用户名: 密码: 验证码:
ZnO基传感器的气敏和湿敏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1962年发现ZnO材料的电导率会随环境气氛发生变化以来,有关ZnO基气、湿敏传感器的研究就一直受到人们的关注。近年来,随着纳米科技与相关制备工艺的快速发展,ZnO基敏感材料的制备技术已臻成熟,如何提高传感器的敏感性能成为研究的重点。本文从纳米ZnO的结构与形貌控制、掺杂、复合和修饰出发,制备了几种ZnO基材料体系,并通过制作传感器原型器件,对其相应的湿度或气体敏感性能研究,分析了相关的敏感机理。论文取得了以下主要研究结果:
     1、多孔片层ZnO球的制备及其气敏性能研究
     采用水热法制备了多孔片层ZnO球并对其形貌和结构进行了表征。通过制作电阻型原型器件,研究了其对乙醇气体的敏感性能。结果表明,该气敏元件的最佳工作温度为280oC。在此温度下,元件对2ppm乙醇的灵敏度达到2.8,响应和恢复时间分别为10和15s,且在2-500ppm乙醇气体浓度范围内的响应曲线具有很好的线性度。与目前商业ZnO粉末气敏元件相比,基于多孔片层ZnO球的气体传感器优势在于其具有更低的工作温度和更高的灵敏度。
     2、Zn掺杂SnO2多孔空心球的制备及其气敏性能研究
     以碳球为模板,采用直接沉淀法制备Zn掺杂SnO2多孔空心球,并对其形貌和结构进行了表征。通过制作电阻型原型器件,研究了其对乙醇气体的敏感性能。结果表明,在240oC的工作温度下,该气敏元件对乙醇的响应值最大。对于2ppm、5ppm、10ppm、50ppm、100ppm、200ppm、300ppm和500ppm的乙醇气体,其响应值分别为:2.8、4.6、4.9、16、27.4、48.8、71.9和100,其响应和恢复时间分别为29和16s。与具有相同结构特征的纯ZnO或SnO2多孔空心球相比,Zn掺杂SnO2多孔空心球气敏元件在灵敏度与稳定性表现出较大的优势。
     3、Zn2SnO4纳米结构的制备及其气敏性能研究
     采用水热制备Zn2SnO4纳米结构并对其形貌和结构进行了表征。研究表明,通过改变水热液的pH值,可以对其形貌及晶体生长取向进行调控。在材料制备过程中,当反应溶液的pH值由9到11再到13时,Zn2SnO4的形貌由单一的纳米颗粒转变为纳米颗粒-纳米棒并存,最终转变为纳米棒;Zn2SnO4生长的择优取向从(311)转变为(331),材料的比表面积也随之增大。结果表明,pH为13时制备的样品对乙醇气体具有最好的敏感性能。在300oC的工作温度下,该敏感元件对100ppm乙醇的响应值达到30.7,响应和恢复时间分别为10和9s。同时,该元件被放置15周,响应值随时间几乎没有变化,表现出很好的测量稳定性。
     4、ZnO/Si-NPA的制备与湿敏性能研究
     以硅纳米孔柱阵列(Si-NPA)为衬底,采用溶胶-凝胶法结合旋涂技术制备了ZnO/Si-NPA,并对其形貌和结构特征进行了表征。研究表明,旋涂于Si-NPA衬底上的ZnO纳米晶粒大致呈球状,平均粒径为~5.87nm;ZnO/Si-NPA保持了良好的柱状阵列结构。通过制作电容型原型器件,对其湿敏性能进行了研究。结果表明,当湿敏元件暴露于33%、54%、75%、95%相对湿度环境中时,其灵敏度分别达到~124.5%、536.2%、2035.4%和5522%,元件的响应和恢复时间分别为65s和48s。放置15周后,该元件的电容值变化相对较大,稳定性有待进一步提高。
     5、PVP修饰ZnO/Si-NPA的制备与湿敏性能研究
     采用溶胶-凝胶法制备了PVP修饰的ZnO纳米颗粒。光吸收谱测试表明,随着PVP添加量的增大,ZnO的吸收边先发生蓝移。当Zn2+/PVP摩尔比达到5:3时,蓝移最大;此时PVP修饰ZnO纳米颗粒呈球形,分散性好且粒径分布均匀,平均粒径为3.52nm。继续增大PVP的添加量,其吸收边将发生红移。对不同剂量PVP修饰ZnO纳米颗粒/Si-NPA的湿敏特性进行研究发现,随着PVP的添加量的增大,PVP修饰ZnO/Si-NPA的灵敏度逐渐增加,但与此同时湿滞也逐渐增大。当Zn2+/PVP摩尔比为5:3时,元件的湿敏性能最佳。此时,当PVP修饰ZnO/Si-NPA湿敏元件暴露于33%、54%、75%、95%的相对湿度环境中时,器件的灵敏度分别达到~80.9%、571%、10334%和1127198%。该元件的响应和恢复时间分别为16s和8s。放置15周后,该元件的电容值随时间变化很小,具有很好的稳定性。
Since the year of1962, when the conductance of ZnO was found to change withthe appearance of ethanol, study on ZnO gas and humidity sensor has come to be thehot topic. With the development of nanotechnology and production, preparation ofZnO sensing materials has become perfect, and most of the attentions have beenfocused on how to improve the sensing properties. In this paper, we studied the gasand humidity sensing properties of sensors based on ZnO. The effect of morphologyand structure, dopping, materials composite, and modifying on the sensing propertieswas investigated. The main conclueds were as follows:
     1. Studies on preparation and gas sensing properties of porous flake ZnO spheres
     We prepared ZnO spheres composed of porous flake by hydrothermal methodcombined with heat treatment, and their morphology and structure were characterized.Resistance-type gas sensor based on porous flake ZnO spheres was prepared and itsethanol gas sensing property was studied. It is found the sensor desmontrated obviousresponse to2ppm ethanol with the corresponding response of2.8at the optimumoperation temperature of280oC, and the response and recovery time of10and15s.The sensor showed good linearity with the concentration of ethanol in the range of2~500ppm. The sensos based on porous ZnO spheres showed improved ethanolresponse on working temperature and sensitivity compared to that based oncomemerical ZnO powders.
     2. Studies on preparation and gas sensing properties of Zn-doped SnO2poroushollow microspheres.
