用户名: 密码: 验证码:
二茂铁基化合物和二茂铁基聚合物及其接枝碳材料的合成、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二茂铁基化合物和二茂铁基聚合物以及它们接枝的碳材料由于具有独特的结构和优异的性能使得它们在高氯酸铵基推进剂中有着广泛的应用。本论文围绕二茂铁基化合物和二茂铁基聚合物以及它们接枝碳材料的合成、表征和应用展开研究:
     (1)制备了六种二茂铁基化合物1,1’-二茂铁二甲酸羟乙酯(FDCHE)、1,3-二-(二茂铁酰氧基)-2-丙醇(DFAPO)、1,2,3-三-(二茂铁酰氧基)-丙三(醇)酯(TFAGOE)、1,2,3,4-四-(二茂铁酰氧基)-季戊四(醇)酯(TFAPOE)、1,1’-二茂铁甲酰氧基环氧丙烷(GEFDC)和聚二茂铁二甲酸双酚A酯缩水甘油醚(GEPFDCBPE),用核磁共振(1H-NMR)和红外光谱(FT-IR)表征了所得产物的结构。用TGA法研究了这些新型二茂铁基化合物对高氯酸铵(AP)热分解性能的影响规律。研究发现,这些二茂铁基化合物的加入都对AP的热分解产生较大的影响。加入二茂铁基化合物的量越大,对AP热分解的促进效果越好;支化程度提高,抗迁移效果改善。将制备的模拟推进剂样品置于真空干燥箱中(50℃)50天未发现有明显的二茂铁基化合物迁移现象发生。提出了二茂铁基化合物迁移的可能机理,同时也提出了相应的抗迁移方法。
     (2)合成了两种二茂铁基化合物单体丙烯酸二茂铁甲酰氧基乙酯(AFFEE)和甲基丙烯酸二茂铁甲酰氧基乙酯(MAFFEE),采用溶液聚合法分别制备了聚丙烯酸二茂铁甲酰氧基乙酯(PAFFEE)和聚甲基丙烯酸二茂铁甲酰氧基乙酯(PMAFFEE)。用FT-IR、1H-NMR等方法对产物结构进行了表征与分析。以TGA法研究了PAFFEE、PMAFFEE.聚二茂铁二甲基硅烷(PFDMS)和聚二茂铁甲基苯基硅烷(PFMBS)对AP的热分解性能的影响。发现它们均可使AP的分解温度明显降低;聚合物的分子量对AP的热分解性能影响不明显;二茂铁基聚合物用量增加使得AP的高温分解温度降低,当用量增加到一定程度之后,进一步增加其用量对AP的热分解性能影响不明显。将制备的模拟推进剂样品置于真空干燥箱中(50℃)50天,未发现明显的二茂铁基聚合物迁移现象。提出了二茂铁基聚合物促进AP热分解的可能机理。
     (3)制备了表面羧酸化炭黑(CBs-COOH)和表面羟基化炭黑(CBs-OH);使CBs-OH跟二茂铁单甲酰氯反应,将二茂铁基团接枝到炭黑表面(CBs-g-Fc)。采用FT-IR、1H-NMR等方法表征了产物;用TEM观察了其形貌;通过TGA法对系列产物进行了热失重分析,发现CBs-COOH和CBs-OH的失重明显较纯炭黑增加;以CBs-OH与2-甲基-2-溴丙酰溴反应合成了CBs-Br,然后以CBs-Br为引发剂,以AFFEE为单体制备了聚丙烯酸二茂铁甲酰氧基乙酯接枝炭黑(CBs-g-PAFFEE);采用FT-IR、1H-NMR、TGA法等方法表征与分析了相关产物。用TGA法研究了CBs-g-Fc和CBs-g-PAFFEE对AP的热分解性能的影响。发现CBs用量的增加可使AP的分解温度下降。但进一步增加炭黑的用量,对AP热分解的影响不明显。CBs-g-Fc和CBs-g-PAFFEE的加入都可明显降低AP的分解温度。将制备的含二茂铁基聚合物接枝炭黑的模拟推进剂样品置于真空干燥箱中(50℃)50天,未发现二茂铁基聚合物接枝炭黑有明显迁移现象发生。提出了二茂铁接枝炭黑化合物促进AP热分解的可能机理。CBs-g-Fc和CBs-g-PAFFEE性能优异,有望作为新型燃速促进剂被实际应用。
     (4)制备了表面羧酸化碳管(MWCNTs-COOH)和表面羟基化碳管(MWC-NTs-OH);将MWCNTs-OH与二茂铁单甲酰氯反应制得二茂铁接枝碳管(MWCN-Ts-g-Fc).将MWCNTs-OH-1与2-甲基-2-溴丙酰溴反应合成了MWCNTs-Br-1,然后以其为引发剂,以AFFEE为单体制备了聚丙烯酸二茂铁甲酰氧基乙酯接枝碳管(MWCNTs-g-PAFFEE),采用FT-IR和TGA法等对产物进行了表征和分析,用TEM观察了其形貌,发现MWCNTs-g-PAFFEE已成功合成。用TGA法研究了MWCNTs、MWCNTs-g-Fc及MWCNTs-g-PAFFEE等对AP的热分解性能的影响,发现MWCNTs、MWCNTs-g-Fc及MWCNTs-g-PAFFEE的加入均可使AP的分解温度下降。将制备的模拟推进剂样品置于真空干燥箱中(50℃)50天,未发现MWCNTs-g-Fc及MWCNTs-g-PAFFEE有明显迁移现象。提出了二茂铁基聚合物接枝碳纳米管促进AP热分解的可能机理。
Ferrocene-based compounds, ferrocene-based polymers and their grafted carbon materials can be widely used in ammonium perchlorate (AP)-based propellants due to their unique structure and excellent performance. The synthesis, characterization and application of some ferrocene-based compounds, ferrocene-based polymers and their grafted carbon materials were studied in this thesis.
