经济社会快速发展的背景下,中国面临的自然灾害形势严峻复杂、灾害风险进一步加剧、灾害损失日趋严重,直接影响国民经济的可持续发展。2008年南方极端冰雪灾害以后,国家对自然灾害越来越重视。
     2008年一月,我国南方地区发生了重大雪灾。这次雪灾持续时间长、影响范围广、危害程度深,为历史罕见。铁路、公路、港口、矿山、电力、水利水电等重工程都由于此次极端冰雪灾害而产生了一定危害。为了研究极端冰雪灾害对我国南方建筑地基稳定性的影响,本文分析了国内现行规范中稳定性分析方法,并结合冰雪条件下建筑地基的破坏特征提出极端冰雪条件下南方建筑地基稳定性的影响因子;运用室内试验研究、数值分析与理论计算的方法,得出在笔者模拟的极端冰雪条件下普通建筑地基、土质边坡地基与顺层岩质边坡地基的稳定性变化规律。本文的主要研究工作如下:
     ①对国内现行规范中建筑地基稳定性稳定性分析方法进行总结归纳,结合极端冰雪灾害条件影响下建筑地基的破坏特征与原因分析,提出极端冰雪条件下地基稳定性的影响因子为地基土经历冻融循环的次数以及冻融对土体的影响深度。
     ②模拟极端冰雪条件,选取南方地区典型红粘土进行常规土力学参数试验、水分迁移试验、直剪试验、无侧限抗压强度试验、固结试验,研究在重要影响因子作用下土体力学参数的变化规律。
     ③利用数值分析软件FLAC3D建立模型,结合室内试验的结果对普通建筑地基与土质边坡地基稳定性进行分析,研究此二种建筑地基在极端冰雪灾害条件下稳定性变化规律。
     ④引入冰胀力概念,对顺层岩质边坡建筑地基的倾覆稳定性与滑移稳定性表达式进行修正,通过理论计算分析,研究此种地基稳定性在不同的裂隙水深度、坡高、坡脚、滑面倾角与主滑面结合程度的条件下在冻胀力作用下的敏感性。
China is one of the countries with the most serious natural disasters in the world. The disasters have many species and distribution, and the occurrence frequnency regions wide high. With the global climate change and rapid development of China’s economy and society, the risk of the natural disasters becomes more serious, and the lost becomes haveier. After the southern extreme snow disaster in 2008, China pays more attention to the natural disasters.
     In January 2008, the snow disaster occurred in southern China. The snow disaster lasted for a long time, huge influence range, and deeply damage, all of this was historical rare. Big range, high strength snow and ice melt caused hundreds of geological disasters which caused heavy damages to railways, highways, ports, power project, mining project and hydropower project. In order to research the effect to the stability of southern building foundation caused by the extreme snow disaster, in this paper the analyses of the current specification stability analysis methods had been made, then combining with snow and ice conditions proposed building foundation destructive characteristics of the southern architectural, the affect factors to stability of building foundation in condition of extreme snow disaster had been proposed. By using the indoor experiment, finite element analysis and theoretical calculation methods, change rules of the stability of common building foundation, soil slope foundation and bedding rock slope foundation had been proffered. The main research works are as follows:
     ①The summarizes of the current specification for domestic building foundation stability analysis methods had been made, then combining with the failure characteristicses and reasons of building foundation in condition of extreme snow disaster, the affect factors to stability of building foundation in condition of extreme snow disaster had been proposed: the freeze-thaw cycle times of the foundation soil and the soil freeze-thaw depth.
     ②With simulation of the extreme snow disaster, conventional soil mechanics parameters tests, moisture migration tests, direct shear tests, unconfined compressive strength tests and consolidation tests with typical red clay of southern China had been made, then the research to change rule of soil physical parameters on important impact factors had been made.
     ③By using finite element analysis with FLAC3D software, combining indoor test results, the research to the stability of common building foundation and soil slope foundation had been made, then the change rule of the stability of these two kinds of foundations had been researched.