     Zn-doped SnO2porous hollow microspheres have been prepared by a directprecipitation methoed combined with heat treatment, using colloidal carbon sphere astemplate, and their morphology and structure were characterized. Resistance-type gassensor based on Zn-doped SnO2porous hollow microspheres was prepared and itsethanol gas sensing property was studied. It is found the sensor has a good selectivityto ethanol at the optimum working temperature of240oC. The response of the sensor to ethanol with the concentration of2,5,10,50,100,200,300and500ppm was2.8,4.6,16,27.4,48.8,71.9and100, respectively. The response and recovery time was29and16s, respectively. Compared to the single ZnO and SnO2with the samenanostructure, Zn-doped SnO2porous hollow microspheres sensor exhibitedimproved ethanol gas sensing properties on sensitivity and stability.
     3. Studies on preparation and gas sensing properties of Zn2SnO4nanostructure.
     Ternary material Zn2SnO4were prepared by hydrothermal method combinedwith heat treat, and their morphology and structure were characterized. It is found wecan regulate the morphology and preferential orientation of Zn2SnO4by the pH value.The morphology of Zn2SnO4nanostructure changed from single nanoparticles to bothnanoparticles and nanorods, the preferential orientation varied from (311) to (311),and the special surface area increased when the pH value of the solution changedfrom9to13. Zn2SnO4sensor prepared at the pH of13exhibited the best gas sensingproperties. At the working temperature of300oC, the sensor response to100ppmethanol was30.7, the response and recovery time was10and9s, respectively, andthe stability was good after aging for15weeks.
     4. Studies on preparation and humidity sensing properties of ZnO/Si-NPA.
     ZnO/Si-NPA was prepared by sol-gel method combined with dipping, usingSi-NPA as the template and substrate, and their morphology and structure werecharacterized. It is found the morphology of ZnO nnaoparticles on Si-NPA wasapproximately sphere-like, with the size of5.87nm, and the ZnO/Si-NPA keep thepillar arrays. Studies on humidity sensing properties of ZnO/Si-NPA sensor found thatwhen the ZnO/Si-NPA humidity sensor was exposed in33%,54%,75%,95%RH, thesensitivity was124.5%,536.2%,2035.4%and5522%, respectively. The response andrecovery time was65and48s, respectively. After aging for15weeks, the variation ofcapacitance was relatively large, and we should improve it in further studies.
     5. Studies on preparation and humidity sensing properties of PVP modifiedZnO/Si-NPA.
     PVP modified ZnO nanoparticles was prepared by sol-gel method. Theabsorption edge of ZnO exhibited blue shift with the increment of PVP. And that exhibited red shift with the increment of PVP when the mole ratio of Zn2+/PVP wassmaller than5:3. When the mole ratio of Zn2+/PVP was5:3, PVP modified ZnO wassphere-like, with good dispersion and uniform size of5.87nm. Studies on humiditysensing properties of PVP modified ZnO found that the sensitivity and hysteresis ofPVP modified ZnO/Si-NPA sensor increased with the increment of PVP. Humiditysensor with the mole ratio of Zn2+/PVP of5:3, exhibited the best sensing properties.When the sensor was exposed in33%,54%,75%,95%RH, the sensitivity was80.9%,571%,10334%and1127198%, respectively. The response and recovery time was16and8s, respectively. After aging for15weeks, the variation of capacitance was slight,and the sensor exhibited good stability.