     (1) Six different ferrocene-based compounds including ferrocene dicarboxylate hydroxyethyl (FDCHE),1,3-di(ferrocene acyloxy)-2-propanol (DFAPO),1,2,3-triferro-cene acyloxy glycerol ester (TFAGOE),1,2,3,4-tetraferrocene acyloxy pentaerythritol ester (TFAPOE), glycidyl ester of1,1'-ferrocene dicarboxylate (GEFDC) and glycidyl ether of polyferrocene dicarboxylate bisphenol A ester (GEPFDCBPE) were prepared and their structures were characterized by FT-IR and1H-NMR spectroscopy. The influence of these ferrocene-based compounds on the decomposition of AP was studied by TGA method. It was found that the addition of the synthesized ferrocene-based compounds decreased the decomposition temperature of AP. These ferrocene-based compounds had good promotive effect on the decomposition of AP. The results showed that the promotive effects were improved with increasing the content of ferrocene-base compounds. A good anti-migration effect was achieved when the branching degrees of the ferrocene-based compounds were increased. Furthermore, no obviously migration phenomenon of the synthesized ferrocene-based compounds was found after aging at50℃under vacuum. The possible migration mechanism and the corresponding antimigration measures of ferrocene-based compounds were proposed.
     (2) Methacrylate ferrocenyl formyloxy ethyl ester (MAFFEE) and acrylate ferrocenyl formyloxy ethyl ester (AFFEE) were prepared and then poly(meth)acrylate ferrocenyl formyloxy ethyl esters (P(M)AFFEE) were prepared by solution polymerization. Their structures were characterized by FT-IR and1H-NMR spectroscopy. PMAFFEE, PAFFEE, poly(ferrocenyldimethylsilanes)(PFDMS) and poly(ferrocenylphenylmethylsilanes)(PFMBS) were used as promoters and their promotive effects on the thermal decomposition of AP were studied by TGA method. It was found that all of these ferrocene-based polymers could decrease the decomposition temperature of AP, and the molecular weight of ferrocene-based polymers had no obvious influence on the decomposition of AP. As the amount of the same molecular weight ferrocene-based polymers increased, the decomposition temperature peak of AP decreased. When the amount reached a certain level, the decomposition temperature of AP did not decreased any more. Moreover, no obviously migration phenomenon of the synthesized ferrocene-based polymers was found by accelerated aging at50℃under vacuum after50d storing process. The possible promotive mechanism of ferrocene-based polymer on the thermal decomposition of AP was proposed.
     (3) CBs-COOH and CBs-OH were synthesized. CBs-g-Fc were synthesized by using ferrocenyl carboxylic chloride and CBs-OH. The relevant products were characterized by using FT-IR and1H-NMR spetroscopy. Their morphologies were investigated using TEM and HRTEM. The thermal properties of CBs-COOH and CBs-OH were investigated by TGA method. The results showed that the weight loss of CBs-COOH and CBs-OH increased significantly as compared to pure CBs. CBs-Br were synthesized via the reaction of CBs-OH with2-bromo-2-methyl-propionyl bromide. Polyacrylate ferrocenyl formyloxy ethyl ester grafted CBs were prepared by using CBs-Br as an initiator and acrylate ferrocenyl formyloxy ethyl ester as a monomer. The relevant products were characterized and analyzed by using FT-IR,1H-NMR spetroscopy and TGA techniques. The influence of CBs, CBs-g-Fc and CBs-g-PAFFEE on the thermal decomposition of AP was investigated by TGA methods. With increasing the amount of CBs, the decomposition temperature of AP decreased. Further increasing the amount of CBs had no obviously affect on the decomposition process of AP. Both of CBs-g-Fc and CBs-g-PAFFEE decreased the decomposition temperature of AP. Moreover, no obviously migration phenomenon of the synthesized ferrocene-based polymers grafted CBs was found when the simulated propellant was stored at50℃under vacuum after50d storing process. The possible promotive mechanisms of CBs-g-Fc and CBs-g-PAFFEE on the thermal decomposition of AP was proposed. CBs-g-Fc and CBs-g-PAFFEE materials have very good properties and they have very good potential application prospect as a new kind of burning rate promoter.
