用户名: 密码: 验证码:
规模化猪场粪污细菌总DNA DGGE指纹图谱及耐药性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
养殖粪污中细菌等微生物的种类、数量、存活时间及其耐药性等直接关系到生态环境保护、人与动物的健康。养殖粪污作为丰富的耐药基因库,在细菌及其耐药性的传递、保有、转归等多个环节具有重要作用,而养殖粪污耐药基因的传递与转归也并不总是依赖活细菌或可培养细菌;猪场粪污中含有丰富的可培养及不可培养细菌类群,其细菌类群随环境综合因素复杂变化而变化,因而其细菌及其耐药性研究较困难;已有研究以细菌培养及其药敏筛选方法为主,难以准确获取猪场粪污中的细菌及其耐药基因信息,因此开展规模化猪场粪污总DNA指纹图谱及其耐药性研究有重要意义。本试验研究针对规模化养猪生产中以沼气为纽带的循环利用系统的粪污处理主流模式,以规模化猪场粪污总DNA为主要研究对象,采用PCR-DGGE、multi-PCR等现代分子生物学及生物信息学分析方法开展研究,取得了以下结果:
     1 PCR-DGGE用于猪场粪污细菌群落分析的方法优化
     针对猪场粪污总DNA样品,以变性梯度凝胶电泳(PCR-DGGE)方法为研究对象,对基于16S rDNA V3区的PCR-DGGE电泳的最佳变性剂梯度范围、电泳时间、染色时间进行了优化。研究结果表明:最佳变性剂梯度范围为35%-60%,电泳时间为12h, SYBR? Green Fluorescent Dye染料的染色时间是30min,优化后的PCR-DGGE确保了实验的准确性、灵敏度和可重复性。运用此优化后的PCR-DGGE技术对5个猪粪样品及5份粪污样品的细菌群落进行了研究,获得了清晰的多样性分离条带,表明优化后的PCR-DGGE方法适合于猪场粪污的细菌多样性研究。该研究首次优化了用于猪场粪污细菌多样性分析的DGGE检测方法,为深入研究养殖粪污治理的菌群多样性相关研究奠定了基础。
     2猪场粪污细菌总DNA的细菌多样性PCR-DGGE分析
     取得嘉陵江上游连续分布的5个猪场的出粪口(A)→沼气池(B)→氧化塘(C)→地表水(D)→地下水(E)依次5个主要粪污处理环节的25份粪污样品,采用优化的DGGE方法进行了细菌多样性分析。结果表明:1号猪场1 E条带数最多、为17条,1A与1E菌群差异性较大、为91.5%,1E与1D菌群差异性较小为55.2%;2号猪场2E条带数最多、约9条,2A与2B菌群差异性较大、为85.0%,2A与2E菌群差异性较小、为48.5%;3号猪场3A条带数最多、约12条,3A与3D菌群差异性较大、为75.7%,3A与3B菌群差异性较小、为42.6%;4号猪场4A条带数最多、约7条,4A与4E菌群差异性较大、为85.5%,4A与4B菌群差异性较小、为47.6%;5号猪场5A条带数最多、约7条,5A与5E菌群差异性较大、为76.4%,5A与5C菌群差异性较小、为68.9%。经DGGE优势条带回收及序列鉴定,不可培养细菌是粪污样品中的优势菌。该研究首次采用DGGE方法对猪场粪污菌群多样性进行了研究,证实规模化猪场的粪污中细菌多样性在沿河连续分布猪场之间及依次处理环节间菌相无明显关联,为猪场控制抗生素残留、粪污治理的技术标准化及养殖适度规模的量化提供了科学资料。
     3猪场粪污细菌总DNA中菌群16S rDNA文库的构建
     对5个猪场的依次5个主要粪污处理环节的25份粪污样品,通过PCR扩增全长16S rDNA,获得了106条有效克隆,序列平均长度约为1400bp,构建了粪污菌群16S rDNA文库。通过生物信息学分析,依据97%的相似性原则。结果表明,粪污菌群16S rDNA文库中包括葡萄球菌(Staphylococcus)、大肠杆菌(E. coli.)、气单胞菌(A. viscosus)、亚硝化球菌(Nitrosococcus)等可培养细菌,以及大量不可培养细菌构成的优势菌群;近60%的克隆序列与Genbank中已知序列的同源性低于97%,表明其可能是新的或未识别的菌种;所构文库的覆盖率约为73.6%。本研究首次构建了猪场粪污的细菌菌群16S rDNA文库,为深入研究猪场粪污微生物的结构组成及粪污处理菌种的筛选与开发利用提供了科学素材。
     4猪场粪污细菌总DNA中的4类抗生素耐药基因调查
     针对25份粪污样品,采用细菌对氯霉素类药物耐药基因三重PCR检测试剂盒、细菌对氨基糖苷类药物耐药基因四重PCR检测试剂盒、细菌对磺胺类药物耐药基因三重PCR检测试剂盒及动物源细菌对四环素类药物耐药基因三重PCR检测试剂盒对猪场粪污总DNA进行规模化猪场常用抗菌素的耐药基因检测。结果表明:耐氯霉素类药物的cmlA、flor及cat1基因检出率分别为32%、60%和40%,耐四环素类药物的tet A, tet M及tet C基因检出率分别为60%、60%和56%,耐磺胺类药物的Sul 1、sul2及sul 3基因检出率分别为80%、76%和32%,耐氨基糖苷类药物的aph (3')-IIa、aac (6')- Ib, aac (3)-IIa及ant (3")-Ia基因检出率分别为58%、96%、64%与96%。在猪场粪污灌溉利用之前的粪污处理环节中,氯霉素类、四环素类、磺胺类及氨基糖苷类抗菌素耐药基因检出率100%。而氯霉素类、四环素类药物耐药基因在经过灌溉农田后出现了显著消除、地下水中无检出,磺胺类和氨基糖苷类抗菌素耐药基因在经过灌溉农田后出现了未被显著消除、地下水中检出率90%以上。本试验首次对猪场粪污细菌总DNA进行了抗生素耐药基因的multi-PCR检测,提示猪场粪污中氯霉素类、四环素类、磺胺类及氨基糖苷类抗菌素耐药基因普遍存在,灌溉农田利用可能是抗菌素耐药基因消除重要的方式之一。
     5猪场粪污中大肠杆菌和葡萄球菌的分离鉴定及其耐药性研究
     针对25份粪污样品,进行了粪污样品中的大肠杆菌与葡萄球菌的分离鉴定、对18种常用抗生素耐药表型K-B法筛选及4类抗生素的耐药基因型multi-PCR检测。结果表明:猪场粪污中大肠杆菌分离率为44%,对常用抗菌素以多重耐药为主,对氯霉素类、四环素类、磺胺类、氨基糖苷类等常用抗菌素耐药基因携带率>94%;葡萄球菌的分离率64%,高于大肠杆菌,规模化养猪生产中常用抗菌素也以多重耐药为主,氯霉素类、四环素类、磺胺类、氨基糖苷类等常用抗菌素耐药基因携带率高,均超过90%。本研究结果与其他环境样品的大肠杆菌分离率及耐药性研究结果基本一致。这提示在猪场粪污中细菌耐药表型及耐药基因型的存在都较普遍,需要注重抗生素的合理使用。首次证实了葡萄球菌在猪场粪污中的分离率及耐药基因携带率都高,因此提示葡萄球菌可能作为猪场粪污治理工艺及耐药基因行为研究的一个重要生物指示器。
     通过对猪场粪污样品的上述研究,探索了猪场粪污中细菌群落及其耐药性的存在、传播、转归及对人畜健康的潜在危害等,为猪场粪污致病菌、耐药基因控制及粪污治理工艺标准化积累了重要科学资料。
Presently, the biological and physical variable of microflora in pig manure is not clear yet. In this study, denaturing gradient gel electrophoresis was optimized in the running parameters including level electrophoresis, electrophoresis time and dying time, respectively. The optimized DGGE method was subsequently performed to analyze the diversity of the manure samples from 5 main running scenorios of 5 pig farms distributed along Jialing River. And then, bacterial 16S rDNA clone library of corresponding manures was established. Moreover, antibiotics resistance genes in microbial community DNA extracted from manure samples were amplified by using multiplex PCR detection kit of 4 different antibiotics resistance genes in bacteria isolated from animals. What's more, it's also concerned with isolation of antibiotics resistance detection of Staphylococcus and E.coli. from the manure samples.
     This research will benefit further study on wide microbial diversity, manure management practices, inestimable number of combinations of potential pathogen fates in environment, and environmental factors that influence the presence, persistence, survival, and transport of pathogens.
     1. Optimization of denaturing gradient gel electrophoresis for bacterial communities in manure from pig farm