引文
[1]丁继斌.传感器[M].北京:化学化工出版社,2012.
    [2] Brauer P.[J]. Ann. Phys.,1936,29:9.
    [3] Grag T.G.[J]. Nature,1948,260:1162.
    [4] Seiyama Tetsuro, Kato Akio, Fujiishi Kiyoshi, etc. A new detector for gaseouscomponents using semiconductive thin films [J]. Analytical Chemistry,1962,34(11):1502-1503.
    [5] Shaver P. J. Activated tungsten oxide gas detectors [J]. Applied Physics Letters,1967,11(8):255-257.
    [6]田口尚义.特许公报.昭和45.
    [7]松冈道雄.电子技术.1979. p.43.
    [8] Nakatani Y., et al. Compon. Hybrides manuf. Technol.1982: CHMT. p.552.
    [9]丁秉钧.纳米材料[M].西安:交通大学出版社,2011.[J].
    [10] Gurav K. V., Gang M. G., Shin S. W., etc. Gas sensing properties of hydrothermallygrown ZnO nanorods with different aspect ratios [J]. Sensors and Actuators B: Chemical,2014,190:439-445.
    [11] Iversen Kalon J., Spencer Michelle J. S. Effect of ZnO nanostructure morphology on thesensing of H2S gas [J]. The Journal of Physical Chemistry C,2013,117(49):26106-26118.
    [12] Hussain Shahid, Liu Tianmo, Kashif M., etc. Effects of reaction time on themorphological, structural, and gas sensing properties of ZnO nanostructures [J]. MaterialsScience in Semiconductor Processing,2014,18(0):52-58.
    [13] Gao Xiaoqing, Zhao Hua, Wang Jide, etc. Morphological evolution of flower-like ZnOmicrostructures and their gas sensing properties [J]. Ceramics International,2013,39(8):8629-8632.
    [14] Xiao Qi, Wang Tao. Improving the ethanol gas-sensing properties of porous ZnOmicrospheres by Co doping [J]. Materials Research Bulletin,2013,48(8):2786-2791.
    [15] Prajapati C. S., Kushwaha Ajay, Sahay P. P. Effect of al dopants on the structural, opticaland gas sensing properties of spray-deposited ZnO thin films [J]. Materials Chemistryand Physics,2013,142(1):276-285.
    [16] He Jian-Qun, Yin Jing, Liu Dong, etc. Enhanced acetone gas-sensing performance ofLa2O3-doped flowerlike ZnO structure composed of nanorods [J]. Sensors and ActuatorsB: Chemical,2013,182(0):170-175.
    [17]冯小明,张崇才.复合材料[M].重庆:重庆大学出版社,2007.
    [18] Huang Jiarui, Dai Yijuan, Gu Cuiping, etc. Preparation of porous flower-like CuO/ZnOnanostructures and analysis of their gas-sensing property [J]. Journal of Alloys andCompounds,2013,575(0):115-122.
    [19] Tang Huixiang, Yan Mi, Ma Xingfa, etc. Gas sensing behavior ofpolyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine [J]. Sensors andActuators B: Chemical,2006,113(1):324-328.
    [20] Dunmore F.W. An electrometer and its application to radio meteorography [J]. Journal ofResearch of the National Bureau of Standards,1938,20:723-744.
    [21]秦起佑,蒋兵,徐同举等.传感电子学[M].北京:宇航出版社,1987.
    [22] Pope M. Electrode for electric humidity sensor. US Patent, No.2728831,1955.
    [23] Takaoka Y., Maebashi Y., Kobayashi S., etc. Humidity sensor. Jpn Patent,1983.
    [24] Kinjo Noriyuki, Ohara Shuichi, Sugawara Toru, etc. Changes in electrical resistance ofionic copolymers caused by moisture sorption and desorption [J]. Polymer journal,1983,15(8):621-623.
    [25] Wang Zhuyi, Lu Yi, Yuan Shuai, etc. Hydrothermal synthesis and humidity sensingproperties of size-controlled zirconium oxide (ZrO2) nanorods [J]. Journal of colloid andinterface science,2013,396:9-15.
    [26] Yu Yuanlie, Chen Hua, Liu Yun, etc. Humidity sensing properties of single Au-decoratedboron nitride nanotubes [J]. Electrochemistry Communications,2013,30:29-33.
    [27] Lin Wang-De, Lai De-Sheng, Chen Min-Hung, etc. Evaluate humidity sensing propertiesof novel TiO2–WO3composite material [J]. Materials Research Bulletin,2013,48(10):3822-3828.
