阀—泵并联变结构调速系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的液压马达调速系统有两种基本形式:阀控和泵控。阀控响应快但效率低,适用于对快速性要求较高的中小功率场合;泵控效率高但响应慢,适用于大功率和对快速性要求不高的场合。近年来,阀-泵联合控制得到了迅速发展,其充分发挥了阀控与泵控各自的优势。论文提出了一种崭新的阀-泵并联控制系统,即阀-泵并联变结构调速系统,在调速过程中控制模式随控制要求而变,可实现大功率液压调速系统的综合性能,即低速平稳快速启停、快速调节负载干扰、全程高效率。
     论文的主要工作和研究成果如下:
     (1)总结和分析了国内外目前阀-泵联合控制系统的工作原理和特点,并指出目前的阀-泵联合控制方式难以实现上述综合性能。
     (2)设计了阀-泵并联变结构调速系统,其关键点有两点,一是阀可以根据控制要求处于补油或泄油两种状态,以使系统处于补油或泄油式阀-泵并联两种控制模式,二是可以通过改变Kvp,调节阀控与泵控在速度控制中的比重;建立了阀-泵并联变结构调速系统的数学模型,分析了系统的参数,并指出传统的泵控系统加入阀控后,液压固有频率不变,但总泄漏系数明显增大,导致系统阻尼比显著增大且随阀的工作点(阀开口及系统压力)而变化,同时导致系统刚度下降,易受负载干扰。
     (3)设计了开式以及闭式阀-泵并联变结构控制系统的结构,建立了补油式和泄油式阀-泵并联控制闭式系统的流量平衡方程,分析了各流量之间的关系,指出在闭式阀-泵并联变结构调速系统中,补油回路及冲洗回路是必需的,不能因有阀控补油就取消补油回路,同时冲洗回路除了有热交换的作用还有平衡系统流量的作用。建立了液压模拟系统与实际系统之间参数匹配的理论基础,指出为模拟实际系统的动态特性,应分别按照泵排量、马达排量、转动惯量三个参数来配置模拟系统,本实验系统是以煤矿液压提升机这种大功率大惯量液压系统为例而建立的模拟系统。
     (4)提出了阀控权重Kv和泵控权重Kp的概念,并依据不同的Kv和Kp,建立了传统泵控、阀控与阀-泵并联控制之间的联系;为了判别阀与泵在联合调速中的作用,建立了阀-泵权重比的概念,即Kvp=Kv:Kp,并通过该权重比以及阀控状态,判别系统处于何种控制模式。
     (5)提出了补油式和泄油式阀-泵并联两种控制模式,研究了不同权重比对控制特性的影响,并获得了阀-泵并联控制的规律:在不同的权重比(Kvp=1:0~0:1)下,系统响应速度呈金字塔形,两头慢(阀控和泵控),中间快(阀-泵并联控制),因此无论对于指令信号,还是负载干扰的快速响应,阀-泵并联控制比单独泵控或阀控响应都快;因阀控的开环增益大于泵控,对于相同的权重之和(Kv+Kp),以阀控为主的系统响应快于以泵控为主;阀与泵的流量之比与阀-泵权重比成正比;补油式比泄油式阀-泵并联控制更具优势,因为前者使系统的阻尼比更稳定,这有利于系统的预测与控制,并且还可通过提高Ps,进一步提高响应速度和增大速度刚度,更适用于对负载干扰的快速调节,仿真与实验结果表明,此处取Kvp=1:0.2较合适。
     (6)研究了不同控制模式下大惯量系统的低速特性。泄油式阀控或泄油式并联阀控通过增加可控的泄漏,增大系统的阻尼比,以增强低速平稳性,而且由阀控泄漏引起的阻尼比的增加,可补偿因摩擦负斜率(Stribeck效应)引起的阻尼比的下降,进一步增强了系统的低速稳定性。阀初始电压对提高低速特性至关重要,建立了阀初始电压的理论公式,并研究了不同油温,不同开口对系统低速特性的影响,获得了泄油式阀控在启停低速阶段的控制规律,同时实验表明,只要阀初始电压设置在理论值附近,均能获得满意的低速特性,这使泄油式阀控具有操作性和实用性,且此处取Kvp=1:0.1较合适。
     (7)建立了阀-泵并联变结构调速系统的AMEsim仿真模型以及基于虚拟仪器技术的实验系统,研究了一个调速周期内的阀-泵并联变结构调速特性。仿真与实验结果表明,在调速过程中,不同控制模式之间切换平滑连续,阀和泵的工作状态符合预期;通过改变不同调速阶段的控制模式,实现了大功率液压马达调速系统的综合性能,即在低速段采用泄油式并联阀控,实现了大惯量的平稳快速启停,在高速段采用补油式并联阀控,实现了对负载干扰的快速调节,在加速和减速段泵提供主要流量,充分了发挥泵控的高效的优势。
     阀-泵并联变结构控制,利用阀控及泵控双通道,建立了控制结构(模式)依控制要求而变的灵活的控制机制,通过改变阀-泵权重比,使阀控与泵控协调工作,充分发挥了阀控、泵控各自的优势,丰富了液压系统的调速方式,使电液控制系统更具灵活性和适应性,可实现大功率液压调速系统的综合性能,如低速平稳快速启停、快速调节负载干扰、全程高效率。
Traditional hydraulic motor speed servos have two basic types: valve control andpump control. The valve control system responds fast to valve and load inputs, but isless efficient, so this arrangement is only suitable to applications required rapidresponse with low power. The pump control system is more efficient since both flowand pressure are closely matched with load requirement, but responds slowly,so thisarrangement is only suitable to the applications required high power with slowresponse. Recently, the valve-pump combination control is rapidly developing, whichallows full play to advantages of valve control and pump control. This paper proposeda totally new valve-pump parallel control system, that is valve-pump parallel variablestructure control systems for motor speed servo with large power. Control mode willvary with control requirement during speed regulation process, and the proposedsystem will achieve comprehensive performance for hydraulic motor speed systemwith large power, such as low-speed performance, rapid response to load variation andhigh efficiency.
     Main work and achievements are as following:
     (1) Overview the principle and feature of valve-pump combination systems, andpoint out those existing valve-pump combination systems cannot achieve abovecomprehensive performance.