     (4) MWCNTs-COOH and MWCNTs-OH were synthesized. MWCNTs-g-Fc were prepared by using ferrocene carboxylic chloride and MWCNTs-OH. MWCNTs-Br were synthesized via the reaction of MWCNTs-OH with2-bromo-2-methyl-propionyl bromide. Polyacrylate ferrocenyl formyloxy ethyl ester grafted MWCNTs were prepared by using MWCNTs-Br as an initiator and acrylate ferrocenyl formyloxy ethyl ester as a monomer. The relevant products were characterized and analyzed by using FT-IR and TGA techniques. Their morphologies were investigated by using TEM. The results showed that MWCNTs-g-Fc and MWCNTs-g-PAFFEE were successfully obtained. The influence of MWCNTs, MWCNTs-g-Fc and MWCNTs-g-PAFFEE on the thermal decomposition of AP was studied by TGA method. It was found that the thermal decomposition temperature of AP decreased with the addition of MWCNTs, MWCNTs-g-Fc and MWCNTs-g-PAFFEE. However, no obviously migration phenomenon of the synthesized MWCNTs-g-Fc and MWCNTs-g-PAFFEE was found when the imitated propellant stored at50℃under vacuum after50d storing process. The possible promotive mechanisms of MWCNTs-g-Fc and MWCNTs-g-PAFFEE on the thermal decomposition of AP were proposed.
引文
[1]. 庞爱民,郑剑.高能固体推进剂技术未来发展展望.固体火箭技术2004,27:289-293.
    [2]. Caveny L. H., Glick R. L. Influence of embedded metal fibers on solid-propellant burning rate. J. Spacecraft. Rockets.1967,4(1):79-85.
    [3]. 冉秀伦,杨荣杰.高燃速推进剂研制现状分析.飞航导弹2006,9:44-50.
    [4]. 宋晓庆,周集义,王文浩,王建伟,白森虎.聚叠氮缩水甘油醚改性研究进展.含能材料2007,15(4):425-430.
    [5]. 单文刚,李旭利,李上文,赵凤起.高燃速推进剂研究进展与展望.飞航导弹1996,11:40-43.
    [6]. 柴玉萍,张同来.国内外复合固体推进剂燃速催化剂研究进展.固体火箭技术2007,30(1):44-47.
    [7]. Kealy T. J., Pauson P. L. A new type of organo-iron compound. Nature 1951,168: 1039-1040.
    [8]. 任红艳,李广洲.二茂铁化学的半个世纪历程.大学化学2003,18(6):57-60.
    [9]. Johnson N., Gotzmer C., Graff M. Piperazine derivatives of ferrocene. US Patents: 4,397,700,1983.
    [10]. William P. Norris, Ridgecrest Calif. Ferrocene derivatives and their preparation. US Patents:3,968,126,1976.
    [11]. 张仁,李建华,翁武军.二茂铁燃速催化剂的发展状况.推进技术1994,3:62-65.
    [12]. 王景津,张佩秋,杨蕴华,何云梅.几种双核二茂铁衍生物挥发迁移性能的比较.推进技术1990,5:43-47.
    [13]. Hill W. E., Huntsville A. High burning rate catalyst. US Patents:3,962,297,1976.
    [14]. 边占喜,王健春,李逢泽.多二茂铁基二氮杂已烷及其过渡金属配合物的合成.应用化学1995,12(2):37-41.
    [15]. 国际英,张教强,庞维强,王艳丽.二茂铁及其衍生物的应用.化学工业与工程技术2005,26(2):44-48.
    [16]. 王艳学,边占喜,赵庆华,翟林益,于海军,云青.烷基二茂铁的合成及性质.应用化学2002,19(10):950-953.
    [17]. 张仁,彭网大,朱慧,徐正义,刘明杰.一种新型燃速催化剂的作用效果研究.固体火箭技术1993,1:35-40.
    [18]. Grevels F. W., Kuran A., Ozkar S., Zora M. Friedel-Crafts alkylation of ferrocene with Z-cyclooctene and cyclohexene. J. Organomet. Chem.1999,587:122-126
    [19]. 李保国,边占喜,李海涛,李逢泽.二烷基二茂铁乙酰化反应的研究.化学试剂2000,22(5):271-273.
