用户名: 密码: 验证码:
民用飞机系统维修规划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,民机性能和技术复杂度的不断提高,民机维修费用已经占到购买价格的三分之二,直接运营成本的10%~20%。而维修费用的高低与维修规划的合理与否有着密不可分的关系。民机维修规划包括系统、结构、区域、闪电/高强度辐射场防护四部分,系统部分的维修规划(简称系统维修规划)作为其中最主要的部分,民机制造商和航空公司都对其给予了极大的关注。系统维修规划的最终目标是合理确定系统各部件的维修任务,鉴于目前主要凭借经验进行民机系统维修规划的不足,本文建立了以维修优化模型为基础的民机系统维修规划方法。其中,针对单部件维修优化模型不能完全满足系统维修规划要求的现实,从多部件维修优化的角度出发,对民机系统维修中亟待解决的备用系统维修优化、并联系统维修优化、单元体系统的维修优化、系统维修方案的制定等问题进行了深入研究。在上述研究的基础上,根据MSG-3维修思想,开发了我国首个用于民机系统维修规划的决策支持辅助系统(MPAS)。本论文的主要研究内容如下:
     (1)备用系统是在主系统发生故障的紧急情况下,用于替代主系统的功能或消除、减少主系统故障带来的影响,因此具有非常重要的作用。由于备用系统长期处于非工作状态,所以其故障具有隐蔽性,本文针对隐蔽故障是否具有延迟性的特点,分别提出了不等间隔的使用检查和功能检测策略。在此基础上,考虑了主系统的故障率对备用系统维修优化的影响,以可用度为约束、期望维修费用率为目标函数,建立了备用系统的维修优化模型,该优化模型更具合理性。
     (2)为了提高系统的可靠度,并联技术在民机系统上被广泛地采用。针对两部件并联系统中的两冗余部件在物理性能、工作环境等方面的相似性以及检测时存在不完备的特点,提出了不完备交叉检测策略。为此,分析了冗余部件之间的故障相关形式和故障影响模式,研究了并联系统在此策略下的不同更新情况和相应的更新概率,以检测间隔和检测次数为优化变量、可靠度为约束、期望维修费用率为目标函数,建立了并联系统的维修优化模型,该优化模型更加符合实际情况。
     (3)单元体系统中某个部件发生故障时,通常会利用对故障部件维修的机会,对系统中短期内需要维修的其它部件,同时进行预防性维修,以达到节约系统维修费用的目的。本文针对具有这一特点的单元体系统,提出采用机会维修策略,策略中考虑了实际维修中的最小维修,以及部件不同故障类型采用不同维修等级的情况。为此,引入更新过程理论对系统中各部件的机会维修概率密度和更新过程进行了研究,并以机会维修役龄为优化变量、期望维修费用率为目标函数,建立了单元体系统的机会维修优化模型。该模型为单元体系统的机会维修役龄的确定提供了理论方法。
     (4)针对民机系统部分维修任务多、费用高、维修间隔差别大的特点,基于间接成组维修策略,提出了民机系统维修方案的制定方法。首先,结合民机运营和维修的特点,分析了民机系统中各类型维修任务费用;然后,研究了成组维修对民机系统整体维修费用率及利用率的影响;最后,以基本定检间隔和各部件维修任务间隔为优化变量、民机利用率和可靠度为约束、维修费用最小化为目标函数,建立了民机系统维修任务的优化成组模型。该方法为民机系统制造商制定维修计划文件,航空公司制定维修方案提供了理论支持。
     (5)针对民机系统维修规划难度大、任务重以及重复性强的特点,从飞机制造商和航空公司的实际需求出发,根据MSG-3维修思想目标、内容和程序,运用决策支持系统的理论和方法,以维修优化模型为基础,开发了我国首个用于民机系统维修规划的MPAS。该系统已经正式交付中航商用飞机有限公司、中航第一飞机设计院和ARJ21飞机的主要系统供应商在制订ARJ21飞机维修大纲中使用,应用效果良好。
With science and technology developing further and further, the performance and complexity of civil aircrafts are increasing more and more. The maintenance cost of a civil aircraft has grown up to two thirds of the purchase price and 10%-20% of the direct operating cost. The maintain cost has a direct connection with maintenance program, therefore both aircraft manufactures and airlines have paid much attention on maintenance program. The final intention of maintenance program is to design the maintenance tasks of the civil aircraft reasonably. However the maintenance optimal models about the single-unit are more and more perfect and do not fulfill an accurate need for maintenance program. So from the point of the multi-unit maintenance optimization, this dissertation has a deep research on standby system, parallel system, task-group and opportunity maintenance. Then, maintenance program aided system (MPAS) for commercial aircraft maintenance program is developed. The main contain includes as follow:
     (1) The standby system is to eliminate or relieve abnormal conditions that follow a failure and take over from a function that has failed, so it is very important for the system. The standby system always works at shut-down condition, so its failure is hiden. The operational check policy and functional inspection policy with variant intervals are respectively proposed, according to whether the failure has the characteristics of delay-time. The influence of the protected system on maintenance decision for standby system is analyzed. Then the maintenance optimal model is developed to minimize the maintenance cost rate with the constrain of the availability. Thus the model gets more reasonable.
