用户名: 密码: 验证码:
洞庭湖区复杂防洪系统数值模拟模型研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洞庭湖是我国第二大淡水湖泊,位于长江中游南岸,是历史上长江中下游遭受洪灾最严重的区域之一。三峡工程建成以后,荆江河段的防洪形势得到了根本性的改善,同时也缓解了洞庭湖区的防洪压力,但洞庭湖区洪源多、各路洪水易发生遭遇的基本格局并未改变。同时,随着自然变迁以及大量围垦造田等人类活动的影响,洞庭湖湖面面积与容积一直处于减小状态,湖盆的萎缩抬高了湖区的同流量水位,增加了洪灾的威胁。面对洞庭湖区的防洪研究的实际需求,构建复杂防洪系统数值模型,科学化、系统化、定量化地分析洞庭湖区的防洪形势,研究洞庭湖区的防洪措施,很有必要也很有意义。
     洞庭湖区河道及湖泊覆盖面积大,区内河网纵横交错,汊点密布,江、河、湖互相串通,水流相互顶托,流向往复不定,同时,区内修建了各种防洪工程措施抵御洪水的侵袭,给洞庭湖区的复杂防洪系统的构建增加了难度。为此,本文研究了复杂防洪系统数值模拟的理论方法和模型构建,首次实现了洞庭湖区复杂防洪系统的联合调洪模拟,分析了各防洪措施对洞庭湖区的防洪作用,揭示了洞庭湖区的防洪形势。主要研究内容如下:
     (1)分析复杂防洪系统的基本元素,针对各基本元素的水流运动特征,提出了满足河道行洪、蓄洪区分洪、水库蓄洪以及水工建筑物调洪模拟功能的复杂防洪系统数值模型的总体结构。为了能精确反映江、河、湖之间的水流交换以及防洪系统各基本元素对水流运动的影响,根据各基本元素的模拟需求,分别给出了河道、湖泊、分蓄洪区、水库、水工建筑物各部分的基础理论。
     (2)针对洞庭湖区的洪水特征,构建了洞庭湖区复杂防洪系统数值模型,模拟范围涵盖长江中下游干流、洞庭湖区、鄱阳湖区、长江中下游40处分蓄洪区、三峡水库以及洞庭湖区以防洪为主的水库群、松滋口闸门以及虎渡河南闸。其中,河网和湖泊分别采用一维和二维水动力模型模拟,并将两者耦合;在处理数量众多的分蓄洪区时,将其概化为具有蓄水功能的小水库,利用闸门控制蓄洪区的启用;水库分布在整个模拟范围的上游,将水库调节后的水流过程作为复杂防洪系统数值模型的上边界输入;系统中水工建筑物主要涉及控制蓄洪区分洪的闸门以及调节水流的控制闸,分蓄洪区控制闸的开启方式,以河道的分洪控制水位为目标,调节水流的闸门则通过设置运行调度规则,实现水流调节。
     (3)基于复杂防洪系统数值模型,在不启用分蓄洪区的前提下,模拟了三峡水库运用前、三峡水库按荆江补偿调度、三峡水库按城陵矶补偿调度3种情景下,遇1954年型洪水和1998年型洪水,荆江以及洞庭湖区水位与流量过程,分析了三峡水库对荆江和洞庭湖区的防洪作用。同时,模型通过启用各地区的分蓄洪区,计算了长江中下游地区超额洪量的分布,分析了三峡水库运用后,荆江河段和洞庭湖区的防洪形势。
     (4)基于并联水库群联合调度理论,构建了澧水水库群联合调度模型,分析了水库群联合调度对澧水洪水的削峰作用。基于洞庭湖区复杂防洪系统数值模型,模拟了长江洪水经三峡水库调蓄后、澧水洪水经江垭和皂市水库联合调度后,松澧地区各水文站的水位过程,分析了澧水水库群联合调度对松澧地区的防洪作用,通过对比最高水位与保证水位的关系,揭示了在三峡水库、江垭水库、皂市水库的共同作用下,洞庭湖区的防洪形势。
     (5)在分析松澧地区洪水组成及遭遇的基础上,研究了在不增加荆江防洪压力的前提下,松滋口闸门的错峰调度方式,基于洞庭湖区复杂防洪系统数值模型,分析松滋闸的错峰调度效果。通过对比长江洪水经三峡水库调蓄后、澧水洪江经江垭和皂市水库联合调度后,松滋闸错峰调度前后洞庭湖区和荆江河段最高水位的变化,分析松滋闸错峰调度对洞庭湖区的防洪作用以及对荆江河段的防洪影响。
The Dongting Lake is the second largest freshwater lake in China, located in the south bank of the middle reaches of the Yangtze River. It is not only an important China production base of commodity grain, fish, cotton and hemp, but also one of the regions suffered the worst floods in the history in the middle&lower reaches of the Yangtze River. After operation of the Three Gorges Project, the flood control in the middle&lower reaches of the Yangtze River has been greatly improved. So does it in Jingjiang and Dongting Lake areas. But when the flood of Dongting Lake comes from Xiang River, Zi River, Yuan River and Li River, the Three Gorges Reservoir is unable to play the role of flood control in Dongting Lake area and its flood control situation is still very serious. The Lake area is featured with large river and lake covering, complex river networks, connected parts between lakes and rivers, and uncertain flow directions. Also, there are various hydraulic structures to control flood, which makes Dongting Lake area become a complex flood control system, including rivers, lakes, reservoirs, flood diversion&storage area, and hydraulic structures.