     ④Ice bulge force concept had been proposed, and then correction to expression of stability of sliding and over turning of bedding rock slope had been made. Research on sensitivity of stability in different fracture water depth, slope hight, slope angle, sliding surface angle and silding surface conditions had been made.
引文
[1]殷志强.2008年春季极端天气气候事件对地质灾害的影响[J].防灾科技学院学报,2008.10(02),20-24.
    [2] GB50178-93建筑气候区划标准[S],北京:中国计划出版社,1993.
    [3] Satoshi Akagawa. Experimental study of frozen fringe characteristics[J]. Cold Region Science and Technology, 1988, 15:209-220.
    [4] Jessberger H L. Opening address[A]. In: Jones and Holden, eds. Ground Freezing 88, Proceedings of 5th International Symposium on Ground Freezing[C]. Rotterdam: Balke ma A A, 1989, 407-411.
    [5] Miyata Y. A macroscopic frost heave theory coupling equations and criteria for creation of new ice lens. Ground Freezing 97, Netherlands: Lulea University of Technology. 1997.
    [6] Muto Y, Watanabe K, Ishizaki T, Mizoguchi M. Microscopic observation of ice lensing and frost heaves in glass beads. Lewkowicz A G Allard M. The 7th International Permafrost Conference. Canada: Laval University, 1998: 783-787.
    [7] Dieter Eigenbrod: Pore-water pressures in freezing and thawing fine-grained soils. Journal of Cold Regions Engineering, 1996(6): 77-92.
    [8] K. Takeda and Y. Nakano, Growth condition of an ice layer in freezing soils under applied loads, I: Experiments, Cold Regions Research and Engineering Laboratory Report No.93-21,1993.
    [9] Black P. B and Miller, R. D., Hydrautic conductivity and unfrozen water content of air-free frozen soil, Water Resource Research, 1990, 26: 323-329.
    [10] Dan Yang, Deborzh J.: Predicting frost heave using frost model with centrifuge models. Journal of Cold Regions Engineering, 1998(2): 64-83.
    [11] Duquennoi C., Fremond M. And Levy M., Modelling of thermal soil behavior, VTT Symposium 95,1989,895-915.
    [12] Fremond M. and Mikkola m., Thermodynamical modeling of freezing soil, Proceeding of 6th International Symposium on Ground Freezing, 1991, 17-24.
    [13] Takashi Ono. Lateral deformation of freezing clay under triaxial stress condition using laser-measuring device. Cold Regions Science and Technology 2002(35): 45-54.
    [14] F Talamucci: Freezing processes in porous media: Formation of ice lenses, swelling of the soil. Mathematical and Computer Modelling, Volume 37, Issues 5-6, March 2003:595-602.
    [15]于基宁,汪稔,谭峰屹等.饱和粉质粘土冻融力学效应试验研究[J].岩土工程界,2008,ll(12):48-51.
    [16]何平,程国栋,朱元林.土体冻结过程巾的热质迁移研究进展[J].冰川冻土,2001,23(1):92-98.
    [17]朱强.论季节冻土冻胀沿冻深的分布[J].冰川冻土,1988,10(1):1-7.
    [18]邴慧,何平,杨成松,施烨辉.开放系统下硫酸钠盐对土体冻胀的影响[J].冰川冻土,2006,28(1):126-130.
    [19]刘鸿绪.再论冻胀量与冻胀力的关系[J].冰川冻土,2001,23(1):63-66.
    [20]陈瑞杰,程国栋,李述训.人工地层冻结应用研究进展和展望[J].岩土工程学报,2000,22(1):40-44.
    [21]王正中、沙际德等.正交各向异性冻土与建筑物相互作用的非线性有限元分析[J].土木工程学报,1999,32(3):55-60.
    [22]赖远明,吴紫汪,朱元林等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999,2 1(5):429-533.
    [23]夏慧民,邵琦,牛富俊.基坑冻结围护结构土压力环境的数值模拟分析[J].解放军理工大学学报,2008,9(1):62-66.