     Ploymerase chain reaction and denaturing gredient gel electrophoresis (PCR-DGGE) technique was used to reveal the bacterial community composition and diversity associated with manure from pig farm. In order to improve the accuracy, sensitivity and repeatability of DGGE based on 16S rDNA V3 region, the running parameters of DGGE were optimized by level electrophoresis, electrophoresis time and dying time, respectively. The results showed that the best range of denaturing gradients was 35-60% in 8% polyacrylamide gels, running time was 12 hours, and the dying time was 30 min using SYBR Green Fluorescent Dye. Furthermore, bacterial communities from 5 excrement samples and 5 slurry samples were also performed by using these optimized reaction conditions. It was found that 10 manure samples exhibited effective separation and rich microbial diversity. This revealed that different manure samples result in the distinct changes of microbial diversity and microbial community structure. PCR-DGGE is proven to be a powerful tool for describing the bacterial flora in manure from pig farms.
     2. Study on the bacterial abundance of manure sample in pig farms using DGGE
     Denaturing gradient gel electrophoresis (DGGE) technology was used in studying the diversity of manure samples from 5 main running scenario of 5 pig farm continuously distributed along Jialing River. The detection result showed that the abundance of manure samples was not very rich, while the DGGE bands of manure samples were around 10 respectively. And as for the bacteria diversities and community, there is no positive relationship among the same scenario of difference pig farms, the successive scenario in the same pig farm, and the pig farm distributing along the same river. Furthermore, after recovery and identification the bands from DGGE profiles, the results revealed that above 70% recovery band were Staphylococcus, Escherichia coli and uncultured microorganisms. Therefore, it could be concluded that Staphylococcus, Escherichia coli and uncultured microorganisms were the majority of bacterial species in manure from pig farms.
     3. Generation and characterization of 16S rDNA library of the manure form pig farms
     Bacterial 16S rDNA clone library of manure form pig farms was constructed in this research. From cloned PCR products,200 randomly-selected clones containing inserts were sequenced. After removing the vector sequence and trimming the poor-quality sequences, we obtained 106 qualified sequences, with an average length of approximately 1400bp. Tentative annotations were performed by using BLASTX and results were manually validated. According to comparison analysis, Escherichia coli,Staphylococcus and Pseudomonas were the main species. The Homology analysis could be not more than 97% between 50% of 16S rDNA sequences and known DNA sequences in GenBank. It showed that there may be a new bacteria or species. The result indicated that diversiform bacteria maybe exist in manure form pig farms.
     4. Detection of antibiotics resistance genes in the microbial community DNA extracted from the manure of pig farms
     The antibiotics resistance genes were amplified in microbial community DNA extracted from 25 manure samples from 5 main running scenario of 5 pig farm distributed along Jialing R;ver by using multi-PCR detection kit of Choramphenicols resistance genes in animal original bacteria, the multi-PCR amplification kit of bacteria Aminoglycoside-resistance genes detection, the multi-PCR detection kit of Sulfonamides-resistance genes in bacteria isolated from animals and the multi-PCR detection kit of Tatracycline-resistance genes in bacteria isolated from animals. The result showed that the integrative detection rate of the antibiotics resistance genes from the sewage outlet, biogas pool and oxidation pond is 100%. The antibiotics resistance genes of Choramphenicols and Tatracyclines decreased remarkably after land application, and there was no antibiotics resistance genes detection in underground samples. On the other hand, the fertilization had poor effect on the elimination of the antibiotics resistance genes of Sulfonamides and Aminoglycosides, and the detection rate was above 90% yet in under ground water. It indicated that the resistance genes of often-used antibiotics spread universally, such as Choramphenicols, Tetracycline, Sulfonamides and Aminoglycosides. Furthermore, land application may be a most important scenario of reducing the antibiotics resistance genes.