     (2) Design the valve-pump parallel variable structure control systems, and there aretwo key points, one is that the control valve can work at leaking status andreplenishing status, and then the system can be under leaking valve-pump parallelcontrol mode and replenishing valve-pump parallel control mode; the other is toregulate effect of valve and pump control by varying Kvp; establish the mathematicalmodels of the proposed system under different control modes, analyze systemparameters, which indicate that the system natural frequency doesn’t change, whenintroducing valve control into traditional pump control system, but total leakingcoefficients and damping ratios become greater and vary widely with operating points(valve opening and load pressure), and which will decrease velocity stiffness andmake system more susceptible to disturbances.
     (3) Design the structure of open circle system and closed circle system invalve-pump parallel variable structure control, establish balance flow equations ofclosed circle system under the replenishing valve-pump parallel control (RVPC) mode and leaking valve-pump parallel control (LVPC) mode, then analyze the relationshipof different flow, and point out that in the closed circle system of the valve-pumpparallel variable structure control, both the replenishing circuit and flushing circuit arenecessary, and replenishing circuit should not be canceled because of the exiting ofthe replenishing controlled by the valve, and the flushing circuit has the function ofbalancing system flow besides heat exchanging. Establish the foundation of parametermatching between hydraulic simulation systems and practical systems,and point outthat to simulate the practical system, should configure the simulation systemaccording to pump displacement, hydraulic motor displacement and inertia,respectively. The test system is established according to a hydraulic hoist unsed incoal, which is a kind of hydraulic system with high power and high inertia.
     (4) Propose the concept of valve weight(Kv) and pump weight(Kp), establishthe relationship of traditional control method (valve control and pump control) andvalve-pump parallel control; Propose the concept of valve-pump weight ratio, that isKvp=Kv:Kp, to judge which mode plays a leading role in control process and whichcontrol mode is in.
     (5) Establish RVPC and LVPC modes, and study the influence of different Kvponsystem dynamic performance, and obtain some laws of valve-pump parallel control:the response is pyramidal when Kvp=1:0~0:1, and is slow at two sides (valve controland pump control) and rapid at middle (valve-pump parallel control), so thevalve-pump parallel control responds faster than single valve control and pumpcontrol both for input singal and load disturbance; the system mainly controlled valveresponds faster than that mainly controlled pump for the same sum of Kvand Kp,because open loop gain of valve control is greater than that of pump control; the ratioof valve and pump flow is proportional to Kvp; compared with the leaking valve-pumpparallel, the replenishing valve-pump parallel control has more advantages, becausethe latter can make damping ratio more stable, which contributes system predictionand control, in addition it can further improve response and velocity stiffness byraising Ps, and is more suitable to achieve rapid response to load disturbance.Simulation and experiment show that Kvp=1:0.2is preferable.