     (2) The parallel system is widely used in the civil aircraft in order to enhance the reliability. The redundancy units work together in the two-unit parallel system. The redundancy units have the same physical character and circumstance, and (the failures are found inconveniently), so the imperfect staggered inspection is proposed. Then the failure dependency and modes between these two units are analyzed, and the renewal probability of the parallel system is studied. At last, choosing the inspection interval and number as optimized variables, the maintenance optimal model is developed to minimize the maintenance cost rate with the constrain of the availability. So the maintenance model is more logical.
     (3) In module systems, opportunistic maintenance on one unit basically refers to the situation in which preventive maintenance on the other units can be carried out at opportunities. Opportunistic maintenance is useful for saving maintenance cost. The opportunistic maintenance policy is proposed considering the minimal maintenance and the different type of failure adopting different type of maintenance. Then, using the renewal theory, the probability density function of opportunity maintenance and the renewal process are analyzed. At last, the optimal maintenance model is developed to minimize the maintenance cost rate, which offers a new method for determining the age of opportunistic maintenance.
     (4) Because of plenty of tasks and high maintenance cost in aircraft maintenance, the task-group is important in maintenance program. As the existing method of task-group is defective, the new method of task-group is proposed based on group maintenance policy. Considering the real condition of the airlines operation, the influence of task-group on utilization and maintenance cost of the civil aircraft is researched. The optimal maintenance model is developed to minimize the maintenance cost rate, and the model is subject to the reliability and utilization. So it offers a new method of task-group for aircraft manufactures and airlines.
     (5) MPAS is designed based on the practical requirement of the airlines and the MSG-3. The MPAS applies the theory of decision-making support system and optimal maintenance models. Now, we have handed over this MPAS to ACAC (Avici Commercial Aircraft Co.), and it is of great application.
引文
[1] Boeing Company. Boeing commercial airplanes current market outlook overview 2005. Washonton, DC, 2005.
    [2]吴兴世.新支线飞机项目汇报.上海:中航商用飞机有限公司, 2002.
    [3]汪冰生.航空器维修成本控制.南京:南京航空航天大学, 2002.
    [4]刘清贵,复飞刍议.飞行技术论坛, 2003.
    [5] (英)J.莫布雷著.以可靠性为中心的维修.北京:机械工业出版社, 1995.12
    [6] G. Waeyenbergh, L. Pintelon. A framework for maintenance concept development. International Journal of Production Economics, 2002, 77(3): 299-313.
    [7] G. Waeyenbergh, L. Pintelon. Maintenance concept development: A case study. International Journal of Production Economics, 2004, 89(3): 395-405.
    [8]吴学良,边振海.浅谈MSG维修思想与工程实践.航空维修与工程, 2004, 1: 28-30.
    [9]郭玉山.制定船舶设备预防性维修大纲实现科学规范化维修.中国修船, 2004, 35: 5-6.
    [10]张杰彬、孙培豪.谈仓库机械设备维修大纲的制订与实施.机械化与自动化, 2002, 4: 22-23.
    [11] Van Der Duyn schouten, F. Maintenance policies for multi-component system. in proceedings of the NATO advanced Study Institute on Current Issues and Challenges in the Reliability and Maintenance of complex System. Turkey, 1996.
    [12] A. Edward, L. Duane. Enviornental Stress Screening Strategies for Multi- Component Systems with Weibull Failure-Times and Imperfect Failure Detection. Proceedings annual reliability and maintainability symposium, 1995, 7: 223-232.
    [13] I. D. Cho, M. Parlar. A survey of maintenance models for multi-unit systems. European Journal of Operational Research, 1991, 51: 1-23.