    [28] Sun Aihua, Huang Lin, Li Yong. Study on humidity sensing property based on TiO2porous film and polystyrene sulfonic sodium [J]. Sensors and Actuators B: Chemical,2009,139(2):543-547.
    [29] Li Xiaoyu, Chen Xiangdong, Yao Yao, etc. Multi-walled carbon nanotubes/grapheneoxide composites for humidity sensing [J].2013.
    [30] Gu Bobo, Yin Mingjie, Zhang A Ping, etc. Optical fiber relative humidity sensor based onFBG incorporated thin-core fiber modal interferometer [J]. Optics Express,2011,19(5):4140-4146.
    [31] Wu Tsung-Tsong, Chen Yung-Yu, Chou Tai-Hsu. A high sensitivity nanomaterial basedSAW humidity sensor [J]. Journal of Physics D: Applied Physics,2008,41(8):085101.
    [32] Yao Yao, Chen Xiangdong, Guo Huihui, etc. Humidity sensing behaviors of grapheneoxide-silicon bi-layer flexible structure [J]. Sensors and Actuators B: Chemical,2012,161(1):1053-1058.
    [33] Grimes Craig A, Roy Somnath C, Rani Sanju, etc. Theory, instrumentation andapplications of magnetoelastic resonance sensors: A review [J]. Sensors,2011,11(3):2809-2844.
    [34] Anbia Mansoor, Fard Seyyed Ebrahim Moosavi. Humidity sensing properties ofCe-doped nanoporous ZnO thin film prepared by sol-gel method [J]. Journal of RareEarths,2012,30(1):38-42.
    [35] Qi Qi, Zhang Tong, Wang Shujuan, etc. Humidity sensing properties of KCl-doped ZnOnanofibers with super-rapid response and recovery [J]. Sensors and Actuators B:Chemical,2009,137(2):649-655.
    [36] Qi Qi, Zhang Tong, Zeng Yi, etc. Humidity sensing properties of KCl-dopedCu–Zn/CuO–Zno nanoparticles [J]. Sensors and Actuators B: Chemical,2009,137(1):21-26.
    [37] Li Peng, Li Yang, Yang Mujie. Hyperbranched polycarboxylates and theirnanocomposites with ZnO: Investigations on the humidity-sensitive properties [J].Journal of Applied Polymer Science,2011,120(4):1994-2000.
    [38] Zhang Hong-Di, Long Yun-Ze, Li Zhao-Jian, etc. Fabrication of comb-like ZnOnanostructures for room-temperature CO gas sensing application [J]. Vacuum,2014,101(0):113-117.
    [39] Nguyen Hugo, Quy Chu Thi, Hoa Nguyen Duc, etc. Controllable growth of ZnOnanowires grown on discrete islands of Au catalyst for realization of planar-type microgas sensors [J]. Sensors and Actuators B: Chemical,2014,193(0):888-894.
    [40] Aldao C. M., Schipani F., Ponce M. A., etc. Conductivity in SnO2polycrystalline thickfilm gas sensors: Tunneling electron transport and oxygen diffusion [J]. Sensors andActuators B: Chemical,2014,193(0):428-433.
    [41] Betty C. A., Choudhury Sipra, Girija K. G. Reliability studies of highly sensitive andspecific multi-gas sensor based on nanocrystalline SnO2film [J]. Sensors and Actuators B:Chemical,2014,193(0):484-491.
    [42] Shen Yanbai, Zhang Baoqing, Cao Xianmin, etc. Microstructure and enhanced H2Ssensing properties of Pt-loaded WO3thin films [J]. Sensors and Actuators B: Chemical,2014,193(0):273-279.
    [43] Upadhyay S. B., Mishra R. K., Sahay P. P. Structural and alcohol response characteristicsof Sn-doped WO3nanosheets [J]. Sensors and Actuators B: Chemical,2014,193(0):19-27.
    [44] Wang Jing, Xu Hongbo, Yang Shilei, etc. Microwave-assisted synthesis and sensingproperties of CuO microspheres [J]. Chemistry Letters,2013,42(12):1472-1474.
    [45] Liu Qian, Cui Zhimin, Zhang Qian, etc. Gold-catalytic green synthesis of Cu2O/Au/CuOhierarchical nanostructure and application for CO gas sensor [J]. Chinese ScienceBulletin,2014,59(1):7-10.
    [46] Inyawilert K., Wisitsora-at A., Tuantranont A., etc. Ultra-rapid VOCs sensors based onsparked-In2O3sensing films [J]. Sensors and Actuators B: Chemical,2014,192(0):745-754.
    [47] Pramod N. G., Pandey S. N. Influence of sb doping on the structural, optical, electricaland acetone sensing properties of In2O3thin films [J]. Ceramics International,2014,40(2):3461-3468.