     5. Isolation and antibiotics resistance gene detection of Staphylococcus and E.colL in the manure from pig farms
     This research was concerned with isolation of antibiotics resistance detection of Staphylococcus and E.coli. from 25 manure samples. The result indicated that the isolation rate of E.coli. was 44% in 25 manure samples, the integrative detection rate of drug-resistance genes of Choramphenicols, Tetracycline, Sulfonamides and Aminoglycosides was respectively 82%,100%,100% and 100%. The isolation rate of Staphylococcus was 64% in the manure of pig farms, the integrative detection rate of drug-resistance genes of Choramphenicols, Tetracycline, Sulfonamides and Aminoglycosides was 94%,94%,100% and 100% respectively. The research result indicated that Staphylococcus and E.coli. were commonly found in manure from pig farms, and they might be a important preserver of antibiotics resistance genes in the agricultural environment, and the reasonable application of antibiotics could be obtained special attention in the livestock production process. Moreover, Staphylococcus could be a candidate bacteria indicator similar to E.coli. for manure management of livestock production.
引文
1. 林代炎,叶美锋,吴飞龙,等.规模化养猪场粪污循环利用技术集成与模式构建研究[J].农业环境科学学报,2010,29(2):386-391.
    2. 李长生,王应宽.集约化猪场粪污处理工艺的研究[J].农业工程学报,2001,17(1):86-90.
    3. 覃舟,徐钢UASB能源生态型沼气工程与畜禽养殖场污水的处理利用[J].农业环境科学学报,2007,(10):427-429.
    4. 杨少海,李文英,彭智平,等.规模化猪场污染治理及资源化利用技术规程[J].广东农业科学,2010,7(11):85-87.
    5. 高增月,杨仁全,程存仁.规模化养猪场粪污综合处理的试验研究[J].农业工程学报,2006,22(2):198-200.
    6. 钱靖华,田宁宁,任远.规模化猪场粪污治理存在的问题及对策[J].中国畜牧杂志,2006,42(20):587-592.
    7. 高茹英,林聪,王平智,等.养猪场粪污水生物处理工艺技术研究[J].农业环境科学学报,2004,23(3):599-603.
    8. 陈方舟,吴飞龙,叶关锋,等.养猪场粪污治理与再利用研究进展[J].福建农业学报,2009,24(5):488-492.
    9. 王远远,刘荣厚.沼液综合利用研究进展[J].安徽农业科学,2007,35(4):1089-1091.
    10. Prapaspongsa T., PoulsenT. G., HansenJ. A., Christensen. Energy production, nutrient recovery and greenhouse gas emission potentials from integrated pig manure management systems [J]. Waste Manag Res.2010,28(5):411-422.
    11.刘明轩,杜启云,王旭.USR在养殖废水处理中的实验研究[J].天津工业大学学报,2007,26(6):36-38.
    12.应三成,吕学斌,何志平,等.四川猪场粪污处理与利用方式效果的示范观测[J].四川畜牧兽医,2010,6:23-25.
    13.陆梅,毛玉荣,杨康林,等.沼液沼渣的利用[J].农技服务,2007,24(5):37-39.
    14.邓良伟,陈子爱,袁心飞.规模化猪场粪污处理工程模式与技术定位[J].养猪,2008,6:21-25.
    15.王景成,杨秋凤,周佳萍,等.利用沼气工程实现规模养猪业可持续、循环发展[J].饲料工业,2010,31(11):52-55.
    16.林代炎,姚宝全,林琰,等.4种分离机械对规模化猪场污水处理效果研究[J].中国农学通报,2005,21(6):427-429.
    17.徐洁泉.规模畜禽场沼气工程发展和效益探讨[J].中国沼气,2000,18(4):27-30.
    18. Turnbaugh PJ, Ley RE, Michael A, et al. An obesity-associated gutmicrobiome with increased capacity for energy harvest [J]. Nature,2006,444(7122):1027-1031.
    19.杨菁,林代炎,叶美锋,等.猪粪堆肥栽培黑木耳及其品质分析[J].菌物学报,2005,24(增刊):187-193.
    20.叶美锋,张玉莲,林代炎.规模化养猪场污水处理工程实例分析[J].中国沼气,2008,26(1):30-36.
    21. Muyzer G, Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA [J]. Appl Environ Microbiol,1993, 59:695-7001.
    22. Deng W, Xi D, Mao H, et al. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies:a review [J]. Mol Biol Rep, 2008,35(2):265-74.
    23. Frantzen MA, Silk JB, Ferguson JW, et al. Empirical Evaluation of Preservation Methods for Faecal DNA [J]. Mol Ecol,1998,7:1423-1428.
    24. Alexandra L M, Michelle JS, Bird AR. A comparison of five methods for extraction of bacterial DNA from human faecal samples [J]. Journal of Microbiological Methods, 2002,50:131-139.
    25.哩申剑,张宝让,魏华.三种粪便总DNA提取方法的比较[J].中国微生态学杂志,2008,20(1):28-35.
    26.刘艳华,张明海.马鹿粪便样品保存方法对DNA提取质量的影响[J].东北林业大学学报,2006,34(2):67-69.
    27. Rouhibakhsh A, Priya J, Periasamy M, et al. An improved DNA isolation method and PCR protocol for efficient detection of multicomponents of begomovirus in legumes [J]. Journal of Virological Methods,2008,147:37-42.
    28. Yu Zhongtang and Mark Morrison. Comparisons of Different Hypervariable Regions of rrs Genes for Use in Fingerprinting of Microbial Communities by PCR-Denaturing Gradient Gel Electrophoresis [J]. Appl Environ Microbiol,2004,4800-4806.
    29. Suzuki MT, Giovannoni SJ. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR [J]. Appl Environ Microbiol,1996,62:625-630.