     In order to accurately evaluate impacts of the water exchange among rivers, lakes and other basic elements in flood control system, the paper firstly analyzes the flow characteristics of the basic elements in flood control, and then presents the general structure of numerical model in such complex system. Combined flood diversion area model and hydraulic structures operation model in MIKE, a new numerical model named complex flood control system model was developed to achieve global flood control simulation with appropriate information transfer among basic elements, including flood routing of river, flood control of lakes and reservoirs, flood storage of flood diversion&storage area, and flood control of hydraulic structures.
     On the other hand, according to the complexity of the flow and the simulation requirements in the system, the new model expands the simulation scope to Datong station, which covers Yangtze River, Dongting Lake area, Poyang Lake area, and the main branches in the middle&lower reaches of the Yangtze River. In the process of parameter calibration, initial bed roughness is set according to different river reach, and the bed roughness of specific river reach in various water levers according to its cross-section composition is also set. Overall calibration of roughness is processing with slightly adjusting local bed roughness until the calculated values of water level and discharge meet required accuracy. The agreement between the calculated and measured flood process is identified by calculating the Nash-Sutcliffe and deterministic coefficient. The model's accuracy is evaluated based on the relative error between the calculated and measured flood peaks and the absolute error between the calculated and measured highest water levels. The test results indicate that the model is capable of simulating flood process and its peak with good accuracy.
     On the analysis of flood formation and transformation, the new model is employed to simulate the water level-discharge relation in Jingjiang and Dongting Lake areas in the following three cases:no storage regulation of the Three Gorges, operation of the Three Gorges Reservoir considering the Jingjiang River flood control, and operation of the Three Gorges Reservoir considering the Chenglingji flood control, which all encountered the flood in1954and1998respectively. According to the simulated results, the flood controls in Jiangjiang and Dongting Lake areas are assessed, and the distribution of extra flood discharge is calculated in the middle&lower reaches of the Yangtze River. The flood control after taking diverting flood in each diversion area is also assessed in the two areas.
     Quantitative analysis of Dongting Lake's flood control after the operation of the Three Gorges Dam indicates key zones of the frequent flooding in the Lake and its formation. Effective measures were suggested based on the analysis and requirements of flood control. The calculation using the new model quantitatively evaluates that the suggested measures are able to reduce flood risk to the Lake. This study introduces two measures:the joint operation reservoir system and flood peak alteration using gates, and recommends flood peak alteration schemes for the Songzi Gates, and also analyzes effects from joint operation of Jingya and Zaoshi reservoirs and effects from Songzi Gates' alteration. Using the model, quantitative studies are conducted on effects from flood control in Jingjiang and Dongting Lake areas after adopting the proposed measures, and risk to Dongting Lake without changing Jinjiang flood control schemes.