    [14] J. D. Diederik Wijnmalen, Jan A. M. Hontelez. Coordinated condition-based repair strategies for components of a multi-component maintenance system with discounts. Theory and Methodology, 1997, 98: 52-63.
    [15] R. Dekker, R.E. Wildeman, F. Van Der Duyn schouten. A review of multi-component maintenance models with economic dependence. Mathematical Methods of Operational Research, 1997, 45(3): 411-435.
    [16] H. Wang. A survey of maintenance policies of deteriorating systems. European Journal of Operational Research, 2002, 139(3): 469-189. [ 17 ] J.Barata, C.Guedes Soares, M.Marseguerra, E.Zio. Simulation modeling of repairable multi-component deterioring system for‘on condition’maintenance optimization. Reliability Engineering and System Safety, 2002, 76: 255-264.
    [18] W. Wang, A.H. Christer. Solution algorithms for a nonomogeneous multi-component inspection model. Computers & Operations Research, 2003, 30:19-34.
    [19] A. Barros, C. Be′renguer, A. Grall. On the hazard rate process for imperfectly monitored multi-unit systems. Reliability Engineering and System Safety, 2004, 10: 1-8.
    [20] L. C. Thomas. A survey of maintenance and replacement models for maintainability and reliability of multi-item systems. Reliability Engineering, 1986, 16: 297-309.
    [21] R. E. Barlow, R. Proschan. Optimum preventive maintenance policies. Opens Res., 1960, 8: 90-100.
    [22] P. A. Scarf. On the application of mathematical models in maintenance. European Journal of Operational Research, 1997, 99(4): 493-506.
    [23] J. J. McCall,. Maintenance policies for stochastically failing equipment: a survey. Management Science, 1965, 10(1): 85-97.
    [24] W. P. Pierskalla, J. A. Voelker. A survey of maintenance models: the control and surveillance of deteriorating systems. Naval Research Logistics, 1976. 23: 353-388.
    [25] Y. S. Sherf, M. L. Smith. Optimal maintenance models for systems subject to failure - a review. Naval Research Logistics, 1981, 28(1): 47-74..
    [26] C. Valdez-Flores, R. M. Feldman, A survey of preventive maintenance models for stochastically deteriorating single-unit systems. Naval Research Logistics, 1989, 36: 419-446.
    [27]陈学楚.维修基础理论.北京:科学出版社, 1998..
    [28] A. Ziv, J. Bruck. Performance Optimization of Checkpointing Schemes with Task Duplication. IEEE Trans Computers, 1997, 46(12): 1381-1386.
    [29]高崎.使用检查维修工作模型的建立.军械工程学院学报, 1996, 8(3):66-69.
    [30] Jiman Hong, Sangsu Kim, On the choice of checkpoint interval using memory usage profile and adaptive time series analysis. IEEE 2001 Pacific Rim International Symposium on Dependable Computing, 2001, 45-48.
    [31]吕文元.时间延迟维修理论在制定设备维修计划中的应用.中国设备工程, 2006. 9: 13-14.
    [32] A. H. Christer, W. M. Waller. Delay time model of industrial inspection maintenance problems. J. Opl. Res. Soc., 1984, 35: 401-406.
    [33] A. H. Christer., C. Lee. Refining the delay-time-based PM inspection model with non-negligible system downtime estimates of the expected number of failures. J.Production Economics, 2000, 67: 77-85.
    [34] A. H. Christer, W. M. Waller. Delay time model of industrial inspection maintenance problems. J. Opl. Res. Soc., 1984, 35: 401-406.
    [35] R. D. Baker, A. H. Christer. Review of delay-time OR modeling of engineering aspects of maintenance. European Journal of Operational Research, 1994, 73: 407-422.
    [36] R. D. Baker, P. A. Scarf, W. Wang. A delay-time model for repairable machinery: maximum likelihood estimation of optimum inspection intervals. Journal of Mathematics Applied in Business and Industry, 1997, 8(1): 83-92.
    [37] H. Wang, H. Pham. Some Maintenance Models and Availability with Imperfect Maintenance in Production Systems. Annals of Operations Research, 1999, 91(3): 305-318.
    [38] W. Wang, A Model to Determine the Optimal Critical Level and the Monitoring Intervals in Condition-based Maintenance. Int. J. Prod. Res., 2000, 38(6):1425-1436.