    [48] Wang Caiyun, Ma Shuyi, Sun Aimin, etc. Characterization of electrospun Pr-doped ZnOnanostructure for acetic acid sensor [J]. Sensors and Actuators B: Chemical,2014,193(0):326-333.
    [49] Pijolat Christophe, Viricelle Jean-Paul, Tournier Guy, etc. Application of membranes andfiltering films for gas sensors improvements [J]. Thin Solid Films,2005,490(1):7-16.
    [50] Singh Satyendra, Verma Nidhi, Singh Archana, etc. Synthesis and characterization ofCuO–SnO2nanocomposite and its application as liquefied petroleum gas sensor [J].Materials Science in Semiconductor Processing,2014,18(0):88-96.
    [51] Zhang Jun, Wang Shurong, Wang Yan, etc. Zno hollow spheres: Preparation,characterization, and gas sensing properties [J]. Sensors and Actuators B: Chemical,2009,139(2):411-417.
    [52] Eriksson Jens, Khranovskyy Volodymyr, S derlind Fredrik, etc. ZnO nanoparticles orZnO films: A comparison of the gas sensing capabilities [J]. Sensors and Actuators B:Chemical,2009,137(1):94-102.
    [53] Xiang Qun, Meng Guifang, Zhang Yuan, etc. Ag nanoparticle embedded-ZnO nanorodssynthesized via a photochemical method and its gas-sensing properties [J]. Sensors andActuators B: Chemical,2010,143(2):635-640.
    [54] Wang JX, Sun XW, Yang Y, etc. N–P transition sensing behaviors of ZnO nanotubesexposed to NO2gas [J]. Nanotechnology,2009,20(46):465501.
    [55] Ryu Hyun-Wook, Park Bo-Seok, Akbar Sheikh A, etc. ZnO sol–gel derived porous filmfor CO gas sensing [J]. Sensors and Actuators B: Chemical,2003,96(3):717-722.
    [56] Meng Fan, Yin Jing, Duan Yue-Qin, etc. Co-precipitation synthesis and gas-sensingproperties of ZnO hollow sphere with porous shell [J]. Sensors and Actuators B:Chemical,2011,156(2):703-708.
    [57] Guo Lin, Ji Yun Liang, Xu Huibin, etc. Regularly shaped, single-crystalline ZnOnanorods with wurtzite structure [J]. Journal of the American Chemical Society,2002,124(50):14864-14865.
    [58] Gao Pu Xian, Wang Zhong Lin. High-yield synthesis of single-crystal nanosprings ofZnO [J]. Small,2005,1(10):945-949.
    [59] Kong Xiang Yang, Wang Zhong Lin. Spontaneous polarization-induced nanohelixes,nanosprings, and nanorings of piezoelectric nanobelts [J]. Nano Letters,2003,3(12):1625-1631.
    [60] Yan Haoquan, He Rongrui, Johnson Justin, etc. Dendritic nanowire ultraviolet laser array[J]. Journal of the American Chemical Society,2003,125(16):4728-4729.
    [61] Zhang BP, Binh NT, Wakatsuki K, etc. Pressure-dependent ZnO nanocrsytal growth in achemical vapor deposition process [J]. The Journal of Physical Chemistry B,2004,108(30):10899-10902.
    [62] Wang Zhuo, Qian Xue-feng, Yin Jie, etc. Large-scale fabrication of tower-like,flower-like, and tube-like ZnO arrays by a simple chemical solution route [J]. Langmuir,2004,20(8):3441-3448.
    [63] Liu Bin, Zeng Hua Chun. Hollow ZnO microspheres with complex nanobuilding units [J].Chemistry of Materials,2007,19(24):5824-5826.
    [64] Bie Li-Jian, Yan Xiao-Na, Yin Jing, etc. Nanopillar ZnO gas sensor for hydrogen andethanol [J]. Sensors and Actuators B: Chemical,2007,126(2):604-608.
    [65] Chen Jin, Li Jin, Li Jiahui, etc. Large-scale syntheses of uniform ZnO nanorods andethanol gas sensors application [J]. Journal of Alloys and Compounds,2011,509(3):740-743.
    [66] Hongsith N, Viriyaworasakul C, Mangkorntong P, etc. Ethanol sensor based on ZnO andAu-doped ZnO nanowires [J]. Ceramics International,2008,34(4):823-826.
    [67] Chen Yu-Jin, Zhu Chun-Ling, Xiao Gang. Ethanol sensing characteristics of ambienttemperature sonochemically synthesized ZnO nanotubes [J]. Sensors and Actuators B:Chemical,2008,129(2):639-642.
    [68] Xue Xin-Yu, Chen Zhao-Hui, Xing Li-Li, etc. Enhanced optical and sensing properties ofone-step synthesized Pt ZnO nanoflowers [J]. The Journal of Physical Chemistry C,2010,114(43):18607-18611.