     Simulation results indicate that the joint operation of Jiangya and Zaoshi reservoirs can effectively reduce the flood peak for the flooding from branches of the Sishui River, but it fails to control the peak flow under the safety discharge for the flooding from the Sishui River. The flood stage in the Songsi Area can be effectively reduced after joint operation of the two reservoirs. Since the flooding peak in this area is mainly from the Sishui River, the flood stage in the area is still above the safety stage even after Three Gorges Dam's operation. In case of the flood peak in Songsi area above control discharge, implementation of flood peak alteration using the Songzi Gates can effectively alter the flood discharge from the Yangtze River to Songzi River, and reduce the flood stage in the area. But after taking joint operation of the two reservoirs, the flood peak is still beyond safety discharge even though no water flows through the Songzi Gates. On the other hand, peak alteration using the Songzi Gates can increase the water lever in Jingjiang river reach a little. But the increased highest water lever is still below the safety stage at Shashi station. Therefore, implementations of both dredging the Songzi River and altering flood peak with Songzi Gates can ensure the flood control in the Songzi area without changing Jingjiang flood control schemes.
引文
[1]Abbott M.B., Minns A.W. Computational Hydraulics [M]. England: Ashgate, 1998.
    [2]Amein M. Stream Flow Routing on computer by characteristics [J]. Water Resources Res,1966,2(1):123-130.
    [3]Abbott M.B., Lonescu F. On the numerical computation of mearly Horizontal flows [J]. J. of Hydraulic Resources,1976,5(2):97-117.
    [4]Amein M., Fang C.S. Implicit flood routing in natural channels [J]. J. of Hydraulic Division, ASCE,1970,96(HY12):2481-2500.
    [5]Amein M, Chu H.L. Implicit numerical modeling of unsteady flows[J]. J. of Hydraulic Division, ASCE,1975,101(HY6):93-108.
    [6]Bononi L, Bracuto M, D Angelo G, et al. Concurrent replication of parallel and distributed simulations [C], Proceedings of the 19th Workshop on Principles of Advanced and Distributed Simulation. Washington: IEEE Computer Society, 2005:234-243.
    [7]Balloffet A. One-dimensional analysis of floods and tidals in open channels [J]. J. of Hydraulic Division, ASCE,1969,95(HY4):1429-1451.
    [8]BARROS M, TSAIF, YANG S L, et al. Optimization of large-scale hydropower system operations [J]. Journal of Water Resources Planning and Management, 2003,129(3):178-188.
    [9]Cunge J A, et al. Practical Aspects o f Computational River Hydraulics [J], Pitman Advanced PublishingProgram,1980:420.
    [10]Chaudhry M H. Open channel flow [M]. Prentice Hall, N.J., New, Jersey.1993.
    [11]Cunge J.A. On the subject of a flood propagation computation method [J]. J. of Hydraulic Resources,1969,7(2):205-230.
    [12]Danish Hydraulic Institute (DHI). MIKE 11:A modeling system for rivers and channels reference manual[R]. Denmark:DHI.2005.
    [13]Dronkers J.J. Tidal computations for rivers, coastal areas and seas [J]. J. of Hydraulic Division, ASCE,1969,95(HY1):29-77.
    [14]Dronkers J J.河流近海岸区的潮汐计算[J].水利水运科技情报,1976年增刊.
    [15]Fread D.I. Technique for implicit dynamic routing in rivers with tributaries [J]. Water resources,1973,9(4):918-926.
    [16]FREDERICKS J, LABADIE J, ALTENHOFEN J. Decision support system for conjunctive stream-aquifer management [J]. Journal of Water Resources Planning and Management,1998,124(2):69-78.
    [17]Greco F., Panattoni L. An implicit method to solve Saint-Venant equations [J]. J. of Hydraulic,1975,24:171-185.
    [18]Harris G.S. Real time routing of flood hydrographs in storm sewers [J]. J. of Hydraulic Division, ASCE.1970,96(HY6):1247-1260.
    [19]J S Windsor. A programming model for the design of multi-reservoir flood control system[J], Water Resources Research,1975,11(1):30-36.
    [20]J S Windsor. A programming model for the design of multi-reservoir flood control system[J], Water Resources Research,1975,11(1):30-36.
    [21]Katopodes N. A dissipative Galerkin scheme for open channel flow[J]. J. Hydraulic Engrg. ASCE.1984,110 (4):450-466.
    [22]Kamphuis J.W. Mathematical tidal study of At. Lawrence River [J]. J. of Hydraulic Division, ASCE,1970,95(HY3):643-664.