    [20]. 唐孝明,叶皓华,张淑云,李站雄.氯乙酰基二茂铁的合成与结构表征.河北化工2008,31(12):24-26.
    [21]. Sarhan A., Izumi T. Design and synthesis of new functional compounds related to ferrocene bearing heterocyclic moieties:A new approach towards electron donor organic materials. J. Organomet. Chem.2003,675(1-2):1-12.
    [22]. William D. Stephens, Warren Larry C. High burn rate ammonium perchlorate propellant. US patent:243,539,1989.
    [23]. 许敏.羟烷基双二茂铁甲酮及其硅基化产物的合成与性质研究[硕士学位论文].内蒙呼和浩特,内蒙古大学,2005年.
    [24]. 袁耀锋,李逢泽.双二茂铁烷的酰化衍生物的还原反应.应用化学1989,6(3):15-18.
    [25]. 温国华,李逢泽.2,2’-双二茂铁基烷的合成及其二甲胺甲基化反应.内蒙古大学学报(自然科学版)1987,18(1):111-115.
    [26]. 丁延桢,王岩,杨玉,吴艳钟.新型燃速催化剂-烷基二茂铁桥联双聚分子的电化学研究.高等学校化学学报1995,16(7):1066-1068.
    [27]. Gore G., Tipare K., Bhatewara R., Prasad U., Gupta M., Mane S. Evaluation of ferrocene derivatives as burn rate modifiers in AP/HTPB based composite propellants. Def. Sci. J. 1999,49(2):151-158.
    [28]. 段新娥,张昭,刘焕蓉,王文静.羟甲基-双(二茂铁基)丙烷的合成方法研究.山西大学学报(自然科学报)2000,23(1):56-60.
    [29]. 赵海英,边占喜,李保国.双二茂铁基(三甲硅烷氧基)乙腈的合成与晶体结构.结构 化学2004,23(4):459-463.
    [30]. William D. Stephens Vienna, Ashmore Reva Charles I. Solid propellant containing diferr-ocenyl ketone. US patent:4,318,760,1982.
    [31]. 国际英,张教强,苏力宏,庞维强,寇开昌.一元羟甲基一双(二茂铁)丙烷的合成与应用研究.西北工业大学学按2006,24(3):350-353.
    [32]. 唐孝明,李站雄,唐松青,陈国强.草酰基二茂铁衍生物合成与结构表征.含能材料2008,16(2):128-130.
    [33]. 高勇,李恒东,柯成锋,谢莉莉,袁耀锋.含氮杂环多核茂铁类燃速催化剂的设计与合成.化学推进剂与高分子材群2010,8(1):34-37.
    [34]. Subramanian K., Sastri K. S. Synthesis and characterization of iron carbonyl-modified hydroxyl-terminated polybutadiene:A catalyst-bound propellant binder for burn-rate augmentation. J. Appl. Polym. Sci.2003,90:2813-2823.
    [35]. Subramanian K. Synthesis and characterization of poly(vinylferrocene) grafted hydroxyl-terminated poly(butadiene):A propellant binder with a built-in burn-rate catalyst. J. Polym. Sci Part A:Polym. Chem.1999,37:4090-4099.
    [36]. Saravanakumar D., Sengottuvelan N., Narayanan V., Kandaswamy M., Varghese T. L. Burning-rate enhancement of a high-energy rocket composite solid propellant based on ferrocene-grafted hydroxyl-terminated polybutadiene binder. J. Appl. Polym. Sci.2011, 119(5):2517-2524.
    [37]. 张风林.一种新的BUTACENE复合固体推进剂.固体火箭技术1994,4:71.
    [38]. Chen J. K., Cheng S. S., Chou S. C. DSC, TG and infrared spectroscopic studies of HTPB and butacene propellant polymers. AIAA, ASME, SAE and ASEE, Joint propulsion conference and Exhibit,30th, Indianapolis, In United States; 27-29 June 1994.
    [39]. 谢剑宏,石东风,宋考生.含BUTACENE的AP/A1/HTPB推进剂性能研究.化学推进剂与高分子材料2002,3:28-29.
    [40]. 刘建平.国外固体推进剂技术现状和发展趋势.固体火箭技术2000,23:22-26.
    [41]. 周集义.二茂铁硅烷接枝的丁羟燃速催化剂.化学推进剂与高分子材料1998,4:1-3.
    [42]. Shi M., Li A. L., Liang H., Lu J. Reversible addition-fragmentation transfer polymerization of a novel monomer containing both aldehyde and ferrocene functional groups. Macromolecules 2007,40:1891-1896.
    [43]. Van Landuyt D., Ayers. O. Composite propellant composition with ferrocene compound as bonding agent and ballistic modifier. US Patent:3,765,965,1973.
    [44]. Van Landuyt D., Ayers Orval E. Process for making 1-pyrrolidinyl methyl ferrocene. US Patent:155,672,1975.