    30. Deng W, Xi D, Mao H, et al.. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies:a review [J]. Mol Biol Rep, 2008,35(2):265-74.
    31. Reysenbach AL, Giver LJ, Wickham GS, et al.. Differential amplification of rRNA genes by polymerase chain reaction [J]. Appl Environ Microbiol,1992, 58:3417-3418.
    32. Suzuki MT, Giovannoni SJ. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR [J]. Appl Environ Microbiol,1996,62:625-630.
    33. Ercolini D, Hill PJ, Dodd CER. Bacterial community structure and location in Stilton cheese [J]. Appl Environ Microbiol,2003,69:3540-3548.
    34. Fasoli S, Marzotto M, Rizzotti L, et al. Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis [J]. Int J Food Microbiol, 2003,82,59-70.
    35. Nubel U, Engelen B, Fleske A, et al. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis [J]. J Bacteriol,1996,178:5636-5643.
    36. Norris TB, Wraith JM, Castenholz RW, et al. Soil microbial community structure across a thermal gradient following a geothermal heating event [J]. Appl Environ Microbiol,2002,68:6300-6309.
    37. Crump BC, Kling GW, Bahar M, et al. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source [J]. Appl Environ Microbiol,2003,69:2253-2268.
    38. Stamper DM, Walch M, Jacobs RN. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments [J]. Appl Environ Microbiol, 2003,69:852-860.
    39. Gray ND, Miskin IP, Kornilova 0, et al. Occurrence and activity of Archea in areated activated sludge wastewater treatment plants [J]. Environ Microbiol,2002, 4:158-168.
    40.陈桐生,李建军,岑英华.不同pH条件下除臭生物滤池微生物种群结构的分子生态分析[J].微生物学报,2005,45(3):446-450.
    41.傅以钢,王峰,何培松.DGGE污泥堆肥工艺微生物种群结构分析[J].中国环境科学,2005,25(6):98-101.
    42. Gootz TD. The global problem of antibiotic resistance [J]. Crit Rev Immunol.2010, 30(1):79-93.
    43. French GL. The continuing crisis in antibiotic resistance [J]. Int J Antimicrob Agents.2010,36,3:53-57.
    44. Andersson DI, Hughes D. Antibiotic resistance and its cost:is it possible to reverse resistance [J]. Nat Rev Microbiol.2010,8(4):260-271.
    45. Alanis, A J. Resistance to antibiotics:are we in the post-antibiotic era [J]. Arch.Med. Res.2005,36,697-705.
    46. De Pascale G, Wright GD. Antibiotic resistance by enzyme inactivation:from mechanisms to solutions [J]. Chembiochem.2010,11 (10):1325-1334.
    47. Sandoz KM, Rockey DD. Antibiotic resistance in Chlamydiae [J]. Future Microbiol. 2010,5 (9):1427-1442.
    48. Rzewuska K, Korsak D, Ma□Kiw E. Antibiotic resistance of bacteria Campylobacter sp [J]. Przegl Epidemiol.2010:64(1):63-68.
    49. Borg MA, Cookson BD, Zarb P, et al,. Antibiotic Resistance Surveillance and Control in the Mediterranean region:report of the ARMed Consensus Conference [J]. J Infect Dev Ctries.2009,22;3(9):654-659.
    50. Gould IM. Coping with antibiotic resistance:the impending crisis [J]. Int J Antimicrob Agents.2010 36(3):51-52.
    51. Aminov RI. The role of antibiotics and antibiotic resistance in nature [J]. Environ Microbiol.2009,1(12):2970-2988.
    52. McDonald M, Blondeau JM. Emerging antibiotic resistance in ocular infections and the role of fluoroquinolones [J]. J Cataract Refract Surg.2010,36(9):1588-1598.
    53. Wright GD. Antibiotic resistance in the environment:a link to the clinic [J]. Curr Opin Microbiol.2010,13(5):589-594.
    54. Wachino J. Novel molecular mechanisms of antibiotic resistance found in clinically isolated pathogenic bacteria [J]. Nippon Saikingaku Zasshi.2009, 64(2-4):357-364.
    55. Bulgakova VG, Orlova TI, Polin AN. Resistance of antibiotic-producing actinomycetes to their own antibiotics [J]. Antibiot Khimioter.2010,55(1-2): 42-49.
    56. Davies J, Davies D. Origins and evolution of antibiotic resistance [J]. Microbiol Mol Biol Rev.2010 Sep;74(3):417-433.
    57. Morar M, Wright GD. The genomic enzymology of antibiotic resistance [J]. Annu Rev Genet.2010,44:25-51.
    58. Patel SJ, Saiman L. Antibiotic resistance in neonatal intensive care unit pathogens:mechanisms, clinical impact, and prevention including antibiotic stewardship [J]. Clin Perinatol.2010,37(3):547-563.
    59. Borras M. Antibiotic resistance in gram-negative peritonitis [J]. Perit Dial Int. 2009,29(3):274-276.
    60. Luangtongkum T, Jeon B, Han J, et al, Antibiotic resistance in Campylobacter: emergence, transmission and persistence [J]. Future Microbiol.2009,4(2): 189-200.
    61.翁伯琦,雷锦桂,江枝和,等.集约化畜牧业污染现状分析及资源化循环利用对策思考[J].农业环境科学学报,2010,29(增刊):294-299.
    62. O'Reilly J, Lee C, Chinalia F, et al. Microbial community dynamics associated with biomass granulation in low-temperature (15 degrees C) anaerobic wastewater treatment bioreactors [J]. Bioresour Technol,2010,101(16):6336-44.
    63. Lee C, Kim J, Shin SG, et al. Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater [J]. Appl Microbiol Biotechnol.2010, 87 (5):1963-73.
    64. Santos TM, Gilbert R0, Bicalho RC. Metagenomic analysis of the uterine bacterial microbiota in healthy and metritic postpartum dairy cows [J]. J Dairy Sci. 2011,94(1):291-302.