    [69] Gu Cuiping, Huang Jiarui, Wu Youjie, etc. Preparation of porous flower-like ZnOnanostructures and their gas-sensing property [J]. Journal of Alloys and Compounds,2011,509(13):4499-4504.
    [70] Zhang Jun, Wang Shurong, Xu Mijuan, etc. Hierarchically porous ZnO architectures forgas sensor application [J]. Crystal Growth and Design,2009,9(8):3532-3537.
    [71] Wan Qing, Li QH, Chen YJ, etc. Fabrication and ethanol sensing characteristics of ZnOnanowire gas sensors [J]. Applied Physics Letters,2004,84(18):3654-3656.
    [72] Veldsink JW, Van Damme RMJ, Versteeg GF, etc. The use of the dusty-gas model for thedescription of mass transport with chemical reaction in porous media [J]. The ChemicalEngineering Journal and the Biochemical Engineering Journal,1995,57(2):115-125.
    [73] Kuang Qin, Lao Changshi, Wang Zhong Lin, etc. High-sensitivity humidity sensor basedon a single SnO2nanowire [J]. Journal of the American Chemical Society,2007,129(19):6070-6071.
    [74] Ramasamy Easwaramoorthi, Lee Jinwoo. Ordered mesoporous Zn-doped SnO2synthesized by exotemplating for efficient dye-sensitized solar cells [J]. Energy&Environmental Science,2011,4(7):2529-2536.
    [75] Lou Xiong Wen, Wang Yong, Yuan Chongli, etc. Template-free synthesis of SnO2hollownanostructures with high lithium storage capacity [J]. Advanced Materials,2006,18(17):2325-2329.
    [76] Du Yongling, Zhang Nuo, Wang Chunming. Photo-catalytic degradation of trifluralin bysno2-doped cu2 o crystals [J]. Catalysis Communications,2010,11(7):670-674.
    [77] Veluchamy P, Tsuji M, Nishio T, etc. A pyrosol process to deposit large-area SnO2thinfilms and its use as a transparent conducting substrate for CdTe solar cells [J]. Solarenergy materials and solar cells,2001,67(1):179-185.
    [78] Guan Yue, Wang Dawei, Zhou Xin, etc. Hydrothermal preparation and gas sensingproperties of Zn-doped SnO2hierarchical architectures [J]. Sensors and Actuators B:Chemical,2014,191(0):45-52.
    [79] Yu Ji Haeng, Choi Gyeong Man. Selective CO gas detection of CuO-and ZnO-dopedSnO2gas sensor [J]. Sensors and Actuators B: Chemical,2001,75(1):56-61.
    [80] Kolmakov A, Klenov DO, Lilach Y, etc. Enhanced gas sensing by individual SnO2nanowires and nanobelts functionalized with Pd catalyst particles [J]. Nano Letters,2005,5(4):667-673.
    [81] Jia Guang, Yang Mei, Song Yanhua, etc. General and facile method to prepare uniformY2O3: Eu hollow microspheres [J]. Crystal Growth and Design,2008,9(1):301-307.
    [82] Tiemann Michael. Porous metal oxides as gas sensors [J]. Chemistry-A European Journal,2007,13(30):8376-8388.
    [83] Liu Jinyun, Guo Zheng, Meng Fanli, etc. Novel porous single-crystalline ZnO nanosheetsfabricated by annealing ZnS(en)0.5(en=ethylenediamine) precursor. Application in a gassensor for indoor air contaminant detection [J]. Nanotechnology,2009,20(12):125501.
    [84] Hyodo Takeo, Sasahara Kazuhiro, Shimizu Yasuhiro, etc. Preparation of macroporousSnO2films using pmma microspheres and their sensing properties to NOxand H2[J].Sensors and Actuators B: Chemical,2005,106(2):580-590.
    [85] Zhang Jun, Wang Shurong, Wang Yanmei, etc. NO2sensing performance of SnO2hollow-sphere sensor [J]. Sensors and Actuators B: Chemical,2009,135(2):610-617.
    [86] Kim Ki-Won, Cho Pyeong-Seok, Kim Sun-Jung, etc. The selective detection of C2H5OHusing SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition [J].Sensors and Actuators B: Chemical,2007,123(1):318-324.
    [87] Song Xiaofeng, Wang Zhaojie, Liu Yongben, etc. A highly sensitive ethanol sensor basedon mesoporous ZnO–SnO2nanofibers [J]. Nanotechnology,2009,20(7):075501.
    [88] Song Xiaofeng, Liu Li. Characterization of electrospun ZnO–SnO2nanofibers for ethanolsensor [J]. Sensors and Actuators A: Physical,2009,154(1):175-179.
    [89] Gurlo Alexander. Interplay between O2and SnO2: Oxygen ionosorption andspectroscopic evidence for adsorbed oxygen [J]. ChemPhysChem,2006,7(10):2041-2052.