    [24]何平,程国栋,杨成松等.冻土融沉系数的评价方法[J].冰川冻土,2003,25(6):608-613.
    [25]张喜发,陈继,张冬青.融沉系数在季冻区高速公路路基冻害研究中的应用[J].冰川冻土,2002,24(5):634-638.
    [26]陈湘生、淮家骚等.土壤冻胀离心模拟试验[J].煤炭学报,1999,24(6):615-619.
    [27]王建平,王文顺。人工冻结土体冻胀融沉的模型试验[J].中国矿业大学学报,1999,28(4):303-306.
    [28]马巍.围压作用下冻土的强度与变形分析.北京理工大学博士学位论文,2000.
    [29]陈舟,王敏,敦超超.人工冻土的冻胀融沉及防治[J].山西建筑,2008,34(25):118-119.
    [30] Nixon J F, Ladanyi B. Thaw consolidation[C]. In:Andersland O B, Anderson M, eds. Geotechnical Engineering for Cold Regions(Chapter 4). New York: McGraw Hill,1978.
    [31] A. Foriero and B. Ladanyi. FEM Assessment of large-strain thaw consolidation. Cold Regions Science and Technology, 1995, 23(2):121-136.
    [32] Sally Shoop. Cap plasticity model for thawing soil. Calibration of Constitutive Models. 2005(3): 139-150.
    [33]雍景荣,朱凡,胡岱文.土力学与基础工程.成都科技大学出版社,1995.
    [34]刘东椿.迈耶霍夫地基极限承载力的图解法岩土工程学报,1983,5(1):167-170.
    [35]陈希有.各向异性和非匀质地基上条形基础承载力的滑移场解法.浙江大学学报(工学版),1988(3).
    [36]阮怀宁.广义极限平衡理论在地基与边坡稳定分析中的应用.水利学报,1996(3):46-56.
    [37]尉学勇,王晓谋,贺培峰.斜坡地基极限承载力下限解计算建筑科学与工程学报,2005,2(4):77-82.
    [38] Donald I, Chen Z Y. Slope stability analysis by the upper bound approach: fundamentals and methods. Can Geotech J 1997, 34: 853-62.
    [39] [1] Siad, L. Seismic stability analysis of fractured rock slopes by yield design theory. Soil Dynamics and Earthquake Engineering, Volume: 23, Issue: 3, April, 2003, pp. 21-30.
    [40]徐守国.斜坡上地基承载力的研究.西安公路学院硕士学位论文,1992.
    [41]张永兴等.岩石力学.中国建筑工业出版社,2004.
    [42]土工试验方法标准(GB/T50123-1999)[S].北京:中国计划出版社,1999.
    [43]吴紫汪,张家懿,朱元林.冻土的强度与破坏特征[C],中国地理学会冰川冻土学术会议论文选集.兰州:甘肃人民出版社,1983:275-280.
    [44]王效宾,杨平,王海波,冻融作用对黏土力学性能影响的试验研究[J],岩土工程学报,2009(11),1768~1772.
    [45]齐吉琳,马巍,冻融作用对超固结土强度的影响[J],岩土工程学报,2006,28(12),2082-2086.
    [46]彭丽云,刘建坤,田亚护,正融土无侧限抗压试验研究[J],岩土工程学报,2008, 30(9),1338-1342.
    [47]赵鹏,唐红梅,危岩主控结构面的冻胀力计算公式研究[J],重庆交通大学学报(自然科学版),2008,27(3),420-423.
    [48]冯守中,闫澍旺,崔琳.严寒地区路堑边坡破坏机理及稳定计算分析[J].岩土力学, 2009,30(z1):155-159.
    [49]许光祥.饱水岩石边坡倾覆稳定系数计算[J].岩土工程学报,1999,21(2):227-229.
    [50]张永兴.岩石力学[M].北京:建筑工业出版社,2004.
    [51]中华人民共和国水利部,GB50218-94,工程岩体分级标准[S],北京:中国计划出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700