    [45]. Ayers O.2-Ferrocenyltetrahydrofuran. US Patent:3,745,177,1973.
    [46]. Ayers O., Van Landuyt D. Ballistic modification of composite propellants by use of 2-ferrocenyltetrahydrofuran novel liquid compound. US Patent:3,951,703,1976.
    [47]. Sayles D. C., Huntsville A. Propellant composition containing triferrocenylmethyl perchlorate as catalytic oxidizer. US Patent:3,860,463,1975.
    [48]. 鲍时安.二茂铁的结构及其键合作用.九江师专学报(自然科学版)1990,9(5):43-47.
    [49]. Pittman C. Location of action of burning-rate catalysts in composite propellant combustion(Burning rate catalysts mechanism and location in composite propellant combustion at high pressure. AIAA J.1969,7:328-334.
    [50]. 马庆云,梁金鹏.二茂铁衍生物的化学结构对高氯酸铵燃速的影响.兵工学按1990,1:51-57.
    [51]. Kishore K., Verneker V.R.P., Sunitha M.R. Action of transition metal oxides on composite solid propellants. AIAA J.1980,18(11):1404-1405.
    [52]. Kishore K., Sunitha M. R. Effect of transition metal oxides on decomposition and deflagration on composite solid propellant systems:A survey. AIAA J.1979,17(10): 1118-1125.
    [53]. Rudloff W., Freeman E. Catalytic effect of metal oxides on thermal decomposition reactions. Ⅱ. Catalytic effect of metal oxides on the thermal decomposition of potassium chlorate and potassium perchlorate as detected by thermal analysis methods. J. Phys. Chem.1970,74(18):3317-3324.
    [54].陈爱四,李风生,马振叶,黄敏.超细TMO复合催化剂对高氯酸铵热分解的影响.含能材料 2004,12(6):321-325.
    [55]. 王永寿,戴耀松.二茂铁衍生物/极细高氯酸铵系高燃速复合推进剂研究(1).飞航导弹 1995,3:40-45.
    [56]. 刘子如,阴翠梅,孔扬辉,赵凤起,罗阳,向海.高氯酸铵的热分解.含能材料2000,8(2):75-79.
    [57]. Shalom A., Gany A., Industry I., Hasharon R. Flammability limits and ballistic properties of fuel-rich propellants. Prop. Explos. Pyrotech.1991,16(2):59-64.
    [58]. Gao J.M., Wang. L., Yu. H.J., Xiao.A. G, Ding. W. B. Recent research progress in burning rate catalysts. Prop. Explos. Pyrotech.2011,36:404-409.
    [59]. 徐宏,刘剑洪,陈沛,赵凤起,田德余.纳米氧化铁的制备及其对吸收药热分解催化作用的研究.火炸药学报2002,(3):51-53.
    [60]. 王晗,赵凤起,李上文,高红旭.碳物质在固体推进剂中的功能及其作用机理.火炸药学报2006,29(4):32-35.
    [61]. Sharma J., Wilmot G., Campolattaro A., Santiago F. XPS study of condensed phase combustion in double-base rocket propellant with and without lead salt-burning rate modifier. Combust. Flame.1991,85:416-426.
    [62]. Hewkin D., Hicks J., Powling J., Watts H. The combustion of nitric ester-based propellants:ballistic modification by lead compounds. Combust. Sci. Technol.1971,2(5): 307-327.
    [63]. Preckel R. Plateau ballistics in nitrocellulose propellants. AIAA J.1965,3(2):346-347.
    [64]. Li S. Influence of carbon black on performance of RDX-CMDB propellant. The Ind. Explos. Soc.1986,147(3):144-149.
    [65]. 赵风起,李上文,单文刚,李疏芬.不同形态碳物质对RDX-CMDB推进剂燃烧性能的影响.推进技术2000,21(2):72-76.
    [66]. 李疏芬,高帆,赵凤起,李尚文.富勒烯在RDX-CMDB推进剂中的催化机理.推进技术2000,21(3):75-78.
    [67]. Kishore K., Verneker V. R. P., Sunitha M. R. Effect of catalyst concentration on burning rate of composite solid propellants. AIAA J.1977,15:1649-1651.
    [68]. Kishore K., Sunitha M. Mechanism of catalytic activity of transition metal oxides on solid propellant burning rate. Combust. Flame.1978,33:311-314.
    [69]. Fong C. W., Hamshere B. L. The mechanism of burning rate catalysis in composite HTPB-AP propellant combustion. Combust. Flame.1986,65(1):61-70.
    [70]. 宋秀铎,赵凤起,陈沛.固体推进剂用非铅燃速催化剂研究最新进展.含能材料2004,12(3):184-188.