    [90] Barsan Nicolae, Weimar Udo. Conduction model of metal oxide gas sensors [J]. Journalof Electroceramics,2001,7(3):143-167.
    [91] Xu Jiaqiang, Pan Qingyi, Shun Yu'an, etc. Grain size control and gas sensing propertiesof ZnO gas sensor [J]. Sensors and Actuators B: Chemical,2000,66(1–3):277-279.
    [92] Liao L, Lu HB, Li JC, etc. Size dependence of gas sensitivity of ZnO nanorods [J]. TheJournal of Physical Chemistry C,2007,111(5):1900-1903.
    [93] Sathitwitayakul Thanasak, Kuznetsov Maxim V, Parkin Ivan P, etc. The gas sensingproperties of some complex metal oxides prepared by self-propagating high-temperaturesynthesis [J]. Materials Letters,2012,75:36-38.
    [94] Anuradha B., Sanjeeviraja C. Gas sensing properties of RF magnetron sputtered MgIn2O4thin films [J]. Sensors and Actuators A: Physical,2012,179(0):98-104.
    [95] Chu X., Jiang D., Guo Yu, etc. Ethanol gas sensor based on CoFe2O4nano-crystallinesprepared by hydrothermal method [J]. Sensors and Actuators B: Chemical,2006,120(1):177-181.
    [96] Han Xiangming, Zhang Bing, Guan Shaokang, etc. Gas-sensing properties of SnO2nanobelts synthesized by thermal evaporation of Sn foil [J]. Journal of Alloys andCompounds,2008,461(1): L26-L28.
    [97] Cuong Nguyen Duc, Hoa Tran Thai, Khieu Dinh Quang, etc. Synthesis, characterization,and comparative gas-sensing properties of Fe2O3prepared from Fe3O4andFe3O4-chitosan [J]. Journal of Alloys and Compounds,2012,523(0):120-126.
    [98] Kwon Youngjae, Kim Hyunsu, Lee Sangmin, etc. Enhanced ethanol sensing properties ofTiO2nanotube sensors [J]. Sensors and Actuators B: Chemical,2012,173:441-446.
    [99] Qurashi Ahsanulhaq, El-Maghraby EM, Yamazaki Toshinari, etc. A generic approach forcontrolled synthesis of In2O3nanostructures for gas sensing applications [J]. Journal ofAlloys and Compounds,2009,481(1): L35-L39.
    [100] Zeng Wen, Liu Tianmo, Gou Zhongping, etc. Carbon monoxide sensing mechanism ofhighly oriented TiO2from first principles [J]. Physica E: Low-dimensional Systems andNanostructures,2012,44(7–8):1567-1571.
    [101] Zeng Wen, Liu Tian-Mo, Lei Xiao-Fei. Hydrogen sensing properties of low-indexsurfaces of SnO2from first-principles [J]. Physica B: Condensed Matter,2010,405(16):3458-3462.
    [102] Hu Xianluo, Gong Jingming, Zhang Lizhi, etc. Continuous size tuning of monodisperseZnO colloidal nanocrystal clusters by a microwave-polyol process and their applicationfor humidity sensing [J]. Advanced Materials,2008,20(24):4845-4850.
    [103] Pokhrel Suman, Jeyaraj B., Nagaraja K. S. Humidity-sensing properties of ZnCr2O4–ZnOcomposites [J]. Materials Letters,2003,57(22–23):3543-3548.
    [104] Wang Xiaohua, Zhang Jian, Zhu Ziqiang, etc. Humidity sensing properties of Pd2+-dopedZnO nanotetrapods [J]. Applied Surface Science,2007,253(6):3168-3173.
    [105] Yawale Shrikrishna Pandurangji, Yawale Sangita Shrikrishna, Lamdhade GajananTrymbakapp. Tin oxide and zinc oxide based doped humidity sensors [J]. Sensors andActuators A: Physical,2007,135(2):388-393.
    [106] Traversa Enrico, Bearzotti Andrea, Miyayama Masaru, etc. Study of the conductionmechanism of La2CuO4-ZnO heterocontacts at different relative humidities [J]. Sensorsand Actuators B: Chemical,1995,25(1):714-718.
    [107]陈绍军,杨光,冯春岳等.硅纳米孔柱阵列的酒敏特性研究[J].传感器与微系统,2006,25:18-20.
    [108] Li Xin Jian, Chen Shao Jun, Feng Chun Yue. Characterization of silicon nanoporouspillar array as room-temperature capacitive ethanol gas sensor [J]. Sensors and ActuatorsB: Chemical,2007,123(1):461-465.
    [109]许媛媛,何金田,李新建, etc.水热腐蚀铁钝化多孔硅的湿敏特性研究[J].传感器技术,2004,23:11-13.