     (6) Study low velocity performance under different modes. Leaking valve controland leaking parallel valve control obtain good low velocity performance by increasingcontrollable leakages to increase damping ratios. Moreover, the increase of dampingratios caused by leakage controlled by the valve just compensates the reduction of damping ratios due to the friction negative slop (Stribeck effect), which furtherenhances low velocity performance. The valve initial voltage is essential to lowvelocity performance, and then is proposed. Study the influence of different initialvoltages and temperatures on low velocity performance. The experiment results showa sound low velocity performance could be obtained, if the initial voltage is set aroundthe theoretical value, which makes leaking parallel valve control more practical ataspect of improving low velocity performance.
     (7) Establish a simulation mode on AMEsim platform and set up a test system onLabView platform by virtual instrument technology, and study dynamic performanceof valve-pump variable structure control in a duty circle. Both simulation andexperiment results show that comprehensive performance is achieved by changingcontrol modes in control process, the leaking parallel valve control mode is applied tostart and stop stages and improves low velocity performance, the replenishing parallelvalve control mode is applied to the uniform stage with high speed and achieves fastresponse to load disturbance, the parallel pump control mode is applied to accelerationand deceleration stages and makes full use of its high efficiency; control modes switchsmoothly and both the variations of valve and pump are continuous and matchprevious supposition.
     In all, the valve-pump parallel variable mode control establishes a flexible controlmechanism by using two channels of valve control and pump control, where controlmodes vary with control requirement, which make the valve coordinate the pump, andmake full use of advantages of valve control and pump control, and enriches thecontrol modes of hydraulic speed regulation systems, and makes electro-hydraulicsystems more flexible and suitable, and could achieve comprehensive performance ofhydraulic speed regulation systems with large power, such as low-speed performance,rapid response to load variation and high efficiency.
引文
[1] H.E. Merritt. Hydraulic Control Systems. John Wiley&Sons, Inc,1967.
    [2] Manring, N. D. Hydraulic Control Systems. New York: John Wiley&Sons,2005.
    [3]Karunanidhi, S. and Singaperumal, M. Mathematical modelling and experimentalcharacterization of a high dynamic servo valve integrated with piezoelectric actuator. Proc.IMechE, Part I: J. Systems and Control Engineering,2010,224(4),419-435.
    [4]Ding H. G. and Zhao J. Y. Characteristic analysis of pump controlled motor speed servo in thehydraulic hoister. Int. J. Modelling, Identification and Control, vol.19, no.1, pp.64-74,2013.
    [5]Yutaka, T., Tetsuji, M. and Kazuo, N. Speed and Displacement Control of Pump System forEnergy Saving. Proc. of2nd International Symposium on Fluid Power Transmission andControl, Shanghai, China,1995, pp.12-16.
    [6]彭天好,徐兵,杨华勇.变频液压技术的发展及研究综述[J].浙江大学学报,2004,38(2):215-221.
    [7]彭天好,乐南更.变转速泵控马达系统转速降落补偿试验研究[J].机械工程学报,2012,48(4):175-181.
    [8]丁海港,赵继云,赵亮.防爆液压提升机电液伺服调速控制方案分析.煤炭学报,2011,36(8):1407-1411.
    [9]路甬祥.流体传动与控制技术的历史进展与展望[J].机械工程学报,2001,37(10):1-9
    [10]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报,2003,39(10):95-99.
    [11]王占林.近代电气液压伺服控制[M].北京,北京航空航天大学出版社,2004.
    [12]丁海港,赵继云,李广洲.阀泵联合大功率液压调速方案分析.煤炭学报,2013,38(9):1703-1709.
    [13]翁振涛,凌俊杰,方曙光.变频与电液比例技术复合调速系统和方法[P].中国发明专利,CN1332397A,2002.
    [14] Manasek R. Simulation of an eletcro-hydraulic load-sensing system with AC motor andfrequency changer. Proc. of1st FPNI-PhD Symposium, Slovakia, pp.311-324,2000.
    [15]刘佳东,彭天好,朱刘英.泵控马达复合调速系统控制[J].流体传动与控制,2010(4):16-19.
    [16]金波,顾临怡.基于变频调速的电液复合控制系统及其控制方法[P].中国发明专利,CN1391146A,2003.
    [17]金波,沈海阔,陈鹰.基于能量调节的电液变转速液压缸位置控制系统[J].机械工程学报,2008,44(1):25-30.