    [39] W. Wang, A. H. Christer. Toward a general condition based maintenance model or a stochastic system. Journal of the Operational Research Society, 2000, 51: 145-155.
    [40] M. Sachon, E. Pate′Cornell. Delays and safety in airline maintenance. Reliability Engineering and System Safety, 2000, 67: 301-309.
    [41] K. Yang, A. Jeang. Statistical surface roughness checking procedure based on a cutting tool wear model. Journal of Manufacturing System, 1994, 13(1): 1-8.
    [42] F. P. A. Coolen, R. Dekker. Analysis of a 2-Phase Model for Optimization of Condition-Monitoring Intervals. IEEE Transactions on Reliability, 1995, 44(3): 505-511.
    [43]赵建民.两阶段功能检查模型研究.系统工程与电子技术, 2000, 22(12): 49-51.
    [44]崔建华.冷备用冗余的可靠性分析方法.继电器, 2000, 28(2): 58-61.
    [45]张杰彬.备用系统可用度模型的建立及应用.军械工程学院学报, 2000, 12(2): 9-14.
    [46]虞兰.应急备用装置的可用度与维修策略.机械设计与制造, 1999, 3: 1-2.
    [47] L. R. Goel, P. Shrivastava, R. Gupta. Two unit cold standby system with correlated failures and repairs. InternationalJournal of Systems Science, 1992, 23(3): 379-388.
    [48] Chung-Chi Hsieh. Replacement and standby redundancy policies in a deteriorating system with aging and random shocks. Computers & Operations Research, 2005, 32: 2297-2308.
    [49]陶建峰,刘成良,王少萍.两部件冷储备系统可用度数值解法.上海交通大学学报, 2005, V39(9): 1476-1480.
    [50] J. Crocker, U. D. Kumar. Age-related maintenance versus reliability centred maintenance: a case study on aero-engines. Reliability Engineering & System Safety, 2000, 67: 113-118.
    [51] Sergio Brandao da Motta, Enrico Ant?nio Colosimo. Determination of preventive maintenance periodicities of standby devices. Reliability Engineering and System Safety, 2002, 42(76): 149-154.
    [52] David W. Coit. Cold-standby redundancy optimization for nonrepairable systems. IIE Transactions, 2001, 211(33): 471-478.
    [53] A. E. Baldin. Condition-based maintenance. Chemical Engineering, 1981, 10(16): 89-95.
    [54] D. N. P. Murthy, D. G. Nguyen. Study of two-component systems with failure interactions, Naval Research Logistics Quarterly, 1985, 32: 239-247.
    [55] K. Yasui, T. Nakagawa, S. Osaki. A summary of optimal replacement policies for a parallel redundant system. Microelectronics and Reliability, 1988, 28: 635-641.
    [56] Roy Billinton, Jun Pan. Optimal Maintenance Scheduling In A Parallel Redundant System Consisting of Series Components in Each Branch. Transactions on Power Delivery, 1999, 14(3): 928-933.
    [57] T. Nakagawa, D. N. P. Murthy. Optimal replacement policies for a two-unit system with failure interactions, Recherche op′erationelle/Operations Research, 1993, 27: 427-438.
    [58] P. A. Scarf, M. Deara. Block replacement policies for a two-component system with failure dependency, Naval Research Logistics, 2003, 50: 70-87.
    [59] R. I. Zequeira, C. B′erenguer. Maintenance Cost Analysis of a Two-Component Parallel System with Failure Interaction, Reliability, Availability, Maintainability, and Safety, 2004, 2: 220-225.
    [60] A. Barros, C. Be′renguer, A. Grall. On the hazard rate process for imperfectly monitored multi-unit systems.Reliability Engineering and System Safety, 2004, 6: 1-8.
    [61] R. I. Zequeira, C. B′erenguer. On the inspection policy of a two-component parallel system with failure interaction, Reliability, Reliability Engineering and System Safety, 2005, 88: 99-107.
    [62]陈光.航空发动机设计手册(第3册):可靠性与维修性.北京:航空工业出版社, 2000, 6.
    [63] R. Radner, D.W. Jorgenson. Opportunistic replacement of a single part in the presence of several monitored parts. Management Science, 1963, 10: 70-80.
    [64] M. Berg, B. Epstein. A modified block replacement policy.Naval Research Logistics Quarterly, 1976, 23: 15-24.