    [23]K.迈赫莫德,K.叶副耶维奇,明渠不恒定流[M].水利电力出版社,1987:5.
    [24]Linsley R.K, Kohler M.A. Applied Hydrology [M]. New York:Mcgraw Hill Book Co.,1969:502-530.
    [25]Lighholl M.J. Whitham GB. On kinematic flood:Flood movements in long rivers [A]. In Proc, Royal Society Lond,1955, A229,281-361.
    [26]Little J D C. The Use of Storage Water in a Hydroelectric System. Operation Research,1955.3(2):187-197.
    [27]Naidu B J, Murty Bhallamudi S, and Narasimhan S, GVF Computation in tree-type channel Networks [J]. J. Hydr Engrg,1997, (8):700-708.
    [28]Namiki T. A new FDTD algorithm based on alternating-direction implicit method [J]. IEEE Trans on Microwave Theory Tech,1999,47(10):2003-2007.
    [29]NEEDHAM J, WATKINS D, LUND J, et al. Linear programming for flood control in the Iowa and Des Moines rivers[J]. Journal of Water Resources Planning and Management,2000,126(3):118-127.
    [30]Preissmann A. Propagation of translator waves in channels an rivers [A]. In Proc. First Congress of French Assoc. For Computation, Grenoble, France,1961: 433-442.
    [31]P.J.罗奇.计算流体动力学[M].科学出版社,1983,6.
    [32]PENG C S, Buras N. Practical estimation of inflows into multi-reservoir system[J]. Journal of Water Resources Planning and Management,2000,126(5): 331-334.
    [33]Quick M.C, Pipes A. Nonlinear channel routing by computer [J]. J. of Hydraulic Division. ASCE.1975,101(HY6):651-664.
    [34]Schulze K w. Finite Element Analysis of Long Waves in open Channel System. Finite Element Method in Flow Problems. Chaper 5, Ed. By oden J T et al., The Univ. of Alabama Pxess,1974, PP.295-303.
    [35]Sauer V.B. Unit-response method of open channel fold routing [J]. J. of Hydraulic Division. ASCE,99(HY1),1973:179-193.
    [36]SHIM K C, FONTANE D, LABADIE J. Spatial decision support system for integrated river basin flood control [J]. Journal of water Resources Planning and Management,2002,128(3):190-121.
    [37]Tan Weiyan. Shallow Water Hydrodynamics. China Water & Power Press and Elsevier Science Publications B V,1992.434.
    [38]Yi J, Labadie J, Stitt S. Dynamic opfimM unit commitment and loading in hydropower system [J]. Water Resources Planning Management,2003,129(5): 388-398.
    [39]长江水利委员会,三峡工程泥沙研究[M],湖北科学技术出版社,1997:10~11.
    [40]长江水利委员会水文局.洞庭湖区来水来沙特性及湖区淤积分析[R].2000.
    [41]曹茂华.澧水流域的防洪与发电[J].湖南水利水电,2002,1:31-33.
    [42]陈晖.长江河口地区工程防洪影响研究[D].河海大学,2003.
    [43]陈守煜.多阶段多目标决策系统模糊优选及其应用[J].水利学报,1990
    [44]地理词典[M].北京:万元图书公司,1979.
    [45]方春明,鲁文,钟正琴.可视化河网一维恒定水流泥沙数学模型[J],泥沙研究,2003(6):60-64
    [46]冯尚友.水资源系统工程[M].武汉:湖北科学技术出版社,1991.
    [47]国家防汛抗早总指挥部办公室,水利部南京水文水资源研究所.中国水早灾害[M].北京:中国水利水电出版社,1997.
    [48]顾云梭,王尚毅.具有岔道支流的明渠不恒定流计算[J].天津大学学报,1995.1
    [49]郭纯一.基于遗传算法的水库防洪调度决策支持系统[J].东北水利水电,2003
    [50]胡四一,王银堂,谭维炎,仲志余,徐承隆,胡维忠.长江中游洞庭湖防洪系统水流模拟Ⅱ:模型实现和率定检验[J],水科学进展,1996,7(4):346-353.