    [18] SHEN Hai-kuo, JIN Bo, CHEN Ying. Research on variable speed electro-hydraulic controlsystem based on energy regulating strategy[C] ASME International Mechanical EngineeringCongress and Exposition, Chicago, USA,2006.
    [19]沈海阔,金波,陈鹰.基于能量调节的电液变转速控制系统[J].机械工程学报,2009,45(5):210-213.
    [20]许明,金波,沈海阔,等.基于能量调节的电液变转速控制系统中能量调节器的分析与设计[J].机械工程学报,2010,46(4):136-142.
    [21] CLOYD J S. Status of the united states air forces more electric aircraft initiative [J]. IEEEAerospace and Electronic Systems Magazine,1998,13(4):17-22.
    [22] CHURN P M, MAXWELL C J, SCHOFIELD N, et al. Electro-hydraulic actuation ofprimary flight control surfaces[C]//IEEE Colloquium on All Electric Aircraft, London,1998.
    [23]马纪明,付永领,李军,等.一体化电动静液作动器(EHA)的设计与仿真分析[J].航空学报,2005,26(1):79-83.
    [24]李军,付永领,王占林,等.一种新型机载一体化电液作动器的设计与分析[J].系统仿真学报,2004,16(6):1128-1131.
    [25]纪友哲,祁晓野,裘丽华.泵阀联合EHA效率设计仿真分析[J].北京航空航天大学学报,2008,34(7):786-789.
    [26] JI You-zhe, PENG Song, GENG Li. Pressure loop control of pump and valve combined EHAbased on FFIM[C].9th International Conference on Electronic Measurement and Instruments,2009:3578-3582.
    [27]郎燕,李运华.电液复合调节作动器的建模与AMESim仿真[J].航空学报,2007,28(增):1692-1697.
    [28]祁晓野,付永领,王占林.功率电传机载作动系统方案分析[J].北京航空航天大学学报,1999,25(4):426-430.
    [29]付永领,张卫卫,纪友哲.电机泵阀协调控制作动系统的建模及仿真[J].机床与液压,2010,38(11):69-72.
    [30]付永领,齐海涛,王利剑,等.混合作动系统的工作模式研究[J].航空学报,2010,31(6):1177-1184.
    [31] COCHOY O, CARL U, THIELECKE B F. Integration and control of electromechanical andelectrohydraulic actuators in a hybrid primary flight control architecture[C]//InternationalConference on Recent Advances in Aerospace Actuation Systems and Components,2007:1-8.
    [32]李运华,王占林.电气液压复合调节容积式舵机的精确线性化控制[J].机械工程学报,2004,40(11):21-25.
    [33] GAO Bo, FU Yong-ling, PEI Zhong-cai, et al. Research on Dual-Variable Integratedelectro-Hydrostatic Actuator[J]. Chinese Journal Of Aeronautics,2006,19(1):77-82.
    [34] KANG Rong-jie, JIAO Zong-xia, WANG Shao-ping. Design and Simulation ofElectro-hydrostatic Actuator with a Built-in Power Regulator[J]. Chinese Journal ofAeronautics,2009,22(6):700-706.
    [35] Sato, S., Kobayashi, K. and Watanabe, S. A parallel drive control system of a hydraulic motorusing pump control and valve control. Proc. of2nd International Conference on Fluid Power,Hanzhou, china,1989, pp.40-45.
    [36]王孙安,林延圻,史维祥.大功率液压马达速度伺服系统的控制方法研究[J].西安交通大学学报,1991,25(4):100-108.
    [37]盛万兴,王孙安,林延圻.并联阀控液压马达调速系统管道效应的研究[J].机床与液压,1994(2):77-82.
    [38]王孙安,盛万兴,林廷圻.新型电液伺服飞机发动机模拟系统及其智能控制[J].航空学报,1995,16(1):109-112.
    [39]盛万兴,王孙安,林延圻.改善液压速度伺服系统性能的新方案[J].机床与液压,1993(2):69-72.
    [40] ZHAO Ji-yun, DING Hai-gang, ZHAO Liang. Research of variable frequency compoundhydraulic speed control system with high moment of inertia[C]7th International Conferenceon Fluid power Transmission and Control, Hangzhou, China,2009:404-408.
    [41]丁海港,赵继云,石峰.矢量变频液压容积节流调速系统研究[J].机械科学与技术,2009,28(9):1221-1224.