    [65] M. Berg. General trigger-off replacement procedures for two-unit systems. Naval Research Logistics Quarterly, 1978, 25: 15-29.
    [66] Van der Duyn, F. A. Schouten, S.G. Vanneste. Analysis and computation of ( n, N )-strategies for maintenance of a two-component system. European Journal of Operational Research, 1990, 48: 260-274.
    [67] Xitong Zheng and Nasser Fard.A Maintenance Policy for Repairable Systems Based on Opportunistic Failure-rate Tolerance. IEEE TRANSACTIONS ON RELIABILITY, 1991, 40(2): 237-244.
    [68] Van der Duyn, F. A. Schouten, S.G. Vanneste. Two simple control policies for a multicomponent maintenance systems. Operations Research, 1993, 41: 1125-1136.
    [69] Jiansheng Huang, Preventive replacement/maintenance program development and evaluation for multi-unit system with economic dependency. University of South Florida Tampa, 1993.
    [70]王辉,范秀敏,严隽琪.考虑机会维修的等风险预防性维修策略优化.机械设计与研究, 2003, 19(3):51-56.
    [71]程志君,郭波.机会维修策略下的系统可用度分析.数学的实践与认识, 2006, 36(10):137-140.
    [72]金玉兰,蒋祖华,侯文瑞.以可靠性为中心的多部件设备预防性维修策略的优化.上海交通大学学报, 2006, 40(12): 2051-2056.
    [73] D. Assaf, J. G. Shanthikumar. Optimal group maintenance policies with continuous and periodic inspections. Management Science, 1987, 33(11): 1140-1452.
    [74] J. G. Wilson, A. Benmerzouga. Optimal m-failure policies with random repair time. Operations Research Letters, 1990, 9: 203-209.
    [75] K. Okumoto, E. A. Elsayed. An optimum group maintenance policy. Naval Research Logistics Quarterly, 1983, 30: 667-674.
    [76] P. Ritchken, J. G. Wilson. (m, T) group maintenance policies. Management Science, 1990, 36: 632-639.
    [77] T. W. Archibald, R. Dekker. Modified block replacement for multiple component systems.Technical Report 9412/A, Econometric Institute, Erasmus University Rotterdam (to appear in IEEE Transactions on Reliability), 1994.
    [78] G. Van Dijkhuizen, A. van Harten. Optimal clustering of repetitive frequency -constrained maintenance jobs with shared setups. Technical report University of Twente. The Netherlands, 1995.
    [79] S. K. Goyal, M. I. Kusy. Determining economic maintenance frequency for a family of Machines. Journal of the Operational Research Society, 1985, 36: 1125-1128.
    [80] W. E. Vesely, F. F. Goldberg, FRANTIC--a computer code for time-dependent unavailability analysis, 1980, NUREG-0913.
    [81] A. Khatami, K.P. George. Network level optimization/prioritization of pavement rehabilitation. Transp. Res. Record, 1988, 1196: 224-233.
    [82] J. Woodhouse. Relating maintenance to production and company profits. in the 6th. Nat. Conf. on Comp. for Maint. Management, Fordham, UK, 1986.
    [83] N. N. J. Hastings, A.K.S. Jardine. Component replacement and the use of RELCODE. Micro. & Rel, 1979, 19: 49-56.
    [84] M. Horton. Optimum maintenance and RCM. In Proc. 3rd EsReDa Seminar on Equipment Ageing and Maintenance, France, 1992.
    [85]黄金国.智能维修决策支持系统的研究.机械工程师, 2003, (12): 6-8.
    [86]王晓锋,船舶维修决策支持系统的设计与实现.大连:大连海事大学, 2000.
    [87]拓广忠.确定设备维修策略:深入理解和实施EAM软件.电力信息化, 2006, 4(6): 61-64.
    [88]吕文元.先进制造设备可用度维修理论及其智能决策支持系统.哈尔滨:哈尔滨工业大学, 2001.
    [89]程中华,贾云献,刘利,贾希胜.基于C/S模式的RCM分析决策系统的设计与实现.计算机工程与应用, 2004, 7: 174-177.
    [90]曲长征,张柳,于永利,陈玉波.基于Active技术的RCM维修间隔期分析软件设计与实现.计算机工程与应用, 2005, 2: 194-196.
    [91] R. A. Cottis, P. J. Laycock, P. A. Scarf. Extrapolation of Exreme Pit Depth in Space and Time. J. Electrochem. Soc., 1990, 137: 64-69.