    [51]胡四一、施勇、戚晨、王银堂、吴永祥.1998年长江中游洪水系统反演及高洪水位形成原因探讨[J],水科学进展,1999,10(3):242-250.
    [52]胡四一,施勇,王银堂,等.长江中下游河湖洪水演进的数值模拟[J].水科学进展,2002,13(3):278-286.
    [53]湖南省水利水电厅.洞庭湖水文气象统计分析[R].1989.
    [54]黄智勇,何学春.澧水流域防洪规划与皂市工程的防洪作用[J].人民长江,2008,39(21):1-2.
    [55]胡恺诗.对洞庭湖松澧地区治洪策略的探讨[J].水利水电技术,1990,7:5-11.
    [56]侯玉,卓建民,郑国权.河网非恒定流汉点分组解法[J].水科学进展,1999,3:49-52.
    [57]胡铁松,万永华,冯尚友.水库调度智能决策支持系统研究[J].成都科技大学学报,1994,(6):39—45.
    [58]黄志中,周之豪.大系统分解一协调理论在库群实时防洪调度中的应用[J].系统工程理论方法与应用,1995,4(3):53-59.
    [59]姜加虎,黄群.洞庭湖区退田还湖的洪水效应模拟[J],自然灾害学报,2004,13(4):44-48.
    [60]姜加虎,黄群.洞庭湖淤积围垦对湖区江湖洪水影响的模拟[J],长江流域资源与环境,2006,15(5):584-587.
    [61]简明大不列颠百科全书[M].北京:中国大百科全书出版社,1985.
    [62]姜万勤.中小型水库群防洪调度图解法[J].水利管理技术,1996,(1):53-55.
    [63]孔凡哲,王晓赞.基于河段特征的马斯京根模型参数估算方法[J].中国矿业大学学报,2008,37(4):494-497.
    [64]李义天.河网非恒定流隐式方程组的汉点分组解法[J],水利学报,1985,(8)
    [65]鲁帆,蒋云钟,王浩,等.多智能体遗传算法用于马斯京根模型参数估计[J].水利学报,2007,38(3):289-294.
    [66]李光炽,王船海.流域洪水演进模型通用算法研究[J].河海大学学报(自然科学版),2005,33(6):624-628.
    [67]李义天,赵明登,曹志芳.河道平面二维水沙数学模型.中国水利水电出版社,2001,12.
    [68]李孟国,蔡东明.海岸河口二维潮流可视化数学模型[J].海洋通报,2000,19(6).
    [69]李义天.河网非恒定流隐式方程组的汉点分组解法[J].水利学报,1997,3:49-57.
    [70]刘卡波,丛振涛,栾震宇.长江向洞庭湖分水演变规律研究[J].水力发电学 报,2011,30(5):16-19.
    [71]李文家,许自达.三门峡-陆浑一故县三水库联合防御黄河下游洪水最优调度模型探讨[J].人民黄河,1990,(4):2025.
    [72]赖锡军,姜加虎,黄群.洞庭湖洪水空间分布和运动特征分析[J].长江科学院院报,2006,23(6):22-26.
    [73]李景保.洞庭湖区1996年特大洪涝灾害的特点与成因分析[J].地理学报,1998,53(2):166-173.
    [74]李义天.河网非恒定流隐式方程组的汉点分组解法[J].水利学报,1997,(3):49-57.
    [75]刘晓群,栾震宇,徐超.三峡运行后洞庭湖四口河系蓄洪区运用条件变化分析[J].水力发电学报,2011,30(5):40-44.
    [76]龙子泉,卓四清.多年调节水电站水库长期优化调度新模型[J].武汉水利电力大学学报,1998,(10).
    [77]刘翼,王丽学,王振.大伙房水库防洪优化调度研究[J].沈阳农业大学学报,2005,36(2):206-209.
    [78]鲁子林.水库群调度网络分析法[J].华东水利学院学报,1983,11(2).
    [79]穆锦斌,张小峰,谢作涛.荆江一洞庭湖洪水演进模型和基本算法[J].人民长江,2008,39(18):6-8.
    [80]毛德华.洞庭湖区洪涝特征分析(1471-1996年)[J].湖泊科学,1998,10(2):85-91.
    [81]毛德华,夏军.洞庭湖区洪涝灾害的形成机制分析[J].武汉大学学报(理学版),2005,51(2):199-203.