    [42]丁海港,赵继云,赵亮. A4VSO电液比例变量泵的电液控制系统研究[J].机床与液压2011,39(4):70-72
    [43]吴根茂,邱敏秀,王庆丰,等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006:254-261.
    [44]罗小梅;电液比例变量泵控马达控制系统的分析研究[D];长安大学;2005年
    [45]丁海港,赵继云,赵亮.电液比例泵的变量控制系统研究[J].机械科学与技术2011,30(9):1456-1459.
    [46] Atos.伺服比例阀样本.Servoproportional Valves type DLHZO and DLKZOR(F180-15/E).
    [47] Atos.放大器样本.Analog electronic drivers type E-RI-TE and E-RI-LE(G200-17/E)
    [48]桑月仙,于兰英,王国志.闭式液压系统补油泵研究[J].机械工程与自动化,2010(6):83-85.
    [49]桑月仙.闭式液压系统补油泵研究[D].成都:西南交通大学,2011.
    [50]胡军驰.液压传动闭式系统优缺点及防护[J].流体传动与控制,2011(3):58-60.
    [51]付永领,祈晓野.AMESim系统建模和仿真从入门到精通[M].北京:北京航空航天大学出版社.2006.
    [52] Ding Hai-gang, ZHAO Ji-yun, ZHAO Liang. Research on Adjustment System forElectrohydraulic Proportional Variable Displacement Pump A4VSO[C]. Proceedings ofmechanical engineering and green manufacturing,2010,34:1028-1033.
    [53] Park, S. H., Lee, J. M. and Kim, J. S. Robust control of the pressure in a control-cylinder withdirect drive valve for the variable displacement axial piston pump. Proc. IMechE, Part I: J.Systems and Control Engineering,2009,223(4),455-465.
    [54]Achten, P. Dynamic high-frequency behavior of the swash plate in a variable displacementaxial piston pump Source. Proc. IMechE, Part I: J. Systems and Control Engineering,2013,227(6),529-540.
    [55]丁海港,赵继云,赵亮.A4VSO电液比例泵的变量控制系统研究[J].机械科学与技术,2011,30(9):1456-1460.
    [55] Haigang Ding, Jiyun Zhao. Performance analysis of variable speed hydraulic systems withlarge power in valve-pump parallel variable structure control [J]. Journal OfVibroengineering.2014,16(2):1065-1085.
    [56]杨叔子,杨克冲.机械工程控制基础(第六版)[M].武汉,华中科技大学出版社,2012,58-60.
    [57]Alessandro, R., Salvatore, M. and Nicola, N. Modelling a variable displacement axial pistonpump in a multibody simulation environment[J]. ASME J. Dynamic Systems, Measment andControl,2007129(4),456-468.
    [58] Karnopp, D. Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems.Journal of Dynamic Systems, Measurement and Control,1985,107,100-103.
    [59]刘丽兰,刘宏昭,吴子英,等。机械系统中摩擦模型的研究进展[J].力学进展,2008,38(2):201-213.
    [60] Armstrong, B., Dupont, P. and Canudas de Wit C. A survey of models, analysis tools andcompensation methods for the control of machines with friction[J]. Automatica,1994,30(7):1038-1183.
    [61] Cheok, K.C., Hu, H. and Loh, N.K. Modeling and identification of a class of servomechanismsystem with stick-slip friction [J]. Transactions of the ASME Journal of Dynamic Systems,Measurement, and Control,1988,110(3),24–328.
    [62]丁千,翟红梅.机械系统摩擦动力学研究进展[J].力学进展,2013,(1):112-131.
    [63]Bo, L C, and Pavelescu, D. The friction-speed relation and its influence on the critical velocityof stick-slip motion[J]. Wear,1982,82(3):277-289.
    [64]Yanada, H., Hibi, A. and Ichikawa, T. Investigation of the low speed stability of oil hydraulicmotors (3rd report, the case of pump-controlled axial piston motors). Transactions of theJapan Society of Mechanical Engineers, Part B,1986,52(476),1657-1664.
    [65]王旭永,付永领,王宣银,等.三轴仿真转台用电液马达伺服系统的低速运动分析[J]宇航学报,1996,17(2):85-90.
    [66]姜玉宪.伺服系统低速跳动问题[J].自动化学报,ACTA AUTO MATIC ASINICA,1982,8(2):136-144.
    [67]曾庆双.秦嘉川.转台伺服系统低速性能分析[]中国惯性技术学报,2001,9(2):64-69.