    [92] Air Transport Association of America, Inc. ATA MSG-3 (Revision 2003.1). 2003.
    [93] DoD. Use of cost estimating relationship versus accounting models for estimating maintenance and repair costs: a methodology demonstration, DoD: AD-A186932.
    [94]北京华灵四方投资咨询有限责任公司.未来中国通用航空业分析预测报告, 2005.
    [95]常士基.现代民用航空维修工程管理.山西科学技术出版社, 2002.
    [96]蒋仁言,左明健.可靠性模型与应用.机械工业出版社, 1999.
    [97] M. Xie, Y. Tang, T. N. Goh. A modified weibull entension with the bathtub shaped failure rate function. Reliability Engineering and System Safety, 2002, 76: 279-285.
    [98] A. K. S. Jardine. Applications of the Weibull proportional hazards Model to Aircraft and Marine Engine Failure Data. Quality & Reliability Engineering International, 1987, 3: 77-82.
    [99]高崎.可靠性与维修性工程.军械工程学院, 2003,12.
    [100] A. Grall, C. Bérenguer, L. Dieulle. A condition based maintenance policy for stochastically deteriorating system. Reliability Engineering and System Safety, 2002, 76: 167-180.
    [101]上海航空公司.上海航空公司可靠性月报. 2005.
    [102]顾嘉麟,郭建英.截尾数据下威布尔分布的参数估计问题.哈尔滨理工大学学报, 2005, 10(2): 61-64.
    [103] Lingyan Song, Dongfang Wu, Yong dan. Optimal probability estimators for determining Weibull parameters. Journal of Materials Science Letters, 2003, 22(23): 1651-1653.
    [104] S. H. Sheu, C. T. Liou. Generalized sequential preventive maintenance policy for repairable systems with general random minimal repair costs. Internaional Journal of Systems Science, 1995, 26: 681–690.
    [105] Yu-Hung Chien, Shey-Huei Sheu. Extended optimal age-replacement policy with minimal repair of a system subject to shock. European Journal of Operational Research, 2006, 174(1): 169–181.
    [106] J. H. Williams, A. Davies, P. R. Drake. Condition-based maintenance and machine diagnostics. Chapman & Hall, 1994.
    [107] G.. Waeyenbergh, L. Pintelon. Maintenance concept development: A case study. The 12th International Working Seminar on Production Economics, 2002, 1: 347-359.
    [108] W. Wang. Subjective estimation of the delay time distribution in maintenance modeling. European Journal of Operational Research, 1997, 99: 516-529.
    [109] T. Aven. Condition based replacement policies-a counting process approach, Reliability Engineering & System Safety, 1996, 51(3): 275-281.
    [110] R. Dekker, M. C. Dijkstra. Opportunity-based age replacement: exponentially distributed times between opportunities. Naval Research Logistics, 1992, 39: 175-190.
    [111]徐安,乔向明. Performance基于更新理论的复杂设备故障率表达.吉林大学学报(工学版), 1997, 36(3): 359-363.
    [112]柳金甫,李学伟.应用随机过程.中国铁道出版社, 2000.
    [113] M. Abdel-Hameed. Optimal maintenance of systems subject to deterioration of the renewal type, Computers & Mathematics with Applications, 2003, 46(7): 987-992.
    [114] C. W. I. Wartenhorst, W. P. Groenedijk. Transient Failure Behavior of repairable system, IMA journal of mathematics applied in business and industry, 1992, 3(4): 297-305.
    [115] H. W. Block, W. S. Borges, T. H. Savits. Age-dependent minimal repair. Journal of Applied Probability, 1985, 22: 370–385.
    [116] Y. Wang, E. Handschin. A new genetic algorithm for preventive unit maintenance scheduling of power system. Electrical Power and Energy Systems, 2000, 22: 343-348.
    [117] Haritha Saranga. Opportunistic maintenance using genetic algorithms. Journal of Quality in Maintenance Engineering, 2004, 10(1): 66-74.
    [118] Celso Marcelo F. Lapaa, Cla′udio Ma′rcio N.A. Pereiraa,b, Ma′rcio Paes de Barros. A model for preventive maintenance planning by genetic algorithms based in cost and reliability. Reliability Engineering and System Safety, 2006, 91: 233-240. [ 119 ] YouTern Tsai, Kuoshong Wang, HweiYuan Teng. Optimizing preventive maintenance for mechanical components using genetic algorithms. Reliability Engineering and System Safety, 2001, 74: 89-97.