    65. JAbell GC, Christophersen CT, McOrist AL, et al. Dietary resistant and butyrylated starches have different effects on the faecal bacterial flora of azoxymethane-treated rats [J]. Br J Nutr,2011,24:1-6.
    66.曾志光,王红宁.猪粪样DNA提取方法的比较[J].中国兽医杂志,2009,45(8):17-19
    67. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Antonie van Leeuwenhoek,1998,73:127-141.
    68. Holmfeldt K, Dziallas C, Titelman J, et al. Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea [J]. Environ Microbiol.2009,11(8):2042-54.
    69. Deng W, Xi D, Mao H, Wanapat M. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies:a review [J]. Mol Biol Rep, 2008,35(2)-.265-274.
    70. Xing D F, Ren NQ, GongML, et al. Succession of bacterial community structure in biohydrogen producing reactor as monitored using denaturing gradent gel electrophoresis [J]. Sci. China(Ser. C),2005,48 (2):155-162.
    71. Zhou S, Wei C, Ke L, et al. PCR-DGGE as a supplemental method verifying dominance of culturable microorganisms from activated sludge [J]. J Microbiol Biotechnol. 2010,20 (11):1592-1596.
    72. Shen SM, Hwang HY, Fang HY. Tracking biological pollution sources using PCR-DGGE technology at Ta-An Beach [J]. Water Sci Technol.2010,62(10):2235-2245.
    73. Mrazek J, Koppova I, Kopecny J, et al. PCR-DGGE-based study of fecal microbial stability during the long-term chitosan supplementation of humans [J]. Folia Microbiol (Praha).2010,55 (4):352-358.
    74.邢德峰,任南琪,宋佳秀,等.不同16S rDNA靶序列对DGGE分析活性污泥群落的影响[J].环境科学,2006,7(7):1424-1428.
    75.宋业颖,赵丽华,邢德峰,等.利用时间进程法优化活性污泥DG-DGGE图谱[J].生物技术,2006,.16(2):43-45.
    76. Song Z, Pan Y, Zhang K, et al. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge [J].J Environ Sci,2010,22(9): 1312-1318.
    77.黄灿,唐新燕,彭绪亚,等.猪粪尿中添加不同底物对挥发性脂肪酸和本土菌群的影响研究[J].农业环境科学学报,2009,28(2):388-392.
    78.李可俊,管卫兵,徐晋麟,等.PCR-DGGE对长江河口八种野生鱼类肠道菌群多样性的比较研究[J].中国微生态学杂志,2007,19(3):268-272.
    79.李涛,王鹏,汪品先.南海西沙海槽表层沉积物微生物多样性Ⅲ[J].生态学报,2008,28(3):1166-1173.
    80.刘敏,朱开玲,李洪波,等.应用PCR—DGGE技术分析黄海冷水团海域的细菌群落组成[J].环境科学,2008,29(4):1082-1091.
    81.郭艳,张进良,邓昌彦,等.猪粪堆肥升温期细菌分子生态学研究[J].河南农业科学,2010,9:74-82.
    82.赵继红,何淑英,李继香,等PCR-DGGE分析啤酒废水生物处理工艺的微生物区系[J].环境科学,2008,10:2950-2955.
    83.徐彦胜,阮志勇,刘小飞,等.应用RFLP和DGGE技术对沼气池中产甲烷菌多样性的研究[J].西南农业学报,2010,23(4):1319-1325.
    84. Y, LiF, ZhangX, QinS, etal. Vertical distribution of bacteria land archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise [J]. Extremophiles,2008,12:573-585.
    85. Cole JR, Q Wangl, E Cardenas, et al. The Ribosomal Database Project:improved alignments and new tools for rRNA analysis [J]. Nucleic Acids Research,2009, 37:141-145.
    86. Paul B Eckburg, Elisabeth M B, Charles N B, et al. Diversity of the Human Intestinal Microbial Flora [J]. Science,2005,308(5728):1635-1638.
    87. Julie C F, Jessica M R, Alice N P, Jet al. Fecal Bacterial Diversity in a Wild Gorilla [J]. Appl Environ Microbiol,2006,3788-3792.
    88.图雅,朱伟云,陆承平.东北虎粪细菌区系的16S rRNA基因序列分析[J].微生物学报,2005,45(5):671-674.
    89.倪学勤,Joshua Gong, Hai Yu, et al采用PCR-DGGE技术分析蛋鸡肠道细菌种群结构及多样性[J].畜牧兽医学报,2008,39(7):955-961.
    90. Gong J, Weiduo Si, Forster RJ, et al.16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gast-rointestinal t racts:from crops to ceca [J]. FEMS Microbiol Ecol,2007, 59:147-157.
    91. Bjerrum L, Engberg RM, Leser TD, et al. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques [J]. Poult Sci,2006,85(7):1151-1164.
    92. Kim DH, Brunt J, Austin B. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss) [J]. J Appl Microbiol,2007, 102(6):1654-1664.
    93. Leser TD, Amenuvor JZ, Jensen TK, et al. Culture-independent analysis of gut bacteria:the pig gastrointestinal tract microbiota revisited [J]. Appl Environ Microbiol,2002,68(2):673-690.
    94. Uthicke S. McGuire K. Bacterial cOmmunities in Great Barrier Reef calcareous sediments:Contrasting 16S rDNA libraries from nearshore and outer shelf reefs [J]. Estuar Coast Shef Sci,2007,72:188-200.
    95. Caplin, J. L., Hanlon, G. W., Taylor, H. D., Presence of vancomycin and ampicillin-resistant Enterococcus faecium of epidemic clonal complex-17 in wastewaters from the south coast of England [J]. Environ. Microbiol,2008,10: 885-892.
    96. Cordova-Kreylos, A. L., Scow, K. M., Effects of ciprofloxacin on salt marshsediment [J]. microbial communities. ISME,2007,1,585-595.
    97. Peak, N., Knapp, C. W., Yang, R. K., et al, Abundance of six Tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies [J]. Environ. Microbiol,2007,9:143-151.
    98. Adam C Palmer, Elaine Angelino, Roy Kishony. Chemial decay of an antibiotic inverts selection for resistance [J]. Natural Chemical Biology,2010,6(3): 244-244.