    [68]王旭永,刘庆和.电液马达位置伺服系统低速特性的机理研究[J].哈尔滨工业大学学报,1993,25(2):60-68.
    [69]王明智.谢为民.柱塞马达低速稳定性的研究[J]甘肃工业大学学报,1989,15(2):1-7.
    [70] Manring, N.D. The discharge flow ripple of axial piston swash-plate hydrostatic pump [J].Journal of Tribology,2004,126:511-518.
    [71]许明.基于能量调节器的电液变转速阀控马达驱动系统[D],杭州,浙江大学,2009.
    [72]杨华勇,张斌,徐兵.轴向柱塞泵/马达技术的发展演变[J]机械工程学报,2008,44(10):1-8.
    [73]Lovrec, D and Ulaga, S. Pressure control in hydraulic systems with variable or constantpumps [J]. Experimental Techniques,2007,31(2):33-41.
    [74]刘光军.基于LabVIEW的感应电机转速转矩测量系统[D].武汉,华中科技大学,2006.
    [75]刘丽桑洪涛彭侠夫.基于LabVIEW的虚拟信号处理系统[J].工业控制计算机,2007,20(9):53-54.
    [76]杨乐平,李海涛,肖相生.LabVIEW程序设计与应用[M].北京;电子工业出版社,2001.
    [77]陈锡辉,张银鸿. LabVIEW8.20程序设计从入门到精通[M].北京:清华大学出版社,2009.
    [78]刘宁.基于LabVIEW直流电机PID控制系统的设计[J].工业仪表与自动化装置,2010,(5):74-76.
    [79] Zeng, H. and Sepehri, N. Tracking control of hydraulic actuators using a LuGre frictionmodel compensation’, ASME J. Dynamic Systems, Measment and Control,2008,130(1),145021-145027.
    [80] Tomei P. Robust adaptive friction compensation for tracking control of robot manipulators.IEEE Trans. Auto Contr.,2000,45(6),2164-2169.
    [81] Yao, B. and Tomizuka, M. Adaptive robust control of MIMO nonlinear systems in semi-strictfeedback forms. Automatica,2001,(37),1305-1321
    [82] Yao, B. Integrated direct/indirect adaptive robust control of SISO nonlinear systems insemi-strict feedback form. Proceedings of the American Control Conference, Denver,Colorado, June,2003, pp.3020-3025.
    [83]许兴东.液压马达试验台的研制及计算机技术应用研究[D].沈阳沈阳工业大学,2009.
    [84]吴根茂,邱敏秀,王庆丰.新编实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [85]路甬祥,胡大纮.电液比例控制技术[M].北京:机械工业出版社,1988.
    [86] M. Jelali, A. Kroll. Hydraulic servo systems: modeling, identification andcontrol[M]. Springer,2002.
    [87] K. Hassn. Nonlinear Systems(Third Edition)[M]. Prentice-Hall,2001.
    [88] D. W. Clarke. Generalized Predictive Control[J]. Automation,1989,25(6):859-875.
    [89]诸静.智能预测控制及其应用[M].杭州:浙江大学出版社,2002.
    [90]王国良,孙鹤旭,李练兵.广义预测在永磁同步电动机控制中的应用[J].自动化技术与应用,2004,23(5):5-8.
    [91]蔡永强,裘丽华,王占林.电液伺服鲁棒预测控制[J].机械工程学报,1999,35(6):81-84.
    [92]彭秀东,王志杰,金志立.预测控制在时变负载泵控马达电液伺服系统中的应用[J].北京理工大学学报,1993,13(03):421-425.
    [93]桑勇,王占林.基于广义预测控制的泵马达调速系统的研究[J].湖南科技大学学报(自然科学版),2007,Vol.22,No.4:24-37.
    [94]高钦和,王孙安,黄先祥.参数时变系统的广义预测控制研究[J].计算机仿真,2008,25(2):181-183.
    [95]高钦和,王孙安.电液比例系统的广义预测控制研究[J].机床与液压,2007,35(11):90-93.
    [96] W. Lin, T. Shen. Robust passivity and feedback design for minimum-phasesystem with structural uncertainty[J]. Automatic,1999(35):35-47.
    [97] J. C. Doyle, K. Glover, P. P. Khargonekar. State-space solutions to standard H2and H∞control problems[J]. IEEE Transaction on automatic control,1988,34(8):831-847.
    [98] G. Zmaes. Feedback and optimal sensitivity model reference transformations,multiplicative semi norms, and approximation inverses[J]. IEEE Transactionon automatic control,1981,26(2):42-48.