    [110] Xu Yuan Yuan, Li Xin Jian, He Jin Tian, etc. Capacitive humidity sensing properties ofhydrothermally-etched silicon nano-porous pillar array [J]. Sensors and Actuators B:Chemical,2005,105(2):219-222.
    [111] Wang Hai Yan, Li Xin Jian. Structural and capacitive humidity sensing properties ofnanocrystal magnetite/silicon nanoporous pillar array [J]. Sensors and Actuators B:Chemical,2005,110(2):260-263.
    [112] Dong Yong Fen, Li Long Yu, Jiang Wei Fen, etc. Capacitive humidity-sensing propertiesof electron-beam-evaporated nanophased WO3film on silicon nanoporous pillar array [J].Physica E: Low-dimensional Systems and Nanostructures,2009,41(4):711-714.
    [113] Wang Hai Yan, Li Xin Jian. Capacitive humidity-sensitivity of carbonized siliconnanoporous pillar array [J]. Materials Letters,2010,64(11):1268-1270.
    [114] Xiao Shun Hua, Xu Hai Jun, Hu Jin, etc. Structure and humidity sensing properties ofbarium strontium titanate/silicon nanoporous pillar array composite films [J]. Thin SolidFilms,2008,517(2):929-932.
    [115] Jiang WeiFen, Xiao ShunHua, Zhang HuanYun, etc. Capacitive humidity sensingproperties of carbon nanotubes grown on silicon nanoporous pillar array [J]. Science inChina Series E: Technological Sciences,2007,50(4):510-515.
    [116] Xu Hai Jun, Li Xin Jian. Silicon nanoporous pillar array: A siliconhierarchical structurewith high light absorptionand triple-band photoluminescence [J]. Optics Express,2008,16(5):2933-2941.
    [117] Wang Wen Chuang, Tian Yong Tao, Li Kun, etc. Capacitive humidity-sensing propertiesof Zn2SiO4film grown on silicon nanoporous pillar array [J]. Applied Surface Science,2013,273(0):372-376.
    [118] Xu Zhaochao, Xiao Yi, Qian Xuhong, etc. Ratiometric and selective fluorescent sensorfor cuii based on internal charge transfer (ICT)[J]. Organic Letters,2005,7(5):889-892.
    [119] Yeh Y. C., Tseng T. Y. Analysis of the DC and AC Properties of K2O-doped porousBa0.5Sr0.5TiO3ceramic humidity sensor [J]. Journal of Materials Science,1989,24(8):2739-2745.
    [120] Lin Qianqian, Li Yang, Yang Mujie. Investigations on the sensing mechanism of humiditysensors based on electrospun polymer nanofibers [J]. Sensors and Actuators B: Chemical,2012,171–172(0):309-314.
    [121] Wang Jing, Song Gang. Mechanism analysis of BaTiO3and polymer qar compositehumidity sensor [J]. Thin Solid Films,2007,515(24):8776-8779.
    [122] McCafferty E., Pravdic V., Zettlemoyer A. C. Dielectric behaviour of adsorbed waterfilms on the-Fe2O3surface [J]. Transactions of the Faraday Society,1970,66(0):1720-1731.
    [123] Zhang Tong, He Yuan, Wang Rui, etc. Analysis of dc and ac properties of humidity sensorbased on polypyrrole materials [J]. Sensors and Actuators B: Chemical,2008,131(2):687-691.
    [124] Li Y. Humidity sensors using in situ synthesized sodium polystyrenesulfonate/ZnOnanocomposites [J]. Talanta,2004,62(4):707-712.
    [125] Feng Chang-Dong, Sun Shen-Liang, Wang Hui, etc. Humidity sensing properties ofnation and sol-gel derived SiO2/nafion composite thin films [J]. Sensors and Actuators B:Chemical,1997,40(2–3):217-222.
    [126] Bisquert J., Garcia-Belmonte G., Bueno P., etc. Impedance of constant phase element(CPE)-blocked diffusion in film electrodes [J]. Journal of Electroanalytical Chemistry,1998,452(2):229-234.
    [127] Jorcin Jean-Baptiste, Orazem Mark E., Pébère Nadine, etc. CPE analysis by localelectrochemical impedance spectroscopy [J]. Electrochimica Acta,2006,51(8–9):1473-1479.
    [128] Zhang Tie Rui, Lu Ran, Liu Xin Li, etc. Photochromic polyoxotungstoeuropateK12[EuP5W30O110]/polyvinylpyrrolidone nanocomposite films [J]. Journal of solid statechemistry,2003,172(2):458-463.
    [129] Brus L. E. Electron--electron and electron-hole interactions in small semiconductorcrystallites: The size dependence of the lowest excited electronic state [J]. The Journal ofChemical Physics,1984,80(9):4403-440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700