    [71]. 宋秀铎,赵凤起,张蕊娥,高红旭,郝海霞,李上文.柠檬酸铋的制备、结构表征及其在固体推进剂中的催化作用 兵工学报2006,27(4):643-647.
    [72]. 国际英,张教强,王艳丽,庞维强,张琼方.纳米材料在燃速催化剂中的应用.纳米材料与应用2005,2(2):14-17.
    [73]. 李泉,曾广赋.纳米粒子.化学通报1995,6:29-34.
    [74]. 连舜华.超微细氧化剂对改善固体推进剂燃烧性能的作用.推进技术1992,3:72-78.
    [75]. 陈福泰,罗运军,多英全,罗善国,仇武林,姚维尚,谭惠民.纳米级碳酸铅在NEPE推进剂中的应用.推进技术2000,21(1):82-85.
    [76]. 田德余,陈力.新型含铜催化剂对RDX/HTPB推进剂燃速影响的研究.推进技术1995,16(6):74-77.
    [77]. 张汝冰,刘宏英.纳米材料在催化领域的应用及研究进展.化工新型材料1999,27(5):3-5.
    [78]. 王乃兴,李纪生.苦基氮杂C60衍生物的合成研究.含能材料1996,4(1):6-9.
    [79]. 郭万东.固体火箭推进剂超级燃速催化剂.飞航导弹1996,6:21-25.
    [80]. 钟雷,商黎鹏,李吉祯.纳米燃烧催化剂在固体推进剂中的应用研究.飞航导弹2008,3:47-49.
    [81]. 赵凤起,覃光明,蔡炳源.纳米材料在火炸药中的应用研究现状及发展方向.火炸药学报2001,24(4):61-65.
    [82]. 刘静峰,田德余,贾跃全.超微细Cu2O对改善RDX/AP/HTPB推进剂燃烧性能的作用.含能材料1996,4(2):80-84.
    [83]. Eric Petersen, Jennifer Small, Matthew Stephens, Jason Arvanetes, Sudipta Seal, Deshpande Sameer. Burn rate sensitization of solid propellants using a nano-titania additive. US patent:7,931,763 B2,2011.
    [84]. Xu H., Wang X., Zhang L. Selective preparation of nanorods and micro-octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder. Technol.2008,185:176-180.
    [85]. 马振叶,李凤生,崔平,白华萍.纳米Fe203的制备及其对高氯酸铵热分解的催化性能.催化学按2003,24(10):795-798.
    [86]. 张汝冰,刘宏英,李凤生.含能催化复合纳米材料的制备研究.兵器材料科学与工程1999,22(5):27-32.
    [87]. 刘建民.金属氧化物/炭复合纳米燃速催化剂及应用研究[博士毕业论文].江苏南京,南京理工大学,2007年.
    [88]. 顾克壮,李晓东,杨荣杰.碳纳米管对高氯酸铵燃烧和热分解的催化作用.火炸药学按2006,29(1):48-51.
    [89]. 崔平,李凤生,周建,姜炜,杨毅.铜/碳纳米管复合粒子的制备及其对高氯酸铵热分解性能研究.无机材料学报2006,21(2):303-308.
    [90]. 刘建勋,刘永,张小娟,姜炜,王作山,李凤生.纳米NiO/CNTs复合粒子的制备及其对AP和AP/HTPB热分解的影响.推进技术2008,29(1):119-123.
    [91]. 姜炜,刘建勋,刘永,崔平,李凤生.Fe2O3/CNTs复合粒子的制备及其对AP热分解催化性能的影响.固体火箭技术2008,31(1):65-68.
    [92]. Zhang X. J., Jiang W., Song D., Liu J. X., Li F. S. Preparation and catalytic activity of Ni/CNTs nanocomposites using microwave irradiation heating method. Mater. Lett.2008, 62(15):2343-2346.
    [93]. 王乃兴,李纪生.C60的研究进展及其在含能材料方面的应用前景.含能材料 1994,2(4):40-43.
    [94]. 张云怀,欧忠文,李兵,黄宗卿.C60硝基-羟基化合物的合成研究.重庆大学学学报(自然科学版)1998,21(3):127-130.
    [95]. 王乃兴,李纪生.硝基苯类C60衍生物的合成研究.科学通报1995,40(15):1381-1382.
    [96]. 彭汝芳,金波,舒远杰,李鸿波,楚士晋.新型硝基富勒烯衍生物的合成研究.现代化工2006,26(2):4142.
    [97]. Shinde P. D., Salunke R. B., Agrawal J. P. Some transition metal salts of 4, 6-dinitrobenzofuroxan:synthesis, characterization and evaluation of their properties. Prop. Explos. Pyrotech.2003,28(2):77-82.
    [98]. 庞维强,张教强,国际英,张琼方.21世纪纳米技术在固体推进剂中的应用研究.纳米科技2005,2(2):9-14.