    [99]俞立.鲁棒控制-线性矩阵不等式处理方法[M].清华大学出版社,2002.
    [100] L. laval, J. C. Cadiou. H∞force control of a hydraulic servo actuator withenvironmental uncertainties[J]. IEEE Conference on Robotics and Automatic,Minneapolis, MN,1996:1566-1571.
    [101]韩俊伟,赵慧等.具有时变柔性负载的电液力控制系统中Gain-scheduledH∞鲁棒控制器的研究[J].机械工程学报,2001,36(4):58-61.
    [102]韩崇伟.基于H∞控制火炮电液伺服系统研究[J].液压气动与密封,2002.2:18-21.
    [103]金哲.超高速电液比例控制系统H∞控制器的研究[D].西南交通大学博士学位论文,2006.
    [104]金哲,于兰英,柯坚等.具有LMI区域极点约束的高速电液比例H∞控制器研究[J].中国机械工程.2006(13):1350-1354.
    [105]金哲,于兰英,杜润,柯坚,等.时滞不确定高速电液比例系统的H∞控制器研究[J].机械科学与技术.2006,25(10):1221-1224.
    [106] L. A. Zadeh. Fuzzy Algorithm[J]. Information Control,1968(12):94-102.
    [107] C. C. Lee. Fuzzy Logic in Control Systems: Fuzzy Logic Controller Part1[J].IEEE Trans, SMC,1990,20(2):404-418.
    [108] M. Mahmoud, K.Dutton, M.Denman. Design and simulation of a nonlinearfuzzy controller for a hydropower plant[J]. Electric Power Systems Research,2005,73(2):87-99.
    [109] S. Paramasivam, R. Arumugam. Hybrid fuzzy controller for speed control ofswitched reluctance motor drives[J]. Energy Conversion and Management,2005,46(9):1365-1378.
    [110] S. C. Tong, H. X. Li, W. Wang. Observer based adaptive fuzzy control forSISO nonlinear systems[J]. Fuzzy Sets and Systems,2004,148(3):355-376.
    [111] K.Warwiek. Neural networks for control and systems[M]. London, PeterPeregrinus Ltd.,1992.
    [112]王益群,陈星.基于遗传神经网络的电液伺服系统自适应控制[J].广州机床与液压,2002(5):75-77.
    [113] A. G. Parlos. An acceleration learning algorithm for multiplayer perceptionnetworks[J]. IEEE Transaction on Neural Network,1994,5(3):493-497.
    [114]何洪,孙薇,周恩涛.基于RBFMCN网络的电液速度伺服系统的动态补偿控制算法[J].中国机械工程,2001,12(2):191-194.
    [115]李新忠.电液伺服系统的神经网络非线性控制[D].西安:西安交通大学博士学位论文,1998.
    [116]何玉彬,徐立勤,徐健学,等.电液伺服系统神经网络在线自学习自适应控制[J].中国电机工程学报,1998,18(6):434-437.
    [117] D. A. Newton. Design and implementation of a Neural Network ControlledElectro-hydraulic Drave[J]. Proc Instn MechEngrs,1994(208):31-42.
    [118]马俊功,王世富,王占林.电液速度伺服系统的模糊PI控制[J].控制工程,2006,3(63):530-532.
    [119]龙行先.电液伺服系统FUZZY-PID复合控制器的设计[J].机床与液压,2003(3):181-183.
    [120]H. Ying. W. Siler. Robust Self-turning Scheme for Pl and PID Type FuzzyController[J]. IEEE Transonic Fuzzy Systems,1999,17(l):862-875.
    [121]罗守华,王积伟,颜景平.基于CMAC神经网络的泵控马达调速系统控制性能[J].东南大学学报,2000,33(3):58-60.
    [122]王孙安,戴汝为.神经模糊技术的电液伺服控制[J].机械工程学报,1997,33(6):70-76.
    [123]侯远龙,陈机林.基于模糊神经网络控制的电液系统研究[J].机床与液压,2007,35(12):102-104.
    [124]刘坤,高少平,张福军.电液伺服系统的模糊神经网络鲁棒控制[J].自动化仪表,2010,31(10):52-55.
    [125]杜海峰,王孙安.飞机动力模拟系统的模糊神经网络控制研究[J].系统仿真学报,2002,14(4):506-508.
    [126]李笑,周士昌.电液比例复合变量泵神经网络控制的研究[J].机床与液压,2002(5):29-31.