    [120]上海航空公司. CF34-3B1型发动机维修记录和帐单. 2005.
    [121]姬东朝,肖明清.一种新的最小维修优化数学模型的建立.航空计算技术, 2002, 9: 31-33.
    [122] J. F. Lawless. Statistical Models and Methods for Lifetime Data, 1982.
    [123] David Mark Kennet. A Structural Model of Aircraft Engine Maintenance. Journal of Applied Econometrics, 1994, 9(4): 351-368.
    [124]顾磊,钱正芳,范英,缪旭弘.舰船装备视情维修间隔模型研究.华中科技大学学报(自然科学版), 2003, V31(6): 38-43.
    [125]周灵基.飞机维修方案对航空公司成本的影响.中国民用航空, 2007, 1: 47-50.
    [126] Lam Yeh, Zhang Yuan Lin. A shock model for the maintenance problem of a repairable system. Computers & Operations Research, 2004, 31(11): 1807-1820.
    [127]朱绍强,王卓健.基于TOPSIS法的飞机维修方案的决策.航空计算技术, 2004, 34(3): 10-12.
    [128]许燕菲.浅谈飞机维修方案的优化.航空维修与工程, 2004, 5: 54-55.
    [129]梁曦.优化A检维修方案探讨.航空维修与工程, 2004, 4: 50-51.
    [130]张秀斌,王广伟,郭波.应用比例故障率模型进行基于状态的事情维修决策。电子产品可靠性与环境试验, 2002, 4: 66-69.
    [131]刘明;左洪福;耿端阳,等.基于RBR与CBR的维修大纲专家系统.北京航空航天大学学报, 2006, 32(5): 521-525.
    [132]吴静敏,左洪福.基于案例推理的直接维修成本预计方法.航空学报, 2005, 26(2): 190-194.
    [133]赵建华,赵建民,赵丽琴.多部件系统故障预防工作的组合优化.数学的实践与认识, 2005, 35(6): 182-188.
    [134] Guoyu Tu, Peter B. Luh, Qianchuan Zhao. An Optimization Method for Joint Replacement Decisions in Maintenance. Conference on Decision and Control, 2004, 43: 3674-3679.
    [135] W. J. Hopp, Y. L. Kuo. Heuristics for multicomponent joint replacement: Applications to aircraft engine maintenance. Naval Research Logistics, 1998, 45: 435-458.
    [136]甘茂治,康建设,高琦.军用装备维修工程学.北京:国防工业出版社, 1999.
    [137] D. Wijnmalen, J. Hontelez. Review of a Markov decision algorithm for optimal inspections and revisions in a maintenance system with partial information. European Journal of Operational Research, 1992, 62: 96-104.
    [138]岳琪,宋文龙,陈立生.遗传算法与组合优化问题研究.信息技术, 2004, 28(1): 53-55.
    [139]戴书文.组合优化中启发式算法的研究分析.淮南职业技术学院学报, 2005, V5(14): 72-74.
    [140]熊焰,陈欢欢,苗付友,等.一种解决组合优化问题的量子遗传算法QGA.电子学报, 2005, 32(10): 72-74.
    [141]上海航空公司. CRJ200维修方案. 2005.
    [142]吴静敏.民用飞机全寿命维修成本控制与分析关键问题研究.南京:南京航空航天大学, 2006.
    [143]赵淑舫,宁宣熙,吴桐水.航材需求预测模型研究.中国民航学院学报, 2002, 3: 20-23.
    [144]甘茂治.维修性设计与验证.国防工业出版社, 1995.
    [145]林贺,左洪福,徐彤.基于时间累计法的工时定额评估数学模型的建立.飞机工程, 2005, 4: 50-52.
    [146]张金隆.一种面向连续生产的设备管理决策支持系统.武汉理工大学学报, 2003, 25(3): 121-125.
    [147]方淑芬,吕文元.设备维修管理智能决策支持系统的研究.系统工程理论与实践, 2001, 12: 53-59.
    [148]高洪深.决策支持系统(DSS)理论、方法与案例.北京:清华大学出版社、广西科学技术出版社, 1996.
    [149]林丽,马孝.基于预知维修的设备管理决策支持系统的设计.设备管理与维修, 2004, 4: 8-9.
    [150]钱大琳.决策支持系统的人机关系研究.北方交通大学学报, 2003, 2(2): 22-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700