    [82]马勇,高似春,陈惠源.一种基于扒口分洪运用方式的防洪系统联合运行的大规模LP广义化模型及其应用[J].水利学报,1998,(12):34-37.
    [83]施勇,栾震宇,胡四一.长江中下游水沙数值模拟研究[J].水科学进展,2005(6):840-848.
    [84]水利词典[M].上海:上海辞书出版社,1994.
    [85]苏铭德,黄素逸.计算流体力学基础1M].北京:清华大学出版社,1997
    [86]谭维炎,胡四一,王银堂,徐承隆,仲志余,胡维忠.长江中游洞庭湖防洪系统水流模拟Ⅰ:建模思路和基本算法[J],水科学进展,1996,7(4):336-345.
    [87]谭维炎.计算浅水动力学—有限体积法的应用[M].清华大学出版社:1998.
    [88]张勇传主编.优化理论在水库调度中的应用[M].长沙:湖南科学技术出版社,1985.
    [89]谭维炎,黄守信.应用随机动态规划进行水电站水库的优化调度[J].水利学 报,1982,(7)
    [90]吴寿红.河网非恒定流四级解法[J].水利学报,1985,(8):42-50.
    [91]吴作平,杨国录,甘明辉.河网水流数值模拟方法研究[J],水科学进展,2003,14(3):350-353.
    [92]王船海,李光炽.实用河网水流计算[M].河海大学水资源水文系,1995,12.
    [93]汪德灌.计算水力学理论与应用[M].河海大学出版社,1989年9月
    [94]王本德.水库模糊优化调度[M].大连:大连理工出版社,1990.
    [95]万俊,陈惠源.水电站群优化调度分解协调一聚合分解复合模型研究[J].水力发电学报,1996,(2):41-50.
    [96]王栋,曹升乐.水库群系统防洪联合调度的线性规划模型及仿射变换法[J].水利管理技术,1998,18(3):1-5.
    [97]现代科学技术词典[M].上海:上海科技出版杜,1982.
    [98]向万胜,李卫红.洞庭湖区洪涝灾害的时空分布与防灾减灾对策[J].生态学杂志,2001,20(2):48-51.
    [99]袁晓辉,张双全,张勇传,等.非线性马斯京根模型参数率定的新方法[J].水利学报,2001,5:77-81.
    [100]余明辉,刘合翔.守恒性平面二维水流数学模型的研究[M].武汉大学学报:工学版,2002,35(3).
    [101]杨国录.河流数学模型[M].北京:海洋出版社,1993.
    [102]叶秉如.水利计算及水资源规划[M].中国水利电力出版社,1995.
    [103]周学漪.计算水力学[M].清华大学出版社,1989.
    [104]张二骏.河网非恒定流三级联合算法[J].华东水利学院学报,1982(1).
    [105]仲志余,徐承隆,胡维忠.长江中下游水文学洪水演进模型研究[J].水科学进展,1996,7(4):354-360.
    [106]张有兴,刘晓群,卢翔.长江中下游洪水模拟研究[J].湖南水利水电,2003,(5):17-19.
    [107]周北达,刘永华.三峡运行后对洞庭湖洪水水位的影响[J].湖南水利水电,2003,(1):27-29.
    [108]中国水利大百科全书[M].北京:中国水利水电出版社,1991.
    [109]中国大百科全书编委会.中国大百科全书·水文卷[M],北京:中国大百科全书出版社,1985.
    [110]左大康.现代地理学词典[M].北京:商务印书馆,1990.
    [111]仲志余,徐承隆,胡维忠.长江中下游水文学洪水演进模型研究[M].水科学进展,1996,7(4):354-360.
    [112]张修忠,王光谦.河道及河口一维及二维嵌套泥沙数学模型[J].水利学报,2001,(10).
    [113]曾凡棠,黄水祥.珠江三角洲潮汐河网水环境数学模型评述[J].海洋环境科学,2000,11:47-50.
    [114]张勇传.水电站水库群优化调度方法的研究[J].水力发电,1981,(11):48-52.
    [115]张勇传.优化理论在水库调度中的应用[M].长沙:湖南科学技术出版社,1985.
    [116]朱元魁.防洪减灾的研究动态[J].水利水电科技进展,1992,12(1):11-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700