    99.王红宁,畜禽规模化养殖主要病原菌耐药性检测及控制技术研究进展[J].畜牧兽医科技信息,2002,(9):12-15.
    100. LK Durham, M Ge, A J Cuccia, et al. Modeling antibiotic resistance to project future tates:quinolone resistance in Escherichia coli [J]. European Journal of Clinical Microbiology and Infectious Disease,2010,29(3):353-356.
    101.王俊红.山东省猪源致病性沙门氏菌的分离鉴定与耐药性分析[D].济南:山东农业大学,2008.
    102. Daly K, Stewart CS, Harry J Flint, Set al. Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes [J]. FEMS Microbiol Ecol,2001,38:141-151.
    103.羊云飞,王红宁,谭雪梅,等.二重PCR检测猪、鸡源致病性大肠杆菌、沙门氏菌磺胺类耐药基因(Sull、Sul2、Sul3)的研究[J].畜牧兽医学报2007,38(10):1088-1092.
    104.张纯萍,宁宜宝,宋立.健康鸡猪体内大肠杆菌对四环素的耐药性及耐药基因分布[J].中国农业科学.2010,43(12):2578-2583.
    105.陆佳,李一经.东北部分地区猪链球菌对四环素类药物耐药机制的研究[J].黑龙江畜牧兽医,2010,(1):11-13.
    106. Virve I. Enne, Peter M.Bennett, David M. Livermore, et al. Enhancement of host fitness by the sul2-coding plasmid p9123 in the Absence of selective pressure [J]. Journal of Antimicrobial Chemotherapy,2004,53:958-963.
    107.Anette M. Hammeruma, Dorthe Sandvanga, Sigrid R. Ander—senb, et al. Detection of sull, sul2 and sul3 in sulphonamide resistant Escherichia coli isolates obtained from healthy humans, pork and pigs in Denmark [J]. nternational Journal of Food Microbiology,2006,106:235-237.
    108. Glynn MK, BoppC, Dewitt et al. Emergence of multidrug resistant Salmonella enierica serotype Typhmurium DT104 infections in the United States [J]. N Eng J Med,1998, 338:1333-1338.
    109.Halnmerum A M. Deteetion of sull, sul2 and sul3 in sulPhonamide resistant Escherichia coli isolates obtained from healthy humans, Pork and pigs in Demark [J]. Int J Food Microbiol.,2006, Feb 1:106(2):235-237.
    110.陈杖榴,吴聪明,蒋红霞,等.兽用抗菌药物耐药性研究概况[J].四川生理科学杂志,2005,27(4):177-180.
    111.姜中其,陈晓红,方维焕,等.规模化猪场仔猪断奶腹泻大肠杆菌耐药性监测浙江大学学报(农业与生命科学版)[J],2004,30(5):567-571.
    112.王丽平,陆承平.32种抗菌药物对临床分离猪源链球菌的体外抗菌[J].微生物学报,2004,44(6):794-799.
    113. Minowa N, Akiyama Y, Hiraiwa Y, et al. Synthesis and antibacterial activity of novel neamine derivatives [J]. Bio org Med Chem Lett, 2006,16(24):6351-6359.
    114. Chittapragada M, Roberts S, Ham YW. Aminoglycosides:molecular Insights on the recognitionof RNA and aminoglycoside mimics [J]. Perspect Medicin Chem, 2009,28(3):321-327.
    115.汤景元,王红宁,张鹏举,等.95个猪场大肠杆菌耐药表型及氨基糖苷类药物耐药基因型调查[J].畜牧兽医学报,2008,39(4):472-477
    116.陈琳,刘健华,张俊丰,等.猪肠道菌氨基糖苷类药物耐药基因分析[J].畜牧兽医学报 2009,40(7):1088-1096.
    117. Edge, T. A., Hill, S. Occurrence of antibiotic resistance in Escherichia coli from surface waters and fecal.pollution sources near Hamilton, Ontario [J]. Can. J. Microbiol.2005.51,501-505.
    118.Pruden, A., Pei, R., Storteboom, H., et al,, Antibiotic resistance genes as emerging contaminants:studies in northern Colorado [J]. Environ. Sci. Technol. 2006.40:7445-7450.
    119. P. Feng, S.Weagant, M. Grant. Bacteriological Analytical manual (8th ed.). FDA/ Center for Food Safety & APPlied Nutrition,2007.
    120. Kozak G K, Boerlin P, Janecko N, et al., Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada [J]. Applied and Environmental Microbiology,2009,75(3):559-566.
    121.Sawant A A, Hegde N V, Straley B A, et al., Antimicrobial-resistant enteric bacteria from dairy cattle [J]. Applied and Environmental Microbiology,2007, 73(1):156-163.
    122.刘小云,舒为群,邱志群,等.环境中耐热大肠菌群的抗生素耐药性与质粒谱研究[J].应用与环境生物学报.2006,12(1):118-121.
    123.张纯萍,宁宜宝,宋立.健康鸡猪体内大肠杆菌对四环素的耐药性及耐药基因分布[J].中国农业科学.2010,43(12):2578-2583.
    124.Donham, K. J. Association of environmental air contaminants with disease and productivity in swine [J]. Am J Vet Res.,2009,52(10):1723-1730.
    125. Ren, P., Jankun, T. M., Belanger, K., et al., The relation between fungal propagules in indoor air and home Characteristics [J]. Allergy,2001,56:419-424.
    126.陶秀萍,董红敏.畜禽养殖废弃物资源的环境风险及其处理利用技术现状[J].现代畜牧兽医,2009,(11):34-38.
    127. HolzeI CS, SchwaigerK, Harms K, et al. Sewage sludge and liquid pigmanure as possible sources of antibiotic resistant bacteria [J]. Environmental Research, 2010,110(4):318-326.
    128. Klaus Kummerer. Antibiotics in the aquatic environment - A review - Part II [J]. Chemosphere,2009,75:435-441.
    129. Christina S. Holzel, Karin Schwaiger, Katrin Harms. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria [J]. Environmental Research, May 2010,110(4):318-326.