    [99].高东磊,张炜,朱慧,刘香翠.纳米铝粉在复合推进剂中的应用.固体火箭技术 2007,30(5):420-423.
    [100]. Meda L., Marra G., Galfetti L., Severini F., Luca L. D. Nano-aluminum as energetic material for rocket propellants. Mater. Sci. Eng., C 2007,27(5-8):1393-1396.
    [101]. Liu L. L., Li F. S., Tan L. H., Li M., Yi Y. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Prop. Explos. Pyrotech. 2004,29(1):34-38.
    [102].赵风起,陈沛,杨栋,李上文,阴翠梅.纳米金属粉对RDX热分解特性的影响.南京理工大学学按2001,25(4):420-423.
    [103]. Duan H. Z., Lin X. Y., Liu G. P., Xu L., Li F. S. Synthesis of Co nanoparticles and their catalytic effect on the decomposition of ammonium perchlorate. Chin. J. Chem. Eng.2008, 16(2):325-328.
    [104].王永寿,戴耀松.二茂铁衍生物极细高氯酸铵系高燃速复合推进剂的研究(2).飞航导弹 1995,4:39-44.
    [105].刘建民,徐复铭,周伟良,朱立勋,巩丽,杨琼芬.少烟复合推进剂用纳米结构Fe2O3催化剂及其催化性能研究.兵工学按2006,27(3):553-557.
    [106].欧海峰,卫芝贤.燃速催化剂在固体推进剂中的应用研究.群技情报开发与科技2006,16(9):168-170.
    [107].张海燕.改性双基低特征信号推进剂研究进展.固体火箭技术2000,23(2):36-38.
    [108].张晓宏,莫红军.下一代战术导弹固体推进剂研究进展.火炸药学报 2007,30(1):24-27.
    [109]. Zhang W., Zhu H., Xue J. Action of new multi-functional additives in AP/HTPB propellant. AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,33rd, Seattle, WA; United States; 6-9 July 1997.
    [110]. Zheng M., Wang Z. S., Wu J. Q., Wang Q. Synthesis of nitrogen-doped ZnO nanocrystallites with one-dimensional structure and their catalytic activity for ammonium perchlorate decomposition. J. Nanopart. Res.2010,12:2211-2219.
    [111]. Liu T., Wang L., Yang P., Hu B. Preparation of nanometer CuFe2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate. Mater. Lett.2008,62:4056-4058.
    [112]. Zhang L., Zhang W., Zhong H., Lu L., Yang X., Wang X. Synthesis and characterization of KNd2T3sO9.5 nanocrystal and its catalytic effect on decomposition of ammonium perchlorate. Mater. Chem. Phys.2011,125:322-325.
    [113]. Wang Y., Zhu J., Yang X., Lu L., Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim Acta.2005,437:106-109.
    [114]. Survase D.V., Gupta M., Asthana S. N. The effect of Nd2O3 on thermal and ballistic properties of ammonium perchlorate based composite propellants. Prog. Cryst. Growth Charact. Mater.2002,45:161-165.
    [115].李凤生,H. Singh,郭效德,H. Shekhar.固体推进剂技术及纳米材料的应用.北京:国防工业出版社,2008.
    [116].杨琼芬,薛卫东,王明玺.丁羟推进剂中燃速催化剂的研究进展.化学推进剂与高分子材料2006,4(2):11-14.
    [117]. Kohga M. Effect of voids inside AP particles on burning rate of AP/HTPB composite propellant. Prop. Explos. Pyrotech.2008,33(4):249-254.
    [118].王建军.新型二茂铁基聚合物的合成、表征、交联反应及性能研究[博士学位论文].浙江杭州,浙江大学,2006年.
    [119].支永刚,董春娥,韩杰,郑维忠,张良辅.手性二茂铁聚酰胺催化剂的合成及应用.化学研究与应用2000,12(4):413-416.
    [120].乔振,侯士聪,边庆花,史雪岩,王敏.1,1'-二茂铁二羧酸及1,1’-二茂铁二羧酸酰氯的合成.化学试剂2003.25(5):299-302.
    [121].马亮.新型含酰胺基和酯基的二茂铁基化合物的合成、性能及应用研究[硕士学位论文].浙江杭州,浙江大学,2011年.
    [122].辜高龙,胡云根,王文明.季戊四醇四苯甲酸酯合成工艺.江西化工2006,(4):177-178.
    [123].俞豪杰.环氧树脂的无机纳米微粒改性、功能化和应用研究[浙江大学博士学位论文].浙江杭州,浙江大学,2006年.
    [124].刘建勋,王作山,姜炜,杨毅,李凤生.纳米Co3O4/CNTs复合粒子的制备及其对AP和AP/HTPB推进剂热分解催化性能的研究.稀有金属材料与工程2007,36(Suppl.3):649-653.