    [127] V. I. Utkin. Variable structure systems with sliding modes[J], IEEETransactions on Automatic Control,1977,22(2):212-222.
    [128] G. M. Aly, and W. G. Ali. Digital design of variable structure controlsystems[J], Int. J. Systems Sci.,1990,21(8):1709-1720.
    [129] Y. D. Pan, K. Furata. Discrete-time VSS Controller Design[J]. InternationalJournal of Robust and Nonlinear Control,1997,7(4):373-386.
    [130] J. K. Hedrick, P. P. Yip. Multiple sliding surface control: theory andapplication[J]. ASME Journal of Dynamic Systems, Measurement, andControl,2000,122(4):586-593.
    [131] R. F. Fung, R. T. Yang. Application of variable structure controller in positioncontrol of a nonlinear electro-hydraulic servo system[J]. Compute Structures,1998,66(4):365-372.
    [132]晁红敏,胡跃明.动态滑模控制及其在移动机器人输出跟踪中的应用[J].控制与决策,2001,16(5):565-568.
    [133]沙道航,杨华勇.液压电梯速度系统离散滑模变结构控制的研究[J].仪器仪表学报,1999,20(4):360-363.
    [134]桑勇,祁晓野,王占林.基于滑模变结构控制的电机-泵组-阀复合调速的研究[J].煤炭学报,2006,31(5):674-678.
    [135] P. Kachroo, M.Tomizuka. Chattering reduction and error convergence in thesliding-mode control of a class of nonlinear systems[J]. IEEE Transactions onAutomatic Control,1996,41(7):1063-1068.
    [136]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [137]高为炳.变结构控制的理论及设计方法[M].北京科学出版社,1998.
    [138] L. J. Wong, H. F. Leung, K. S. Tamp. A chattering elimination algorithm forsliding mode control of uncertain non-linear systems[J]. Mechatronics,1998,8(7):765-775.
    [139] J. X. Xu, W. J. Cao. Learning variable structure control approaches forrepeatable tracking control tasks[J]. Automatic,2001,37(7):997-1006.
    [140]林岩,毛剑琴,操云甫.鲁棒低增益变结构模型参考自适应控制[J].自动化学报,2001,27(5):665-670.
    [141]吴振顺,卢剑锋,董泳.变结构自适应控制器及其在液压伺服系统中的应用[J].机械工程学报,2000,36(5):107-110.
    [142] Y. C. Chang. An Adaptive Tracking Control for a Class of Nonlinear MIMOSystems[J]. IEEE Transactions on Automatic Control,2001,46(11):1432-1437.
    [143]段锁林,安高成,薛军娥.电液伺服力控系统的自适应滑模控制[J].机械工程学报,2002,38(5):109-113.
    [144] S. Duraiswamy, T. C. George. Nonlinear adaptive nonsmooth dynamic surfacecontrol of electro-hydraulic systems[C]//American Control Conference,2003:3287-3292.
    [145] Kovanen, H.Handroos. Adaptive open-loop control method for a hydraulicallydriven flexible manipulator[C]. IEEE/ASME Interactional Conference onAdvanced Intelligent Mechatronics,2001(5):942-947.
    [146] M. Ertugrul, O.Kayak. Neural Sliding Mode Control of RoboticManipulators[J]. Mechatronics,2000,10(1):239-263.
    [147] S. J. Huang, K. S. Huang, K. C. Chiou. Development and application of anovel radial basis function sliding mode controller[J]. Mechatronics,2003,13(4):313-329.
    [148] G. G. Parma, B. R. Menezes. Sliding mode neural network control of aninduction motor drive[J]. International Journal of Adaptive Control andSignal Processing,2003,17(6):501-508.
    [149] C.M. Lin, Y. Mony. Decoupling control by hierarchical fuzzy sliding modecontroller[J]. IEEE Trans. on Control Systems Technology,2005,13(4):593-598.
    [150]魏鹏,王占林,裘丽华.针对飞机机载作动系统的模糊变结构控制[J].清华大学学报,2006,46(8):1393-1396.
    [151] C. Y. Liang, J. P. Su. A new approach to the design of a fuzzy sliding modecontroller[J]. Fuzzy Sets and Systems,2003,139(1):111-124.
    [152] R. J. Wai, C. M. Lin, C. F. Hsu. Adaptive fuzzy sliding-mode control forelectrical servo drive[J]. Fuzzy Sets and Systems,2004,143(2):295-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700