    130.曾志光PCR-DGGE研究猪肠道菌群的多样性及荣昌猪肠道菌群16S rDNA文库构建与分析[学位论文].成都,四川大学,2010.
    131.杨鑫.细菌氯霉素类药物耐药基因三重PCR检测试剂盒研制[学位论文]. 雅安, 四川农业大学,2008.
    132.夏青青.动物源细菌对四环素类药物耐药基因三重PCR检测试剂盒研制[学位论文].雅安,四川农业大学,2008.
    133.周万蓉.细菌对磺胺类药物耐药基因三重PCR检测试剂盒研制[学位论文].雅安, 四川农业大学,2007.
    134.张安云.细菌对氨基糖苷类药物耐药基因四重PCR检测试剂盒研制[学位论文].雅安,四川农业大学,2007.
    135.房海.大肠埃希氏菌[M].河北:河北科技出版社,1997:51-75.
    136. Petersen, S.0., Sommer, S.G., Beline, et al.2007. Recycling of livestock manure in a whole-farm perspective. Livestock Science112,180-191.
    137. Rufino M C., Rowe E C., Delve R J, et al. Nitrogen cycling efficiencies through resource-poor African crop-livestock systems [J]. Agriculture, Ecosystems & Environment,2006,112(4):261-282.
    138. Hutchings, N. J., Sommer, S. G., Andersen, J. M., et al. A detailed ammonia emission inventory for Denmark [J]. Atmospheric Environment,2001.35,1959-1968.
    139. Rotz, C. A. Management to reduce nitrogen losses in animal production [J]. Journal of Animal Science,2004.82 (E. Suppl.):E119-E137.
    140. Lopez-Ridaura, S., van der Werf, H., Paillat, et al. Environmental evaluation of transfer and treatment of excess pig slurry by life cycle ssessment. Journal of Environmental Management [J],2009,90:1296-1304.
    141. Sorensen, C. G., Jacobsen, B. H., Sommer, S. G. An assessment tool applied to manure management systems using innovative technologies. Biosystems Engineering [J], 2003,86 (3),315-325.
    142. Burton JP, Cadieux PA, Reid G. Improved understanding of the bacterial vaginal microbiota of women before and after probiotic instillation [J]. Appl Environ Microbiol,2003,69:97-101.
    143. Rotz, C. A.. Management to reduce nitrogen losses in animal production [J]. Journal of Animal Science,2004,82 (E. Suppl.):119-137.
    144. Trakarn Prapaspongsa, Per Christensen, Jannick H. Schmidt, et al. LCA of comprehensive pig manure management incorporating integrated technology systems. Journal of Cleaner Production [J],2010 (18):1413-1422.
    145. Schluter, A., Szczepanowski, R., Puhler, A., et al. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool [J]. Microbiol. Rev.2007, 31:449-477.
    146. Dantas, G., Sommer, M.0. A., Oluwasegun, R. D., et al. Bacteria subsisting on antibiotics [J]. Science,2008,320:100-103.
    147.Kummerer, K.. Resistance in the environment [J]. J. Antimicrob. Chemoth,2004. 54:311-320.
    148.Kim, S., Aga, D. S. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants [J]. J. Toxicol. Environ. Health B,2007.10:559-573.
    149. Watkinson, A. J., Micalizzi, G. B., Graham, G. M., Bates, J. B., Costanzo, S. D. Antibiotic-resistant Escherichia coli in wastewaters, surface waters, and oysters from an urban riverine system [J]. Appl. Environ. Microb,2007.73: 5667-5670.
    150. Caplin, J. L., Hanlon, G. W., Taylor, H.D. Presence of vancomycin and ampicillin-resistant Enterococcus faecium of epidemic clonal complex-17 in wastewaters from the south coast of England [J]. Environ. Microbiol,2008.10: 885-892.
    151.Vanneste, J. L., Cornish, D. A., Yu, J., Boyd,et al. Isolation of copper and streptomycin resistant phytopathogenic Psedomonas Syringae from lakes and rivers in the central north island of New Zealand [J]. NZ Plant Prot,2008.61:80-85.
    152.Schmidt, H., Rombke, J. The ecotoxicological effects of Pharmaceuticals (antibiotics and antiparasiticides) in the terrestrial environment-a review. In:Kuimmerer, K. (Ed.), Pharmaceuticals in the Environment, third ed., Sources, Fate Effects and Risk Springer, Berlin, Heidelberg, pp.2008:285-303.
    153. Davison, J. Genetic exchange between bacteria in the environment [J]. Plasmid, 1999,42:73-91.
    154. USDA.2002. Part III:Reference of Swine Health and Environmental Management in the United States,2000. Publ. N361.0902. US Dept. Agric., Anim. Plant Health Inspection Serv., Vet. Serv., Cent. Epidemiol. Anim. Health, Natl. Anim. Health Monit. Syst., Fort Collins, CO. http://www.aphis.usda.gov/vs/ceah/ncahs/nahms /swine/swine2000/Swine2000_dr_PartIII. pdf Accessed Jan.3,2010.
    155. USDA.2005. Part IV:Changes in the U.S. Pork Industry,1990-2000. Publ. N428.0405. US Dept. Agric, Anim. Plant Health Inspection Serv., Vet. Serv., Cent. Epidemiol. Anim. Health, Natl. Anim. Health Monit. Syst., Fort Collins, CO. http://www. aphis, usda. gov/vs/ceah/ncahs/nahms/swine/index. htm Accessed Aug. 17 2006.
    156. Ziemer, C. J., Bonner, J. M., Cole, D., Vinje, et al. Fate and transport of zoonotic, bacterial, viral, and parasitic pathogens during swine manure treatment, storage, and land application [J]. J Anim Sci.2010,88:E84-E94.
    157. Humenik, F. J., J. M. Rice, C. L. Baird, and R. Koelsch. Environmentally superior technologies for swine waste management [J]. Water Sci. Technol.2004,49:15-21.
    158. Chinivasagam, H. N., R. J. Thomas, K. Casey, E., et al. Microbiological status of piggery effluent from 13 piggeries in the south east Queensland region of Australia [J]. J. Appl. Microbiol.2004.97:883-891.