    [125].李纯毅,李赞忠,付渊.红外光谱在二茂铁类化合物中的应用.内蒙固石油化工2007,12:27-29.
    [126].边占喜,赵庆华.双(烷基二茂铁基)丙烷的合成及其燃速催化性质.应用化学2004,21(9):923-927.
    [127].刘万毅,袁耀锋,张凌云,王积涛.烷基桥联双二茂铁衍生物的取代基效应与电化学性质的研究.高等学校化学学报1998,19(8):1251-1255.
    [128]. Atzkern H., Huber B., Koehler F., Mueller G., Mueller R. Rigid bent bridges between cyclopentadienyl metal fragments. Iron derivatives of the 4,8-ethano-2,4,6,8-tetrahydro-s-indacene-2,6-diyl dianion. Organomet.1991,10(1):238-244.
    [129].林展如.金属有机聚合物.1987,成都:成都科技大学出版社.
    [130].杨雪芹,王斌,刘所恩,郭新俊.炭黑对硝胺改性双基推进剂燃烧性能的影响.含能材料 2004,12:408-410.
    [131].卢振明,赵东林,沈曾民.固体推进剂中的炭材料.炭素技术2004,23(1):40-44.
    [132]].赵凤起,李上文,陈沛.三种碳物质对RDX-CMDB推进剂热分解的影响.固体火箭技术 2000,23(2):39-43.
    [133].王泽山,欧育湘,任务正.火炸药科学技术.2002,北京:北京理工大学出版社.
    [134].杨强.聚合物接枝炭黑的制备、表征及性能的研究[博士毕业论文],浙江杭州,浙江大学,2007年.
    [135]. Kong H., Gao C., Yan D. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc.2004,126(2):412-413.
    [136]. Qin S., Qin D., Ford W. T., Resasco D. E., Herrera J. E. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules.2004,37:752-757.
    [137]. Jin Y., Gao C., Kroto H., Maekawa T. Polymer-grafted carbon spheres by surface-initiated atom transfer radical polymerization. Macromol. Rapid, Commun.2005,26:1133-1139.
    [138]. Yang Q., Wang L., Xiang W., Zhou J., Tan Q. Preparation of polymer-grafted carbon black nanoparticles by surface-initiated atom transfer radical polymerization. J. Polym. Sci., Part A:Polym. Chem.2007,45(15):3451-3459.
    [139]. Li W., Xie Z., Li Z. Synthesis, characterization of polyacrylate-g-carbon black and its application to soap-free waterborne coating. J. Appl. polym. Sci.2001,81(5):1100-1106.
    [140]. Tsubokawa N., Ohshima S., Sone Y, Endo T. Cationic ring-opening transfer polymerization of spiro ortho esters initiated by carbon black. J. Appl. Polym. Sci.1987, 25(3):935-943.
    [141].范瑞兰,边占喜,李保国.某些二茂铁丙烯酰胺的结构与红外光谱特征.光谱学与光谱分析2003,23(5):866-869.
    [142]. Matyjaszewski K., Xia J. Atom transfer radical polymerization. Chem. Rev.2001,101(9): 2921-2990.
    [143].田德余.碳笼C60的研究进展及其在固体推进剂中的应用前景.国防科技参考1995,16(4):5-10.
    [144].张伟,李吉祯,孙育坤,樊学忠.铜盐和碳黑对微烟NEPE推进剂燃烧性能的影响.火炸药学报 2005,28(3):27-30.
    [145].李秀秀,李晓东,杨荣杰.碳纳米管/高氯酸铵复合粒子的制备与性能研究.含能材料2004,12[A01):143-146.
    [146].刘翔,洪伟良,赵凤起,田德余,张金霞,李启舜.CuO/CNTs复合催化剂的制备及对FOX-12热分解的催化性能.固体火箭技术2008,31(5):508-511.
    [147]. Landis E. C., Hamers R. J. Covalent grafting of ferrocene to vertically aligned carbon nanofibers:electron transfer processes at nanostructured electrodes, J. Phys. Chem. C. 2008,112:16910-16918.
    [148]. Federico Pepi., Alessandra Tata, Stefania Garzoli. Chemically modified multiwalled carbon nanotubes electrodes with ferrocene derivatives through reactive landing. J. Phys. Chem. C.2011,115:4863-4871.
    [149]. Yu J. Electron transfer characteristics of ferrocene attached to single walled carbon nanotubes arrays directly anchored to silicon(100). Electrochim Acta 2007,52:6206-6211.
    [150].沈曾民,张文辉,张学军.活性炭材料的制备与应用.2006,北京:化学工业出版社.
    [151]. Berber, Savas, Kwon Young-Kyun, Tomanek David. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett.2000,84:4613-4616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700