    159. Hutchison, M. L., L. D. Walters, S. M. Avery, et al. Analyses of livestock production, waste storage, and pathogen levels and prevalences in farm manures [J]. Appl. Environ. Microbiol.2005a.71:1231-1236.
    160. Lewis, D. L., and D. K. Gattie. Pathogen risks from applying sewage sludge to land [J]. Environ. Sci. Technol.2002.36:286A-293A.
    161.Gerba, C. P., Smith J. E. Sources of pathogenic microorganisms and their fate during land application of wastes [J]. J. Environ. Qual.2005.34:42-48.
    162. De Freitas, J. R., Schoenau J. J., Boyetchko, S. M. et al. Soil microbial populations, community composition, and activity as affected by repeated applications of hog and cattle manure in eastern Saskatchewan [J]. Can. J. Microbiol.2003.49:538-548.
    163. Santamaria, J., and G. A. Toranzos. Enteric pathogens and soil:A short review [J]. Int. Microbiol.2003.6:5-9.
    164. Brandl, M. T., A. F. Haxo, A. H. Bates, R. E. Mandrell. Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants [J]. Appl. Environ. Microbiol.2004.70:1182-1189.
    165. Hutchison, M. L., L. D. Walters, A. Moore, K. M. Crookes, et al. Effect of length of time before incorporation on survival of pathogenic bacteria present in livestock wastes applied to agricultural soil [J]. Appl. Environ. Microbiol. 2004.70:5111-5118.
    166. Cote□ C., and S. Quessy. Persistence of Escherichia coli and Salmonella in surface soil following application of liquid hog manure for production of pickling cucumbers [J]. J. Food Prot.2005.68:900-905.
    167.Nicholson, F. A., S. J. Groves, B. J. Chambers. Pathogen survival during livestock manure storage and following land application [J]. Bioresour. Technol.2005. 96:135-143.
    168.Saini, R., L. J. Halverson, J. C. Lorimore. Rainfall timing and frequency influence on leaching of Escherichia coli RS2G through soil following manure application [J]. J. Environ. Qual.2003.32:1865-1872.
    169. Tyrrel, S. F., and J. N. Quinton. Overland flow transport of pathogens from agricultural land receiving faecal wastes [J]. J. Appl. Microbiol.2003. 94:87S-93S.
    170. Malik, Y. S., W. Randall, M. Goyal. Fate of Salmonella following application of swine manure to tile-drained clay loam soil [J]. J. Water Health.2004.2:97-101.
    171. Jones, K. Campylobacters in water, sewage and the environment [J]. J. Appl. Microbiol.2001.90:68S-79S.
    172.Nevecherya, I. K., V. M. Shestakov, V. T. Mazaev, et al. Survival rate of pathogenic bacteria and viruses in groundwater [J]. Water Resour.2005,32: 232-237.
    173. Klein, M., Brown, L., Tucker, R. W., et al. Diversity and Abundance of Zoonotic Pathogens and Indicators in Manures of Feedlot Cattle in Australia [J]. Appl. Environ. Microbiol.2010,76:6947-6950
    174. Guan, T. Y., and R. A. Holley. Pathogen survival in swine manure environments and transmission of human enteric illness-A review [J]. J. Environ. Qual.2003. 32:383-392.
    175. Bhaduri, S., I. V. Wesley, E. J. Bush. Prevalence of pathogenic Yersinia enterocolitica strains in pigs in the United States [J]. Appl. Environ. Microbiol. 2005.71:7117-7121.
    176. Gtltler, M., T. Alter, S. Kasimir, M. Linnebur, et al. Prevalence of Yersinia enterocolitica in fattening pigs [J]. J. Food Prot.2005.68:850-854.
    177.Nicholson, F. A., S. J. Groves, and B. J. Chambers. Pathogen survival during livestock manure storage and following land application. Bioresour [J]. Technol. 2005.96:135-143.
    178. Bhaduri, S., and I. Wesley. Isolation and characterization of Yersinia enterocolitica from swine feces recovered during the National Animal Health Monitoring System Swine 2000 study [J].J. Food Prot.2006.69:2107-2112.
    179. Gitte SengelOv, Yvonne AgersO, Bent Halling-SOrensen, et al. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry [J]. Environment International,2003,28(7):587-595.
    180. Salmore, A. K., Hollis, E. J., McLellan, S. L. Delineation of a chemical and biological signature for stormwater pollution in an urban river [J]. J. Water Health,2006.4,247-262.
    181. Chamberlain, J.S., R. A. Gibbis, J. E. Ranier. Deletion sereening of the Duehenne museular dystrophyloeus via multiplex DNA amplification [J]. Nuceic Acid Res.2001,16:111410-11156.
    182. Batchelorm M. G. Detection of multiple cephalosporin-resistant Escherichia coli from a cattle fecal sample in Great Britain [J]. Microb Drug Resist.2005, 11(1):58-61.
    183. Brennermichae L. G. Class I integon-associated gene cassettes in Salmonella enterica sub sp. Enterica serovar Agona isolated from pig carcasses in Brazil [J]. J Antimicrob Chemother.2005,55(5):776-779.
    184. Vanya Miteva, Catherine Teacher, Todd Sowers, et al. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates[J]. Environmental Microbiology,2009,11(3):640-656.
    185. Banks JC, Hogg ID. The phylogeography of Adelie penguin faecal flora [J]. Environmental Microbiology,2009,11(3):577-588.
    186. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora [J]. Science,2005,308(5728):1635-1638.
    187. Paul B Eckburg, Elisabeth M Bik, Charles N Bernstein, et al. Diversity of the Human Intestinal Microbial Flora[J]. Science,2005,308(5728):1635-1638.
    188.Narut T, Sandra E, Oliver A. Characterization of lactic acid bacteria and other gut bacteria in pigs by a macro arraying method [J]. Ann N Y Acad Sci,2006, 1081(10):276-279.
    189. Devaraja TN, Yusoff FM, Shariff M. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products[J]. Aquaculture, 2002,206:245-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700